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a b s t r a c t

Succession, a central theme throughout the history of ecology, has been well studied predominantly in
plant communities, but the general trends in soil microbial communities during succession remain
unclear. Here, we compiled a comprehensive data set of 85 age sequences worldwide with the aims to (1)
examine the trends in soil microbial composition, bioenergetics, and activity during secondary succes-
sion, and (2) explore their coordinating changes with soil properties. The results showed that the fungi to
bacteria ratio (fungi:bacteria) increased, while the microbial respiration per unit biomass carbon (R/Cmic)
decreased as the succession proceeds. Secondary succession had the rising trends in microbial biomass
carbon to soil carbon ratio (Cmic/Csoil) and microbial biomass nitrogen to soil nitrogen ratio (Nmic/Nsoil).
These successional trends in microbes were coincident with the macro-ecological succession theory in
plants and animals. Specifically, early successional stages tended to be dominated by r-strategists
(bacteria) that had higher R/Cmic and lower Cmic/Csoil and Nmic/Nsoil, whereas late successional stages
tended to be dominated by K-strategists (fungi) that behaved oppositely. The soil C to N ratio (C:Nsoil)
increased significantly with the successional stage, with a fast increasing C:Nsoil ratio being accompanied
by a fast increase of fungi:bacteria, a slow decrease of R/Cmic, and a slow increase of Cmic/Csoil. This result
suggests that the stoichiometry theory may provide a feasible approach to explain the divergent suc-
cessional trends in microbial communities. In conclusion, our global synthesis highlights the application
of the existing macro-ecological theory to soil microbial ecology studies.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Secondary succession is the process of reestablishment of a
reasonable facsimile of the original community after a disturbance
(Horn, 1974). Currently, three-quarters of Earth's ice-free terrestrial
biomes are being disturbed by humans (Ellis, 2011). Meanwhile,
many degraded areas are under natural or/and anthropogenic re-
covery state (Watson et al., 2014). Secondary succession is conse-
quently becoming the primary focus of terrestrial natural resource
management under projected global land-use changes (Sitzia et al.,
2010). Generally, investigations of successional dynamics have been
a central theme of plant community ecology (Odum,1969; Bardgett
et al., 2005; Kardol et al., 2006; Prach and Walker, 2011). Soil mi-
crobes, possessing enormous physiological and functional versa-
tility, are ubiquitous and vital to the biogeochemical cycling
processes in terrestrial ecosystems, including plant nutrient
acquisition, litter decomposition, soil organic matter
transformations, carbon (C) cycling, and nutrient availability
(Kardol et al., 2006; Prosser et al., 2007; Serna-Chavez et al., 2013;
Freedman and Zak, 2015; Soudzilovskaia et al., 2015; Schimel, 2016;
Allison and Goulden, 2017; Xu et al., 2017). However, the general
trends in soil microbial communities during secondary succession
remain unclear.

Numerous individual studies have examined the successional
patterns of microbial community composition, bioenergetics, and
activity during secondary succession. However, their changing di-
rections and rates remain controversial. For example, based on a
forest chronosequence of open-pit mine reclamation soils, Insam
and Domsch (1988) found that both the microbial C to soil
organic C ratio (Cmic/Csoil) and themicrobial respiration to biomass C
ratio (R/Cmic) decreased as succession proceeds. However, Jangid
et al. (2010) demonstrated increasing trends in both R/Cmic and
Cmic/Csoil during tallgrass prairie restoration. Moreover, Jia et al.
(2010) found a significant positive trend in the fungi to bacteria
ratio (fungi:bacteria) during the natural succession from the aban-
doned agricultural land on the semi-arid Loess Plateau in China,
while Kuramae et al. (2010) reported a negative trend in the
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fungi:bacteria across chronosequences of chalk grasslands after the
arable field being abandoned for 66 years in Limburg, the
Netherlands. Therefore, it is imperative to synthesize the diverse
results among various studies in order to explore general trends in
soil microbial communities during post-disturbance succession.

