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Warming enhances old organic carbon
decomposition through altering functional microbial
communities
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Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere
and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide
concentrations and climate. Over the past two decades, much research has been devoted to
examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and
stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by
combining a long-term field warming experiment and a meta-analysis study, we showed that warming
significantly increased SOM decomposition in subsoil. We also showed that a decade of warming
promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass
prairie and this effect was largely associated with shifts in the functional gene structure of microbial
communities. By coupling stable isotope probing with metagenomics, we found that microbial
communities in warmed soils possessed a higher relative abundance of key functional genes
involved in the degradation of organic materials with varying recalcitrance than those in control soils.
These findings suggest warming may considerably alter the stability of the vast pool of old SOM in
subsoil, contributing to the long-term positive feedback between the C cycle and climate.
The ISME Journal (2017) 11, 1825–1835; doi:10.1038/ismej.2017.48; published online 21 April 2017

Introduction

A major uncertainty in projecting future atmospheric
carbon dioxide (CO2) concentrations and climate is
how warming influences decomposition of SOM
(Davidson and Janssens, 2006; Stocker et al., 2013).
Considerable efforts have been made to assess the

effects of warming on SOM decomposition in the
surface soil layer (that is, topsoil, 0–20 cm deep)
(Davidson and Janssens, 2006; von Lutzow and
Kogel-Knabner, 2009; Conant et al., 2011; Crowther
et al., 2016). Soil organic C (SOC) in topsoil accounts
for one quarter of the global SOC pool and is
relatively young, with typical turnover times of
decades or less (Hopkins et al., 2012). Topsoil SOM
has been deemed to be vulnerable to microbial
decomposition under warming (Yergeau et al.,
2012; Karhu et al., 2014; Crowther et al., 2016),
and hence may have a critical impact on climate
(Davidson and Janssens, 2006; Conant et al., 2011;
Hopkins et al., 2012). Most SOC is stored in deeper
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soils (0.2–3m) (Jobbagy and Jackson, 2000), of which
the majority of C is considerably older, with turnover
times of centuries to millennia (Trumbore et al.,
1996; Rumpel et al., 2002; Fontaine et al., 2007).
A significant and long-term feedback to climate would
also occur if ongoing and projected warming could
considerably alter decomposition of SOM in the
subsoil layers (those below the surface soil) of global
soils. Yet, the influence of warming on the stability of
SOM in subsoil has rarely been examined directly.

It has been traditionally thought that the long
residence time of SOM in subsoil is due mainly to
the chemical recalcitrance of organic compounds
themselves (Rumpel et al., 2002; Davidson and
Janssens, 2006; Fontaine et al., 2007; von Lutzow
and Kogel-Knabner, 2009), although a recent view
has ascribed it to biotic and abiotic protection
(Schmidt et al., 2011). Kinetic theory predicts that
old SOM, if more chemically recalcitrant, would
have higher sensitivities to temperature changes in
comparison with young SOM (Knorr et al., 2005;
Davidson and Janssens, 2006). But the temperature
sensitivity of recalcitrant SOM decomposition has
been documented to be either higher than (Knorr
et al., 2005; Hakkenberg et al., 2008; Hartley and
Ineson, 2008; Craine et al., 2010; Hopkins et al.,
2012), similar to or lower than labile SOM (Liski
et al., 1999; Giardina and Ryan, 2000; Melillo et al.,
2002; Fang et al., 2005; Reichstein et al., 2005),
suggesting that other mechanisms through which
warming influences the stability of SOM in subsoil
have not been fully characterized. The majority of
previous studies were short-term soil incubations
conducted in the laboratory, which may not accu-
rately represent field conditions. Moreover, most
previous work has focused on the relationships
between temperature and CO2 emissions (Luo
et al., 2001; Zhou et al., 2007; Mahecha et al.,
2010; Carey et al., 2016), but did not investigate the
microbial mechanisms of SOM decomposition under
warming.

Here, we carried out a long-term field experiment
and a comprehensive meta-analysis to ascertain the
direction and magnitude of the warming effects on
subsoil SOM decomposition under field conditions.
We then conducted a stable isotope probing (SIP)
microcosm experiment, in combination with meta-
genomic analyses, to elucidate the possible biologi-
cal underpinnings of the warming effect on SOM
decomposition. We hypothesized that experimental
warming would (i) increase SOM decomposition in
subsoil, and (ii) alter the structure and/or functions
of microbial communities in subsoil.

