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Abstract

Aim: The aim was to explore how conversions of primary or secondary forests to plantations or

agricultural systems influence soil microbial communities and soil carbon (C) cycling.

Location: Global.

Time period: 1993–2017.

Major taxa studied: Soil microbes.

Methods: A meta-analysis was conducted to examine effects of forest degradation on soil proper-

ties and microbial attributes related to microbial biomass, activity, community composition and

diversity based on 408 cases from 119 studies in the world.

Results: Forest degradation decreased the ratios of K-strategists to r-strategists (i.e., ratios of fungi to

bacteria, Acidobacteria to Proteobacteria, Actinobacteria to Bacteroidetes and Acidobacteria1Actinobac-

teria to Proteobacteria1Bacteroidetes). The response ratios (RRs) of the K-strategist to r-strategist ratios

to forest degradation decreased and increased with increased RRs of soil pH and soil C to nitrogen ratio

(C:N), respectively. Forest degradation increased the bacterial alpha-diversity indexes, of which the RRs

increased and decreased as the RRs of soil pH and soil C:N increased, respectively. The overall RRs

across all the forest degradation types ranked as microbial C (240.4%)> soil C (233.3%)>microbial

respiration (218.9%)>microbial C to soil C ratio (qMBC;215.9%), leading to the RRs of microbial res-

piration rate per unit microbial C (qCO2) and soil C decomposition rate (respiration rate per unit soil C),

on average, increasing by 143.2 and 125.0%, respectively. Variances of the RRs of qMBC and qCO2

were significantly explained by the soil C, soil C:N andmean annual precipitation.

Main conclusions: Forest degradation consistently shifted soil microbial community compositions

from K-strategist dominated to r-strategist dominated, altered soil properties and stimulated micro-

bial activity and soil C decomposition. These results are important for modelling the soil C cycling

under projected global land-use changes and provide supportive evidence for applying the macro-

ecology theory on ecosystem succession and disturbance in soil microbial ecology.

K E YWORD S

carbon decomposition, forest degradation, land use, microbial community, microbial diversity,

microbial metabolic quotient, soil carbon

1 | INTRODUCTION

The frequency and extent of anthropogenic land-use changes are esca-

lating worldwide. Human activity has affected c. 75% of the ice-free

area of terrestrial ecosystems, and thus becomes one of the greatest

threats to biodiversity conservation and ecosystem services, such as

carbon (C) sequestration (Watson, Luck, Spooner, & Watson, 2014).

Conversion of primary or secondary forests to plantations or agricul-

tural systems is a dominant global land-use change (Rudel et al., 2005)

and leads to significant soil organic C losses (Guo & Gifford, 2002). For

example, conversion of tropical primary forests into cropland, perennial

crops and grassland reduced soil C stocks by 25, 30 and 12%,
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respectively (Don, Schumacher, & Freibauer, 2011). Microorganisms

are the key regulators of soil biogeochemical cycling processes (Prosser

et al., 2007; Schimel, 2016). Soil microbial abundance, community com-

position, activity and ecophysiological adaptation to environmental

changes at the community level can shift the C, energy and nutrient

flows at the ecosystem level (Schimel, Balser, & Wallenstein, 2007).

Therefore, better understanding of how microbial communities respond

to land-use changes and feedback to soil biogeochemical cycling

beyond the microhabitat scale is crucially needed in both microbial

ecology and ecosystem modelling communities (Pointing, Fierer, Smith,

Steinberg, & Wiedmann, 2016).

The decomposition of soil organic matter is predominantly influ-

enced by the microbial community composition and activity as well as

the soil physicochemical properties (Bailey, Smith, & Bolton, 2002;