Understandingmicrobiology ecology is arguably one of themost
compelling challenges facing contemporary ecology, while appli-
cation of the concept of the existing macro-ecological theory may
provide a feasible approach to microbial ecology studies (Bardgett
et al., 2005; Fierer et al., 2007, 2010; Prosser et al., 2007; Stegen
et al., 2016; Shoemaker et al., 2017). According to the Odum's
(1969) theory on ecosystem succession, r-strategy species with a
faster growth rate, higher turnover rate, and smaller body size
predominate in early successional stages, while K-strategy species
with a slower growth rate, lower turnover rate, and larger body size
predominate in mature stages. In microbial ecology, Fierer et al.
(2007) suggested that microbial groups could be differentiated
into copiotrophic and oligotrophic categories in correspondence to
the r-strategist and K-strategist, respectively. Broadly speaking,
fungi are regarded as K-strategists, whereas bacteria are considered
as r-strategists (Bardgett et al., 2005; Kaiser et al., 2014;
Zechmeister-Boltenstern et al., 2015; Chen et al., 2016). Mean-
while, within bacteria, Gram-positive bacteria, bacterial phyla of
Acidobacteria and Actinobacteria are within the oligotrophic cate-
gory, while Gram-negative bacteria, Proteobacteria and Bacter-
oidetes are within the copiotrophic category (Fierer et al., 2007;
Zechmeister-Boltenstern et al., 2015). Therefore, we expect that
the ratio of K-strategists to r-strategists would increase with suc-
cessional stage. Another concept of the Odum's (1969) theory states
that the ratio of total community respiration to biomass decreases,
but the biomass supported per unit energy or resource increases as
succession proceeds. Similar to this concept in microbial ecology,
two corresponding parameters are proposed (Anderson, 2003;
Anderson and Domsch, 1990, 2010), i.e., microbial community
respiration to biomass ratio (R/Cmic) and microbial biomass C to soil
organic C ratio (Cmic/Csoil). To link the micro-with macro-scales, we
hypothesized that the R/Cmic would decrease but the Cmic/Csoil in-
crease with ecosystem successional stage globally.

Besides, we are also interested in whether changes in microbial
composition and bioenergetics are associated with changes in
enzyme activity and soil properties during secondary succession.
Specifically, microbial extracellular enzyme production depends
much on microbial community composition (Cusack et al., 2011;
Mooshammer et al., 2014; Zechmeister-Boltenstern et al., 2015).
So we expect that changes in microbial community composition
would have significant effects on extracellular enzyme activity
during secondary succession. In addition, soil properties (e.g., soil
resource quality and quantity, soil pH, and soil moisture) remark-
ably influence microbial biomass, stoichiometry, community com-
positions, extracellular enzyme production, and activity (Xu et al.,
2014, 2017; Mooshammer et al., 2014; Zechmeister-Boltenstern
et al., 2015; Zhou and Wang, 2015; Zhou et al., 2017), but little is
known about their coordinating patterns as secondary succession
proceeds.

In this study, our goals are to (1) examine the trends inmicrobial
composition, bioenergetics, and activity during secondary succes-
sion; and (2) explore their coordinating changes with soil proper-
ties. With these expected results, we test if the theory of macro-
ecological succession can be applied to soil microbial studies.
Specifically, we hypothesized that the ratio of K-strategists to r-
strategists would increase, the ratio of microbial respiration to
biomass would decrease, and the ratio of microbial biomass to soil
resource would increase as secondary succession proceeds.
2. Materials and methods

2.1. Literature synthesis

Literature searches were conducted using ISI Web of Science
database (http://apps.webofknowledge.com), Google Scholar
(https://scholar.google.com), and China National Knowledge Infra-
structure (CNKI, http://www.cnki.net) with the key words of
“succession or recovery or restoration or development or age se-
quences or chronosequences” and “microbial biomass or microbial
community or extracellular enzyme or enzyme or microbial
respiration or qCO2 or fungi or bacteria.” Up to December 2016, 72
published experimental studies reported the composition, bio-
energetics, and activity of soil microbial communities during sec-
ondary succession, including 85 age sequences in total (Fig. 1; Text
S1) that met the following two criteria: (1) each age sequence
should include at least four age stages for detecting the statistical
trends of these variables along the succession gradient; and (2)
each age sequence should contain quantitative information about
successional stage (year). All average values were obtained from the
tables or extracted from the figures with the Origin7.0 digital plugin
(Digitize) (OriginLab Ltd., USA).