Materials and methods

Field warming experiment
We initiated a long-term field experiment to inves-
tigate the responses of a tall grass prairie ecosystem
to warming in central Oklahoma, USA (34° 58' 54'' N,

97° 31' 14'' W). This long-term experimental facility
was established in November 1999, with a paired,
nested factorial design with warming as the main
factor (n=6) and clipping as the nested sub-factor. A
single infrared heater (Supplementary Figure S1a)
was suspended 1.5m above the ground to elevate
soil temperature (Luo et al., 2001; Zhou et al., 2007;
Xu et al., 2015). A deep soil collar (a PVC tube with
10 cm in diameter × 70 cm in depth) was installed
into an unclipped subplot of each main treatment
plot in October, 2001 (Supplementary Figure S1c).
Soil samples were taken from the soil profile of 0–
25 cm in the deep collar by the end of 11th year
growing season using a 5-cm diameter soil corer. Soil
C concentrations were determined with a CHN
elemental analyzer (Carla Erba and model 2400,
Perkin Elmer Co., Norwalk, CT, USA). The 14C
contents of SOM were analyzed at the University of
Arizona NSF-AMS facility (Donahue, 1995). Detailed
descriptions of the experimental site, deep collars,
soil sampling and measurements (for example, soil
temperature, soil CO2 efflux, soil organic C
and radiocarbon analyses) are provided in
Supplementary Appendix S1 section 1.

Carbon pool partitioning
We used the mass balance, in combination with the
Arrhenius equation and Michaelis–Menten kinetics
(Davidson and Janssens, 2006), to develop a model to
estimate the relative contribution of different C age
pools in decomposed SOM under warming. Detailed
descriptions of the theory, model parameterization
and mathematical calculations are included in
Supplementary Appendix S1 section 2.

Meta-analysis study
A meta-analysis study of the warming effect on SOC
changes in the soil profile was conducted using
previously published data. We used Web of Science
for a thorough search of relevant peer-reviewed
articles published before November 2015. We only
selected published studies that included the changes
of SOC in different soil layers under warming in
field. The effect size of warming for each individual
observation was estimated by transforming the
response ratio (R) with the natural log: lnR= ln
(XW=XC), where XWis the mean for warming treat-
ment, XC is the mean for ambient treatment. Detailed
information for each of selected studies is shown in
the Supplementary Appendix S2. Descriptions of
data extraction and meta-analysis are provided in
Supplementary Appendix S1 section 3.

Stable isotope probing microcosm experiment
We designed a SIP microcosm experiment to
ascertain the effects of warming on microbial com-
munities and decomposition. Soils taken from the
20–25 cm soil layer of the deep collar of each plot
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were split into two 20-g dry mass equivalent
aliquots, adjusted to the moisture level of 60% water
holding capacity, and then placed in 165-ml jars for
laboratory incubation. One jar was treated as the sub-
control, the other was added with the uniformly (U)
13C-labeled shoot biomass of Triticum aestivum
(ground, 13C abundance 4 97%, IsoLife BV, Wagen-
ingen, The Netherlands) with a mass ratio of 150:1
(soil: 13C plant material). We used the gradient
fractionation method to separate 13C-DNA from 12C-
DNA based on a standard protocol (Neufeld et al.,
2007). Detailed descriptions of headspace gas sam-
pling, soil DNA extraction, 13C-DNA separation,
measurements and calculations are shown in
Supplementary Appendix S1 Section 4.

16S rRNA gene sequencing and GeoChip analyses
Pyrosequencing of PCR amplicons that targeted the
V4–V8 hypervariable regions (positions 515–1391) of
16S ribosomal RNA gene (rRNA) was performed
using a 454 Life Sciences Genome Sequencer FLX
titanium instrument (454 Life Sciences, Brandford,
CT, USA). Detailed descriptions of amplicon pre-
parations, sequencing and data preprocessing are
provided in Supplementary Appendix S1 Section 4.