Fierer, Bradford, & Jackson, 2007; Xu et al., 2016). Forest degradation

changes vegetation characteristics (e.g., plant biomass, species compo-

sition and canopy structure) and thus exerts substantial impacts on soil

properties (e.g., soil C, elemental stoichiometry and pH; Don et al.,

2011; Guo & Gifford, 2002). Such changes can significantly affect soil

microbial attributes. For example, global pattern studies showed that

soil microbial abundance was correlated with soil and climate factors

(Pointing et al., 2016; Serna-Chavez, Fierer, & van Bodegom, 2013; Xu,

Thornton, & Post, 2013). Fierer and Jackson (2006) reported that soil

pH explained the variances of diversity and richness of soil bacterial

communities by 70 and 58%, respectively. A high fungi to bacteria ratio

is generally associated with high soil C to nitrogen ratio (C:N; Fierer,

Strickland, Liptzin, Bradford, & Cleveland, 2009) and low C decomposi-

tion rate (Bailey et al., 2002; Malik et al., 2016; Six, Frey, Thiet, &

Batten, 2006; Waring, Averill, & Hawkes, 2013). Even within bacterial

phyla, the abundance of Acidobacteria was negatively correlated with

the C mineralization rate, whereas those of Proteobacteria and Bacteroi-

detes exhibited a positive correlation (Fierer et al., 2007). Additionally,

modelling (e.g., Xu et al., 2014) and meta-analysis (e.g., Xu et al., 2013;

Zhou & Wang, 2015) studies reported that the microbial C to soil C

ratio (qMBC) significantly decreased as the soil C:N increased. Spohn

and Chodak (2015) and Spohn (2015) conducted a field study and a

meta-analysis, respectively, and found that the microbial respiration

rate per unit microbial C (microbial metabolic quotient, qCO2) increased

with increased resource C:N or C to phosphorus ratio. Nevertheless,

previous meta-analyses mainly focus on effects of land-use change

types, history, climate or soil clay contents on soil C changes (Don

et al., 2011; Guo & Gifford, 2002), and the potential influences on soil

microbial communities and activity induced by land-use changes are

seldom investigated.

In macroecology, the theory of Odum (1969, 1985) on ecosystem

succession and disturbance proposes that young and disturbed ecosys-

tems have a lower ratio of K-strategists to r-strategists than mature

and undisturbed ecosystems. To test whether Odum’s theory can be

applied in soil microbial ecology, we make the following two analogies

for the present study. First, primary or secondary forests are presum-

ably more mature and undisturbed ecosystems compared with planta-

tions or agricultural ecosystems during forest degradation. Second, we

assume that microbial attributes can be described by the K- and r-

selected categories (Chen, Chen, Peng et al., 2016; Chen, Chen,

Robinson et al., 2006; Fierer et al., 2007; Kaiser, Franklin, Dieckmann,

& Richter, 2014; Zechmeister-Boltenstern et al., 2015), similar to those

used in plant and animal community ecology. Fungi tend to be K-strate-

gists compared with bacteria, because they have larger size, longer

turnover time, higher resource use efficiency, lower maintenance respi-

ration to biomass ratio and higher microbial C to soil C ratio (Bailey

et al., 2002; Six et al., 2006; Waring et al., 2013). Nevertheless,

microbes have highly diverged various structural and functional traits

even within the same taxonomic affiliation (Ho, Lonardo, & Bodelier,

2017). In bacterial phyla, for example, Acidobacteria and Actinobacteria

are associated with low-quality resources, especially Actinobacteria that

have fungi-like filamentous growth form; whereas Proteobacteria and

Bacteroidetes are related to the decomposition in resource-rich environ-

ments (Fierer et al., 2007; Strickland, Osburn, Lauber, Fierer, &

Bradford, 2009; Zechmeister-Boltenstern et al., 2015). Obviously, it is

challenging and debatable to apply such life strategies to microorgan-

isms as to plants and animals, but it has gained more recognition

recently and will be of significance in interpreting and predicting the

behaviour and responses of microbes to land-use changes and climate

change (Ho et al., 2017).