The compiled database included: (1) soil properties: soil water
content, soil bulk density, soil pH, soil organic C (Csoil), soil total
nitrogen (Nsoil), soil organic C to total N ratio (C:Nsoil), and soil
available N; (2) microbial biomass and composition: microbial
biomass C (Cmic), microbial biomass N (Nmic), microbial biomass C to
N ratio (C:Nmic), fungi to bacteria ratio (fungi:bacteria), Gram-
positive bacteria to Gram-negative bacteria ratio, the abundance
of arbuscular mycorrhizal fungi, bacterial richness (Operational
Taxonomic Units, OTUs), and Acidobacteria þ Actinobacteria to
Proteobacteriaþ Bacteroidetes ratio; (3) microbial bioenergetics and
activities: microbial C to soil C ratio (Cmic/Csoil), microbial N to soil N
ratio (Nmic/Nsoil), N mineralization, microbial respiration (the
amount of CO2 produced during laboratory incubations of soil in
the absence of carbon or nutrient additions), microbial respiration
to biomass ratio (R/Cmic). If microbial biomass was determined by
phospholipid fatty acid method, we used the conversion factor of
2.4 to calculate microbial C (1 nmol of phospholipid fatty acid
corresponded to a flush of 2.4 mg C released by fumigation; Rinklebe
and Langer, 2010). And (4) we also collected the most widely
assayed extracellular enzymes: oxidase, hydrolase, and invertase.
The term ‘oxidase' referred to the sum of phenol oxidase and
peroxidase; and the term ‘hydrolase’ referred to the sum of b-1,4-
glucosidase, b-1,4-N-acetylglucosaminidase, and phosphatase in
this study. Extracellular enzymatic efficiency was calculated as
extracellular enzyme activity normalized to per unit microbial
biomass C (Allison et al., 2007), i.e., oxidase activity to microbial C
ratio, hydrolase activity to microbial C ratio, and invertase activity
to microbial C ratio, respectively.

To maximize the comparability, we (1) categorized the data into
two types of ecosystems, i.e., forests and grasslands; (2) categorized
the 85 age sequences into short-term (<25 year), medium-term
(25e50 year), and long-term succession (>50 year) based the
maximum age of the corresponding sequence; and (3) categorized
the sequences into different types of disturbances by the starting
point of the secondary succession, i.e., mining, fire, cultivation, and
harvest sites.

2.2. Data analysis

Changes in soil C during secondary succession are expected to
exhibit an initial decrease and a subsequent increase, which can be
characterized with a gamma function (Covington, 1981; Zak et al.,
1990). However, we did not find the initial decrease stages for the
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Fig. 1. Distribution of the data points used in this study.
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soil- and microbial-related variables with successional stage in
most cases, similar to the previous synthesis (Yang and Luo, 2011).
In addition, microbe-related variables did not show the initial
decrease stages despite the fact that soil C and N displayed a Cov-
ington curve (Zak et al., 1990). Therefore, to integrate the general
trends in soil microbe-related variables during secondary succes-
sion, we first examined the linear relationship between the natural
logarithm transformed (ln) microbe-related variables and ln(suc-
cessional stage) (‘successional stage þ 1’ in order to remove ln
‘zero’) within each sequence, i.e., a linear lneln functionwas used to
examine the relationship between soil- and microbe-related vari-
ables and successional stage (equation (1)):

ln(y) ¼ a þ b(ln (x þ 1)) (1)

where x is successional age (year), y is soil- and microbe-related
variable, a is the intercept and b is the slope.