GeoChip (version 4.0) is a functional gene-array-
based high-throughput technology designed for
profiling the functional structure, diversity, meta-
bolic potential/activity and dynamics of microbial
communities (Tu et al., 2014). GeoChip 4.0 con-
tained a total of 82 047 probes targeting numerous
functional genes important to microbial processes.
Among all probes, 3% of them targeted 188 archaeal
strains, 89% for 4332 bacterial strains, 6% for 420
eukaryotic (mainly fungal) strains, and the remaining
for other organisms. GeoChip 4.0 included 8749
probes targeting 33 genes involved in organic
compound degradation. Sequence retrieval, probe
design, microarray construction and imaging were
described previously (Tu et al., 2014). Details for
DNA labeling, hybridization, image processing and
GeoChip data pre-processing are provided in
Supplementary Appendix S1 Section 4.

Data analyses
We employed three different but complementary
non-parametric multivariate statistical analysis
methods to test statistical differences of microbial
communities between warming and control treat-
ments (Legendre and Legendre, 2012; Zhou et al.,
2012). The three methods were permutational multi-
variate analysis of variance using distance matrices
(Adonis), analysis of similarities (ANOSIM) and
multi-response permutation procedure (MRPP). We
also used detrended correspondence analysis (DCA)
to assess the similarity of two microbial communities
based on 454 pyrosequencing and GeoChip data sets
(Legendre and Legendre, 2012). A phylogeny-based
metric, called UniFrac (Lozupone and Knight, 2005),
was employed to examine changes in the taxonomic

structure of microbial communities based on 16S
rRNA pyrosequencing data sets. Results from the
UniFrac-based principal coordinate analysis (PCA)
(data were not shown) were very similar to those
generated from DCA, we thus adopted DCA through-
out the text. All pyrosequencing data were analyzed
based on biological replicates. Detailed analysis of
the pyrosequencing data with three technical repli-
cates is beyond the scope of the present work and
will be presented in another paper. Data on gas
concentrations, SOC content and soil C age in field
were analyzed using ANOVA mixed model (Littell
et al., 1996). Data on CO2 respiration with repeated
measurements either in laboratory or field were
analyzed using repeated measures ANOVA. To
reduce autocorrelation between repeated measure-
ments, we also included three covariance structures
compound symmetric model (CS), the first-order
autoregressive mode (AR(1)) and autoregressive with
heterogeneous variance in repeated measures
ANOVA. Statistical results from repeated measures
ANOVA were reported based on the covariance
structure that minimized Akaike’s information cri-
terion (AIC) and Bayesian information criterion (BIC)
(Littell et al., 1996; Cheng et al., 2011). P-values for
the relative abundance of taxa and the signal
intensity of functional genes were calculated using
paired two-tailed t tests. DCA, Adonis, ANOSIM and
MRPP were analyzed using R with the package
‘vegan’ (Oksanen et al., 2007). All statistical analyses
were performed using the R software (version 3.1.0,
The R Foundation for Statistical Computing, Vienna,
Austria). For all tests, P⩽ 0.05 was considered a
statistically significant difference.

Results and discussion

We first investigated the influence of long-term
experimental warming on soil C dynamics in the
Oklahoma field plots. Warming significantly
enhanced soil CO2 efflux from whole plots with an
annual mean increase of 126.8 g Cm− 2 per year
during the eleven-year experimental period (Xu
et al., 2015). To exclude the impact of new plant-
derived C inputs on SOM decomposition, we
installed a deep collar into the unclipped subplot
of each plot in October 2001 (Supplementary Figures
S1b and c). Warming increased soil temperature by
~2 °C at the 5 cm soil depth over a decade of
experimental duration (Zhou et al., 2007; Xu et al.,
2015), and the magnitude of the heating effects at
25 cm soil depth was comparable to that of 5 cm soil
depth adjacent to the deep collars (Supplementary
Figure S2). By the end of the eleventh growing
season, we determined the changes of SOC in the soil
profile within the deep collars. The net loss of soil C
contents by warming was 598± 69 (s.e.m.) g C m− 2 in
the 0–20 cm topsoil layer within the deep collars
(Po0.05). Warming also significantly reduced soil C
contents in the 20–25 cm subsoil layer within the
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deep collars (P=0.03; Figure 1a). Warming-induced
soil C losses may be attributed to alterations in both
biotic (for example, microbial respiration) and
abiotic factors (for example, leaching, freeze-thaw
events) (Davidson and Janssens, 2006). It has been
shown that warming could considerably enhance C
losses through dissolved organic C leaching
(Harrison et al., 2008; Luo et al., 2009) and freeze-
thaw (Schuur et al., 2009; Chapin et al., 2011). In
combination with our previous measurements (Zhou
et al., 2007), we estimated that warming led to an
increase of 73± 21 (s.e.m.) g Cm− 2 per year in annual
mean soil CO2 efflux from the deep collars (hetero-
trophic respiration) during the experimental years of
2000–2010. These results indicated that microbial
respiration was the dominant pathway of C losses
from the soil profile within deep collars.