The present study involved a meta-analysis of 408 cases from 119

studies, with the aim of exploring how conversions of primary or sec-

ondary forests to plantations or agricultural systems influence soil

microbial communities and soil C cycling. We hypothesized that forest

degradation indirectly changed soil microbial attributes by altering soil

properties (e.g., soil pH and elemental stoichiometry) combined with

geographical and climatic factors. We also attempted to apply Odum’s

(1969, 1985) macroecology theory on ecosystem succession and dis-

turbance in microbial ecology. Specifically, we examined effects of for-

est degradation on microbial communities at coarse (fungi and bacteria)

and fine (four dominant and most reported bacterial taxa, i.e., Acidobac-

teria, Proteobacteria, Actinobacteria and Bacteroidetes) taxonomic resolu-

tions (Ho et al., 2017 and references therein) and tested the hypothesis

that forest degradation would decrease the ratios of K-strategists to r-

strategists (i.e., ratios of fungi to bacteria, Acidobacteria to Proteobacte-

ria, Actinobacteria to Bacteroidetes and Acidobacteria1Actinobacteria to

Proteobacteria1Bacteroidetes), and consequently, increase the qCO2

and soil C decomposition rate.

2 | MATERIAL AND METHODS

2.1 | Data sources

An extensive literature survey was conducted through the ISI Web of

Science, Google Scholar and China National Knowledge Infrastructure

(CNKI) databases. The keywords and phrases used for the literature

search included ‘forest’ AND ‘metabolic quotient’ OR ‘qCO2’ OR ‘micro-

bial respiration’ OR ‘basal respiration’ OR ‘microbial biomass’ OR

‘microbial community’ OR ‘fungi’ OR ‘bacteria.’ To minimize potential

uncertainties in the data analysis, the following criteria were applied to

select proper studies. (a) The studies selected were all conducted with

a paired-plot design using a ‘space for time’ approach (i.e., for each

ZHOU ET AL. | 111



paired site, it had been assumed that soil conditions were similar prior

and posterior to the forest degradation). The data only from the two

ends of the chronosequences were used, following Don et al. (2011).

(b) The microbial respiration was measured in laboratory incubation

because qCO2 (Anderson, & Domsch, 1990) and life strategies (Ho

et al., 2017) are difficult to be determined in field. (c) The data only

from the topsoil layer (i.e., 0–5, 0–10, 0–15 or 0–20 cm depending on

the sampling protocols of specific studies) were adopted if the vertical

distribution was examined. (d) The data only from the controls were

used in instances of manipulation experiments. (e) In the instances

where the seasonal dynamics were reported, the data only in the

summer or growing seasons (June, July or August for the Northern

Hemisphere or December, January or February for the Southern Hemi-

sphere) or wet seasons (for tropical regions) were adopted. A total of

408 cases from 119 papers published from 1993 to February 2017 in

the world were included in this synthesis (a list of the data sources can

be found in the Appendix; Figure 1).

The dataset included the following variables: (a) three variables

of soil properties, namely soil pH, soil organic C and soil total N; (b)

three variables related to microbial biomass and activity, namely

microbial biomass C, microbial biomass N and microbial respiration

(the amount of CO2 produced in laboratory soil incubation without

C or nutrient additions); (c) six variables representing microbial com-

munity compositions that were estimated with molecular, physio-

logical, count or phospholipid fatty acid (PLFA) methods, namely

fungi, bacteria, relative abundances of Acidobacteria, Proteobacteria,

Actinobacteria and Bacteroidetes in bacterial phyla; (d) the two most

reported bacterial alpha-diversity indexes, namely the Shannon

index and operational taxonomic unit (OTU richness); and (e) nine

ratios derived from the available data, namely soil C:N ratio, micro-

bial C:N ratio, qMBC, microbial N to soil N ratio (qMBN), qCO2,

fungi to bacteria ratio, Acidobacteria to Proteobacteria ratio, Actino-

bacteria to Bacteroidetes ratio and Acidobacteria1Actinobacteria to

Proteobacteria1Bacteroidetes ratio. The means (X ), standard devia-

tions (SDs), and sample sizes (n) of all the variables for each case

were extracted from the original papers. If the standard error (SE)

was given, then the SD was calculated by:

SD5SE
ffiffiffi
n

p
(1)

Otherwise, the SD of 1/10 was assigned (Luo, Hui, & Zhang,

2006). The geographical locations (latitude and longitude) and climate

factors [mean annual temperature (MAT) and mean annual precipitation

(MAP)] were also obtained from the papers. In the event that MAT and

MAP were not provided in the papers, they were extracted from the

database at http://www.worldclim.org/ with the help of the latitude

and longitude. All data compiled were numerical data obtained from

the tables or text or extracted from the figures with the Origin 7.0 digi-

tal plugin (Digitize) (OriginLab Ltd, Norman, OK, U.S.A.).