Next, following the methodology of meta-analysis, we calcu-
lated the weighted mean slopes (slopeþþ) across all individual se-
quences as following:

Slopeþþ ¼
Pn

i¼1 slopei �wiPn
i¼1 wi

(2)

where n is the number of the age sequences; and wi (the weighting
factor) was estimated as:

wi ¼
1
n

(3)

where n is the variance of the slope.
When the number of data points used for assessing slopeþþ of a

variable investigated was lower than 20, we used bootstrapping
method to obtain the lowest and highest 2.5% values as our boot-
strap confidence based on 5000 iterations. If that number was
larger than 20, 95% confidence interval (CI) was calculated as:

95% CI ¼ slopeþþ±1:96sðslopeþþÞ (4)
If the 95% CI of the slopeþþ covered zero, the variable was
considered to be relatively stable during the succession; else if the
slopeþþ was higher than zero, the variable was considered to in-
crease significantly, otherwise to decrease significantly as the suc-
cession proceeds. Meta-analysis was conducted with MetaWin 2.1
software (Sinauer Associates Inc., Sunderland, MA, USA; Rosenberg
et al., 2000).
3. Results

3.1. Successional trends in soil properties

The successional dynamics in soil properties showed remark-
able variability among individual studies (Figs. 2 and S1). The
weighted mean slope (slopeþþ) of soil water content vs. succes-
sional stage was significantly higher than zero. Also, the slopeþþ of
soil organic C, soil total N, soil C to N ratio, and soil available N all
significantly increased as the succession proceeds (Fig. 2). However,
the slopeþþ of soil bulk density and soil pH significantly decreased
with the secondary succession (Fig. 2).
3.2. Successional trends in microbial community

Secondary succession significantly increased microbial biomass
C and N, and the abundance of arbuscular mycorrhizal fungi
(Fig. 3A). The slopeþþ of fungi:bacteria vs. successional stage was
significantly higher than zero. However, the slopeþþ of microbial
C:N, Gram-positive bacteria to Gram-negative bacteria ratio,
Acidobacteria þ Actinobacteria to Proteobacteria þ Bacteroidetes
ratio, and bacterial OTU richness were insignificant from zero
(Fig. 3A).

Further analysis by ecosystem types showed that the slopeþþ of
fungi:bacteria was significantly higher than zero in forest rather
than grassland (Fig. 4A). The short-term (<25 year) and medium-
term sequences (25e50 year) had significant positive trends in
the fungi:bacteria, but the fungi:bacteria for long-term sequences
was relatively stable during the secondary succession (Fig. 4A). All
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Fig. 2. Trends in soil properties during secondary succession. The dots and error bars
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dicates a significant response.
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disturbance types had positive trends in the fungi:bacteria ratio as
the succession proceeds (Fig. 4A).

Pooling the data across all age sequences, we found a significant
positive relationship between ln(fungi:bacteria) and ln(C:Nsoil)
(R2 ¼ 0.10, P < 0.01, Fig. S4). Also, ln(Gram-positive bacteria to
Gram-negative bacteria ratio) was positively correlated with
ln(C:Nsoil) (R2 ¼ 0.16, P < 0.01, Fig. S4). Moreover, the slopes of
microbial C:N vs. successional stage (R2 ¼ 0.41, P < 0.01, Fig. 5A) and
fungi:bacteria vs. successional stage (R2 ¼ 0.19, P ¼ 0.05, Fig. 5B)
tended to increase as the slope of soil C:N vs. successional stage
increased.

3.3. Successional trends in microbial bioenergetics

The slopeþþ of Cmic/Csoil or Nmic/Nsoil vs. successional stage was
significantly higher than zero (Fig. 3B). The slope of Cmic/Csoil vs.
successional stage significantly decreased as the slope of soil C:N vs.
successional stage increased (R2¼ 0.46, P < 0.01, Fig. 5D). Pooling all
data together, ln(Cmic/Csoil) decreased as the ln(C:Nsoil) increased
(R2 ¼ 0.14, P < 0.01, Fig. S4). Across all age sequences, the slopeþþ of
microbial respiration and N mineralization vs. successional stage
were significantly higher than zero, whereas the slopeþþ of R/Cmic

vs. successional stage was significantly lower than zero (Fig. 3B).
The Cmic/Csoil consistently increased with the succession across

different ecosystems and lengths of age sequences (Fig. 4B). The R/
Cmic significantly decreased in forest succession rather than in
grassland (Fig. 4C). The medium- and long-term sequences had
significant negative trends in R/Cmic, but the R/Cmic for the short-
term sequences was relatively stable (Fig. 4C). Mining distur-
bances had higher slopeþþ of Cmic/Csoil and R/Cmic than fire, culti-
vation, or harvest disturbances (Fig. 4B and C).