To determine whether the effects of warming on
SOM decomposition noted in our Oklahoma prairie
grassland were similar to those of previous studies,
we conducted a meta-analysis of 14 studies that
quantified the changes of SOC across the soil profile
in field warming experiments (Supplementary
Appendix S1 section 3). Those studies were primar-
ily carried out in the northern hemisphere
(Supplementary Figure S3) encompassing grassland,
forest, and arctic tundra ecosystems. Warming
significantly reduced soil C contents across the soil
profile (Figure 2). In most soil layers, temperature
elevations by warming were in a range of 1–3 °C
(Supplementary Appendix S2). The magnitude of
warming effects on soil C reductions (effect size) was
comparable between soil layers with temperature
elevations o 2 °C and those ⩾ 2 °C (Figure 2). The
experimental duration of studies included in our
meta-analysis ranged from 1 to 16 years. The
effect size for studies with longer experimental time

(⩾ 5 yr) was slightly larger than that of short-term
experiments (o 5 year; Figure 2). Warming also
reduced soil C contents in both top- an subsoil
layers, though the effect size for subsoil layers was
slightly less than that of topsoil layers (Figure 2).
Nevertheless, these results suggested that SOM in the
soil profile, even within subsoil layers, was vulner-
able to decomposition under experimental warming.

We then examined whether warming influenced
old SOM (refer to the average age ⩾ 50 year)
decomposition in the subsoil layer of 20–25 cm
within the deep collars in the Oklahoma soil plots.
We chose to focus solely on this layer for three
reasons. First, the sampling design offered a com-
promise between our current (sampling depth) and
future (CO2 efflux monitoring) research objectives. It
allowed us a direct, in situ observation on subsoil
SOM decomposition with minimized disturbance to
the unique experimental unit in this long-term field
warming platform. Second, the radiocarbon (14C)
contents varied substantially across the soil profile
(Rumpel et al., 2002; Fontaine et al., 2007; Jenkinson
et al., 2008). Such a short subsoil layer thus helped to
minimize the potentially confounding effects of soil
profile heterogeneity (Rumpel et al., 2002) and new
plant-derived C inputs (Fontaine et al., 2007) on
radiocarbon analyses. Third, it was suitable for
studying the microbial mechanism of C cycling
under climate change since the short subsoil layer
had a low spatial and temporal variation in the
microbial community structure (Griffiths et al., 2003;
Mackelprang et al., 2011). Griffiths et al. studied the
influences of depth and sampling time on the
bacterial community structure in a grassland and
found that microbial communities were relatively
stable with less seasonal variation in a 5-cm subsoil
layer (for example, 15–20 cm) compared to surface
layers (Griffiths et al., 2003). In the present study, we
showed that the bulk 14C age of SOM from the subsoil
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Figure 1 Warming enhances old soil organic matter (SOM)
decomposition in subsoil within deep collars in a tall grass prairie
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layer of 20–25 cm within the deep collars was
several thousand years old (Figure 1b). Most notably,
the average 14C age under warming was nearly two
times larger than that of control (P=0.02; Figure 1b).

It has been suggested that changes in the mean 14C
ages of bulk SOM result from changes in the 14C
contents of SOM pools with different ages
(Trumbore, 2009). To examine whether the
warming-induced older SOM (Figure 1b) was a
consequence of larger losses of millennia-old and/
or younger SOM pools, we developed a four-C-age-
pool model to calculate changes in decadal, cen-
tennial and millennial SOM pools in the subsoil of
20–25 cm layer in the Oklahoma soil plots (see
Supplementary Appendix S1 section 2). We esti-
mated that warming led to an increase in the losses
of decadal, centennial and millennial soil C contents
by a range of 26–30%, 11–33% and 0–36%,
respectively, compared to control (Supplementary
Figure S4 and Supplementary Table S2). Together,
these results revealed that decadal, centennial and
even millennial-old SOM pools in the subsoil layer
were susceptible to microbial decomposition under a
decade of experimental warming in this grassland.

To investigate whether the warming-induced
increase in old SOM decomposition observed in-
situ (Figure 1b) resulted primarily from alterations in
the structure of microbial communities, we deter-
mined the taxonomic structure of microbial commu-
nities in the 20–25 cm subsoil layer using a
multiplexed barcoded pyrosequencing approach
(Hamady et al., 2008). The 16S rRNA gene with
three barcoded tags was amplified from genomic
DNA of each field soil sample. Preprocessed DNA
sequences (Supplementary Appendix S1 section 4)
were grouped into 97%-identical operational taxo-
nomic units (OTUs). Bacterial OTUs accounted for
99.3% of the total number of detected OTUs.
Significance tests from Adonis, ANOSIM and MRPP
analyses revealed that warming did not alter the
taxonomic structure of bacterial communities
(P40.05; Supplementary Table S1). The relative
abundances of bacterial phyla also remained
unchanged under warming (Figure 3a), and this
pattern maintained at lower taxonomic levels (for
example, class, order, family or OTU; Figure 3b). We
then used DCA to assess the similarity of bacterial
communities among soil plots. DCA ordination
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revealed that bacterial communities under warming
were not separated well from those under control
(Figure 3d).

Because decomposition is achieved by a diverse
repertoire of enzymatic reactions performed by
microorganisms (Chapin et al., 2011; Cheng et al.,
2012), we reasoned that the warming-induced
enhancement in old SOM decomposition may be a
consequence of changes in microbial community
functions. We employed a microarray-based high-
throughput technology, referred to as GeoChip (Zhou
et al., 2012; Tu et al., 2014), to assess the functional
gene capabilities of microbial communities. The
GeoChip (version 4.0) contained 82 074 probes from
410 gene families involved in microbial functional
processes such as biogeochemical cycling and
environmental stress response, presenting the
unique opportunity of detecting functional patterns
at the community level. We detected a total of 49 857
gene targets, 85 and 10% of which were targeted,
respectively, for bacterial and fungal strains. In
contrast to the 16S rRNA gene-based taxonomic
composition of bacterial communities, the functional
structure of microbial communities were signifi-
cantly different between warmed and control soils
as revealed by Adonis, ANOSIM and MRPP analyses
(Po0.05 for all; Supplementary Table S1). In addi-
tion, DCA revealed distinct clustering of functional
gene profiles of both whole microbial communities
(Figure 3e) and bacterial communities (Figure 3f)
under warming compared to control.

Compared to the functional structure, the lack of
warming effects on the taxonomic composition of
bacterial communities could be due to the differ-
ences of metagenomic technologies in resolution,
sensitivity and/or susceptibility to random sampling
artifacts (Zhou et al., 2015). At the OTU level (the
lowest taxonomic level, 16S rRNA gene), the relative
abundances of only 0.4% of OTUs were altered
under warming (P⩽0.05, Figure 3b). At the gene
target level (species-strain level, the highest resolu-
tion in GeoChip), however, warming significantly
changed the signal intensities of 16.2% of all
functional genes and 15.6% of bacterial functional
genes (P⩽ 0.05, Figure 3c). Besides, it may be
attributed to the phenomenon that functional varia-
tion can be independent of taxonomic variation in
microbial communities (Shi et al., 2011; Louca et al.,
2016). Using a global ocean microbiome dataset (16S
rRNA gene), Louca et al. (2016) showed that
environmental variables including temperature
shaped functional groups, rather than the taxonomic
composition within individual functional groups, of
bacterial communities. In the present study, we
found that warming resulted in alterations in func-
tional gene potentials rather than specific taxonomic
groups within bacterial communities (Figure 3). For
instance, we found that warming significantly
increased the signal intensities of 20.4% of all C
cycling genes (P⩽0.05, Figure 3c) and 19.6% of C
cycling genes targeting for bacteria (P⩽0.05),

suggesting that warming-induced changes in micro-
bial functions occurred at the community level.
Though decoupling of function from taxonomy
observed in the current and previous (Shi et al.,
2011; Louca et al., 2016) studies warranted further
investigations, our data did show that warming
shifted the functional structure of bacterial commu-
nities in subsoil.