In addition, the slopes of R/Cmic vs. successional stage signifi-
cantly increased as the slopes of soil C:N vs. successional stage
increased (R2¼ 0.23, P¼ 0.01, Fig. 5C). Taking all data together, ln(R/
Cmic) increased with increasing the ln(C:Nsoil) (P < 0.01, Fig. S4).

3.4. Successional trends in microbial enzymes

The slopeþþ of microbial oxidase efficiency (oxidase activity to
microbial C ratio) or invertase efficiency vs. successional stage was
significantly lower than zero, but the slopeþþ of microbial hydro-
lase efficiency vs. successional stage was higher than zero despite
the 95% CI covered zero (Fig. 3C). All of the six age sequences
showed decreasing patterns of oxidase to hydrolase ratio (Fig. 3C).
Similarly, the slopeþþ of oxidase to invertase ratio vs. successional
stage was significantly lower than zero. However, no general suc-
cessional dynamic of hydrolase to invertase ratio was found
(Fig. 3C).

4. Discussion

4.1. The successional trends in soil microbes support the application
of the macro-ecological succession theory to microbial ecology

In accord with our initial hypothesis, our global synthesis sup-
ported that the Odum's (1969) macro-ecological succession theory
of species selection and bioenergetics could be used to explain the
trends in microbial communities during secondary succession. We
summarized it as a conceptual diagram in Fig. 6: (1) r-selected
bacteria were more prevalent in the early successional stages while
K-selected fungi were more prevalent in the late succession stages;
and (2) themicrobial respiration to biomass ratio (R/Cmic) decreased
while the microbial biomass to resource ratio (Cmic/Csoil and Nmic/
Nsoil) increased as the secondary succession proceeds (Fig. 3A and
B).

Fungal cells differ in size by up to three orders of magnitude
from bacterial cells, reflecting a lower surface to volume ratio in
fungi than in bacteria. The cell walls of fungi also contain more
carbon polymers than those of bacteria; thus fungi have lower
growth and turnover rates than bacteria (Kaiser et al., 2014;
Zechmeister-Boltenstern et al., 2015). High growth and turnover
rates are supported by high metabolism and respiration rates per
unit biomass (Kaiser et al., 2014; Xu et al., 2017). Therefore, the
early succession stage tends to be dominated by bacteria that have
higher R/Cmic, while fungi are more prevalent in the late succession
stage that have lower R/Cmic. Assuming that microbial acquisition
and uptake rates of organic C are constant (following previous
studies; Anderson, 2003; Anderson and Domsch, 2010; Manzoni
et al., 2012; Xu et al., 2014, 2017), the lower R/Cmic in the late suc-
cessional stages implies more C available for microbial biomass
production, which should in turn exhibits a higher Cmic/Csoil
(Anderson, 2003; Anderson and Domsch, 2010; Manzoni et al.,
2012; Xu et al., 2014). These coordinated changes among the fun-
gi:bacteria, R/Cmic, and Cmic/Csoil during the secondary succession
found in the present study (Fig. 6) are consistent with previous
studies (Bailey et al., 2002; Bardgett et al., 2005; Six et al., 2006;
Manzoni et al., 2012; Waring et al., 2013; Xu et al., 2014). Never-
theless, caution should be taken when interpreting these results,
because the physiology and functionality of microbial communities
may be plastic, rather than static, due to soil environmental
changes resulting from the succession (Fig. 2) (Burns et al., 2013; Xu
et al., 2017). Environmental changes probably influence microbial
acquisition and uptake rates of organic C, which is still far from
being understood (Bailey et al., 2002; Bardgett et al., 2005; Six et al.,
2006; Manzoni et al., 2012; Waring et al., 2013; Xu et al., 2014,
2017).