Like bacteria, fungi also play a critical role in
decomposition (Chapin et al., 2011; Cheng et al.,
2012). To explore whether warming altered the
structure of fungal communities, we disentangled
functional genes targeted for fungi from those for
bacteria using GeoChip. We identified 4969 genes
targeting for 72 fungal species, and the majority of
them belonged to the phyla of Ascomycota and
Basidiomycota. Warming significantly increased the
signal intensities of 21% of all fungal functional
genes and 24.2% of C cycling genes (P⩽ 0.05;
Figure 3c). These results, in combination with our
previous observation that warming increased the
ratio of fungi to bacteria in soil (Zhang et al., 2005),
highlighted the relative importance of fungi in
decomposition under warming. But whether fungi
and/or specific taxonomic groups were favored or
adapted to utilize old SOM remains to be investi-
gated. Analyses of Adonis, ANOSIM and MRPP also
showed that warming altered the functional gene
structure of fungal communities (P⩽0.05;
Supplementary Table S1b). Furthermore, DCA
revealed clustering of functional fungal communities
by the warming treatment (Figure 3g). Taken
together, these results implied that warming-
induced old SOM decomposition in subsoil was
closely related to the changes in the functional gene
structure of microbial communities.

To identify the microorganisms active in old SOM
decomposition, we designed a SIP microcosm
experiment to track U13C-labeled whole plant mate-
rials (T. aestivum) into the active microbial commu-
nities (Supplementary Appendix S1 section 4). We
treated half of soils of the 20–25 cm subsoil layer
from deep collars of warming and control plots with
the addition of 13C-labeled plant materials while the
remaining half was unamended, and then incubated
soils in the laboratory at 25 °C for 9 weeks. For both
unamended (Figure 4a) and amended (Figure 4b), the
percentages of C loss on the basis of the initial total C
in warmed soils were significantly higher than those
of control soils during incubation (repeated mea-
sures ANOVA, Po0.01 for both). The difference was
not statistically significant for the total 13C content of
respired CO2 from warmed and control soils with
13C-labeled plant materials (Supplementary Figure
S5). A single isotope (that is, 13C), two-source mixing
model (Supplementary Appendix S1 section 1)
further showed that the percentages of accumulative
CO2 respiration from plant residue- and soil-derived
C in warmed soils were 38% and 49% higher than
those of control soils, respectively (Figure 4c). These
results were consistent with the previous view that
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the activity of degradation enzymes likely depended
on microbial communities (Chapin et al., 2011), and
suggested that the active microbial communities
under warming had a higher potential in degrading
organic materials than those under control.

We considered communities that had assimilated
13C-labeled substrates into their nucleic acids to be
active in decomposition (Dumont and Murrell,
2005). Active microbial communities were identified
by sequencing 13C-DNA (buoyant density of 1.71–
1.75 gml− 1, ‘heavy DNA’) that was separated from
12C-DNA (buoyant density of 1.67–1.70 gml−1, ‘light
DNA’) using ultracentrifugation. We used the gradi-
ent fractionation method to retrieve DNA from 12
fractions. Gel image showed that 13C-DNA was
mainly distributed in fractions 9–11 (panels I and II
in Supplementary Figure S6a) and well separated
from that of 12C-DNA (fractions 5–8, panel II in
Supplementary Figure S6a). Measurements of the
buoyant density of each fraction confirmed a

successful DNA gradient formation which was
critical for the subsequent DNA retrieval and down-
stream analysis (Supplementary Figure S6b). DCA
revealed a strong clustering by the 16S rRNA gene
profiles of active microbial communities (13C-DNA)
(Figure 5b). Even though, we did not observe any
difference in the relative abundances of bacterial
phyla between warmed and control soils (Figure 5a).
This trend maintained at lower taxonomic levels as
well (for example, class, order, family or OTU; data
not shown). Significance tests by the three multi-
variate statistical analyses also showed that the
taxonomic structure of both active (13C-DNA) and
total (12C-DNA) communities based on 16S
sequences were not significantly different between
warmed and control soils (Supplementary Table
S1a). In contrast, the functional gene-based GeoChip
analysis showed that communities associated with
warming were evidently clustered together
(Figure 5c) and differed significantly from controls
within both active and total soil communities
(Supplementary Table S1b). These patterns persisted
in the functional gene structure of both bacterial
(Figure 5d, Supplementary Table S1b) and fungal
(Figure 5e, Supplementary Table S1b) communities.

To link the changes in the functional profile of
microbial communities to decomposition, we probed
specific genes coding for enzymes involved in
organic compound degradation. The 13C-labeled
T. aestivum residue consisted of organic compounds
that spanned a wide range of recalcitrance from the
labile starch to the recalcitrant lignin, allowing us to
examine how active microbial communities utilized
substrates with different recalcitrance. We detected,
on average, nearly 3200 probes within 29 gene
families responsible for organic compound degrada-
tion in both warmed and control samples. Warming
slightly increased the abundances of all genes on
average by 7% in total soil communities (12C-DNA),
with a larger effect occurred in gene categories
involved in recalcitrant organic compound (pectin,
chitin, aromatics and lignin) degradation (Figure 6a).
Microbial communities from warmed soils active in
assimilating 13C from plant residues possessed a
higher relative abundance of genes associated with
decomposition than control soils, with an average
increase of 41% across all C degradation genes
(Figure 6b). Taken together, these results suggested
that warming significantly increased the functional
genes coding for the degradation of various organic
compounds with distinct chemical recalcitrance
within active microbial communities.

We demonstrate, for the first time, that warming-
stimulated decomposition of old SOM in subsoil is
associated with a shift in the functional gene
structure of microbial communities. Though to
generalize whether this finding is applicable to far
deeper soil layers or other ecosystems requires
further studies, this study is valuable because it
provides experimental evidence of the microbial
mechanisms at play in warming-induced increases
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in SOM decomposition in subsoil. When young and
old SOM coexist, warming enhances decomposition
by stimulating genes coding for enzymes that process
degradation of both young and old organic com-
pounds, no matter whether they are labile or
recalcitrant. When old SOM dominates, as observed
in subsoil of deep collars in our Oklahoma grass
prairie, warming still promotes the decomposition of
old SOM by stimulating genes coding for old,
recalcitrant organic compound degradation. Our
findings, thus, are not consistent with the previous
view that the warming effects on SOM decomposi-
tion largely depend on the chemical properties of
SOM itself (Davidson and Janssens, 2006; Craine
et al., 2010; Hopkins et al., 2012). Rather, our data
imply that warming could enhance the decomposi-
tion of a wide range of organic compounds, irrespec-
tive of their recalcitrance.

Our findings that warming increases decades- to
millennia-old SOM decomposition are consistent
with and extend previous studies (Schuur et al.,
2009; Hopkins et al., 2012). Warming-induced
permafrost thaw enhanced old C emissions by
40–78% from the soil profile compared to minimally
thawed areas in the arctic tundra ecosystem in
Alaska (Schuur et al., 2009). In a short-term
laboratory incubation study, elevated temperature

increased decades-old SOM decomposition in sur-
face soils from two temperate forest sites (Hopkins
et al., 2012). Findings from both of these studies are
consistent with our results, indicating that ongoing
and projected warming may substantially alter the
stability of old SOM in terrestrial soils. One caveat to
this conclusion is that the warming effects on old
SOM decomposition might operate in tandem with
other controlling factors. For instance, new C inputs
from roots (Fontaine et al., 2007) and mycorrhizal
fungi (Cheng et al., 2012) likely reinforce the
magnitude of the warming effect on old SOM
decomposition in subsoil through priming mechan-
isms. Additionally, concurrent reductions in soil
moisture under warming (Luo et al., 2001; Zhou
et al., 2007) might lessen the warming effects on old
SOM decomposition in dry areas such as grasslands
in the west of North America, but could aggravate it
in deeper soil layers through increasing oxygenation
in wet regions such as arctic tundra (Schuur et al.,
2009), temperate wetlands and tropical forests.
Nevertheless, our results raise an important question
about predictions of future atmospheric CO2

and climate by considering changes in the functional
gene structure of microbial communities and
their consequences for old SOM decomposition
in soils.
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