Besides the fungi:bacteria ratio, the copiotrophic vs. oligotrophic
spectrum also exists within bacteria (Fierer et al., 2007;
Zechmeister-Boltenstern et al., 2015). We found a positive rela-
tionship between the ratio of Gram-positive bacteria to Gram-
negative bacteria and the C:Nsoil (Fig. S4), implying that Gram-
positive bacteria are more prevalent in soils of lower-quality
while Gram-negative bacteria are dominated in soils of higher-
quality (Zechmeister-Boltenstern et al., 2015). However, we did
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not find a positive trend in the Gram-positive bacteria to Gram-
negative bacteria ratio and the Acidobacteria þ Actinobacteria to
Proteobacteriaþ Bacteroidetes ratio as succession proceeds (Fig. 3A).
One explanation for this discrepancy is that categorizing bacteria
into Gram-positive/negative bacteria or even the bacterial phyla
examined in this study is still a relatively coarse taxonomic reso-
lution, which may hence induce uncertainty. For example, within
the phyla of Proteobacteria, Fierer et al. (2007) found that only b-
Proteobacteria could be categorized into copiotrophic groups, but
the a-Proteobacteria could be assigned into neither copiotrophic
nor oligotrophic groups. To date studies with fine-taxonomic res-
olutions of microbes are challenging and remain scarce.

4.2. Factors influencing the successional trends in microbial
communities

The soil C:N stoichiometry was one important driver of the
trends in microbial composition and bioenergetics (Figs. 5 and 6).
The C:Nsoil ratio increased significantly with the successional stage,
which might be attributed to the succession being coupled to
changes in the litter chemistry, i.e., plant tissue C:N ratios were
found to increasewith ecosystem development in a global database
(Yang and Luo, 2011). We found the slope of fungi:bacteria vs. suc-
cession stage increased as the slope of C:Nsoil vs. succession stage
increased (Fig. 5B), indicating that a faster increasing rate of C:Nsoil

ratio will lead to a faster increasing rate of fungi:bacteria ratio as
succession proceeds. Since the fungi:bacteria ratio was generally
positively correlated with the C:Nsoil ratio (Fig. S4; Fierer et al.,
2009; Waring et al., 2013; Mooshammer et al., 2014;
Zechmeister-Boltenstern et al., 2015), it may be concluded that
bacteria consequently dominate in the early successional stages
that are often associated with high resource quality (i.e., low
C:Nsoil), while fungi dominate in the late successional stages that are
associated with low resource quality (i.e., high C:Nsoil).

Moreover, the C:Nsoil ratio was correlated positively with the R/
Cmic ratio but negatively with the Cmic/Csoil ratio (Fig. S4), suggesting
soil resource quality have a positive effect onmicrobial assimilation
of soil organic C. This is consistent with recent results from
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Fig. 5. Relationships between the slopes of the soil carbon to nitrogen ratio (C:Nsoil)
versus successional age and (A) the slopes of microbial biomass carbon to nitrogen
ratio (C:Nmic) versus successional age, (B) the slopes of fungi to bacteria ratio vs. suc-
cessional age, (C) the slopes of microbial community respiration to biomass ratio (R/
Cmic) versus successional age, and (D) the slopes of microbial biomass carbon to soil
organic carbon ratio (Cmic/Csoil) versus successional age. Open circles are grasslands,
while solid circles are forests.
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experiments (Spohn and Chodak, 2015; Zhou et al., 2017), meta-
analyses (Spohn, 2015; Zhou and Wang, 2015; Xu et al., 2017),
and modeling studies (Xu et al., 2014). Theoretically, microbes fed
with lower C:N ratio resources would have higher growth efficiency
and lower release of C through respiration than microbes fed with
higher C:N ratio resources, and more C available to be converted to
biomass (Manzoni et al., 2012; Xu et al., 2014, 2017). Therefore,
according to the concept of stoichiometry theory, an increase in the
C:Nsoil ratio with secondary succession (Fig. 2) implies that the R/
Cmic ratio should increase but the Cmic/Csoil ratio should decrease.
However, these trends are contradictory to the predictions of the
ecosystem succession theory in which succession decreases the R/
Cmic but increases the R/Cmic. Interestingly, the “trade-off”



Fig. 6. Conceptual diagram illustrates how the macro-ecology theories explain the trends in soil microbial community with secondary succession. F:B, fungi to bacteria ratio; R/Cmic,
microbial respiration per unit microbial biomass carbon; Cmic/Csoil, microbial biomass carbon to soil organic carbon rate. The “¼” stands for the analogies between the macro-ecology
and soil microbial ecology; The “þ” stands for a positive effect of the soil carbon to nitrogen ratio (C:Nsoil), while the “e” stands for a negative effect. Up and down arrows indicate
increasing and decreasing trends, respectively.

Z. Zhou et al. / Soil Biology & Biochemistry 115 (2017) 92e9998
relationships were found in our study: slow increasing rates of
C:Nsoil were accompanied by fast decreasing rates of R/Cmic and fast
increasing rates of Cmic/Csoil (Fig. 5C and D). Thus, the concept of
stoichiometry theory offers a potential way to explain the divergent
successional dynamics (both changes in direction and rate) in the R/
Cmic and Cmic/Csoil across different studies (Fig. 6).

Microbial extracellular enzymes are the proximate agents of
organic matter decomposition (breakdown complex substrates into
compounds small enough for uptake), and are crucial for microbial
resource assimilation, biochemistry of decomposition, and nutrient
cycling. Microbial oxidases are produced predominantly by fungi to
degrade poor quality, chemically complex compounds (Cusack
et al., 2011). Given that plant litter quality significantly decreased
with secondary succession (Fig. 2; Yang and Luo, 2011), increasing
fungi:bacteria ratio with ecosystem development would result in
higher activity of oxidase in the late succession stage than in the
early succession stage. However, we found that the secondary
succession decreased both oxidase efficiency and oxidase to hy-
drolase ratio (Fig. 3C). Soil may be characterized of having a
redundancy of functions, a reduction in any group of species that
has little effect on overall processes in soil because other micro-
organisms can take (Nannipieri et al., 2003). Therefore, we should
be careful about jumping to conclusion that changes in extracel-
lular enzymes did not result from changes in microbial community
composition along the secondary succession. This phenomenon
may also be caused by the methodological constraints. As a kinetic
cascade, extracellular enzyme activity is as much constrained by
soil moisture, temperature, pH, substrate availability, and enzyme
concentration (Allison et al., 2010; Sinsabaugh and Follstad Shah,
2012). As these variables all change with secondary succession
(Fig. 2), enzyme assays are a measure of potential activity under
optimal enzyme reaction conditions that could be different with
realistic or in situ activity (Burns et al., 2013). Another potential
explanation is that the products of enzymatic deconstruction
diffuse in the soil solution and become also accessible to other
microbes, resulting not only in competitive but also synergistic
interactions among microbes (Allison et al., 2010; Kaiser et al.,
2014). Furthermore, many enzymes become stabilized through
associationwith clay minerals, humic acids, and particulate organic
matter, and retain significant levels of activity for prolonged pe-
riods of time (Allison et al., 2010; Nannipieri et al., 2012; Burns
et al., 2013). Changes in microbial community composition do not
necessarily match the patterns of enzyme activity.
Secondary succession from mining sites had the steepest slope

ofmicrobial variables vs. succession stage than the successions after
other disturbance types (Fig. 4), most likely because mining
destroying on soils is the most serious. The trends in the fungi:-
bacteria ratio for the long-term sequences showed a bit differences
with the short- and medium-term sequences (Fig. 4A). Unfortu-
nately, little was known about the potential mechanism. Moreover,
chronosequence approaches have provided valuable insight into
patterns of ecosystem succession and soil development, but they
can be subjected to error in the space-for-time substitution if sites
differ in respect to the factors other than their age (Yanai et al.,
2003).

In summary, the present study attempted to use the simplistic
approach to synthesize the general succession patterns of microbial
communities during secondary succession. Our global synthesis
found that the changes in the fungi:bacteria, Cmic/Csoil, and R/Cmic are
reciprocal causation and could be explained by the Odum's (1969)
succession theory. In addition, the concept of stoichiometry theory
offers an approach to explain the divergent successional trends of
microbial community composition and bioenergetics across
different age sequences (Fig. 6). Overall, our study highlights the
application of the existing macro-ecological theory to soil microbial
ecology studies.
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