The land-use types were defined following previous meta-analyses

(Don et al., 2011; Guo & Gifford, 2002) as follows. The primary forests

were natural vegetations without apparent and reported human impacts,

including natural vegetations of forests, shrubs and savannahs (e.g., the

South American Cerrado). The secondary forests were naturally devel-

oped stands with native species at the deforestation sites. They differed

from plantations mainly in terms of human activity involved in the stand

establishments. Agricultural systems were divided into grassland, peren-

nial croplands (e.g., sugar cane and coffee) and annual croplands (e.g.,

maize, wheat and beans). All data were categorized into eight types of

forest degradation, as follows: (a) from primary forest to secondary for-

est, (b) from primary forest to plantation, (c) from primary forest to grass-

land, (d) from primary forest to perennial cropland, (e) from primary

forest to cropland, (f) from secondary forest to plantation, (g) from sec-

ondary forest to grassland, and (h) from secondary forest to cropland.

2.2 | Data analysis

We conducted the meta-analysis to evaluate responses of soil proper-

ties and microbial attributes to forest degradation with MetaWin 2.1

software (Sinauer Associates Inc., Sunderland, MA, U.S.A.). Specifically,

the effect of forest degradation was estimated for each observation as

the natural logarithm transformed (ln) response ratio (RR):

RR5ln Xt=Xc
� �

5ln Xt
� �

2ln Xc
� �

(2)

where Xt and Xc are the means of the concerned variable in the

degraded treatment and original control forest, respectively. If Xt and

FIGURE 1 A map of the world showing the distribution of the sampling sites in this meta-analysis

112 | ZHOU ET AL.

http://www.worldclim.org/


Xc are normally distributed and both are greater than zero, the RR has

an approximately normal distribution. Its variance (m) was calculated as:

m5
s2t

ntX2
t

1
s2c

ncX2
c

(3)

where nt and nc are the sample sizes of the concerned variable in the

degraded treatment and original control forest, respectively; and st and

sc are the SDs of the concerned variable in the degraded treatment and

original control forest, respectively. The weighted response ratio

(RR11) was calculated from the RR of individual pairwise comparison

between the degraded treatment and original control forest:

RR115

Xm
i51

Xk
j51

wijRRij

Xm
i51

Xk
j51

wij

(4)

where RRij is the jth comparison (j51, 2, . . ., k) in the ith group of

forest degradation type (i51, 2, . . ., m). The standard error of RR11

[s(RR11)] was calculated as:

s RR11ð Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Xm
i51

Xk
j51

wij

vuuuut
(5)

where wij is the weighting factor and estimated as:

wij5
1
m

(6)

To determine whether forest degradation had a significant effect,

the 95% confidence interval (95% CI) was calculated as:

95% CI5RR1161:96s RR11ð Þ (7)

If the 95% CI overlapped with zero, then the response to forest

degradation was considered to be not significant (a5 .05). The per-

centage changes in variables caused by forest degradation were meas-

ured by:

Change %ð Þ5 exp RR11ð Þ21½ �3100% (8)

The correlation analysis was used to examine the correlations

between different variables. A stepwise regression procedure was used

to explore multivariate effects of climate and soil factors on the RRs.

3 | RESULTS

3.1 | Effects of forest degradation on microbial

community composition and diversity

Forest degradation consistently decreased the abundance of fungi

across all the land-use change types (Figure 2a). Conversions of primary

forest to secondary forest, plantation and cropland decreased bacterial

abundance, whereas conversions of primary forest to grassland and sec-

ondary forest to plantation increased it (Figure 2b). Within bacterial

phyla, forest degradation consistently decreased the relative abundan-

ces of Acidobacteria and Acidobacteria1Actinobacteria (Figure 2c,e), but

the response directions of Actinobacteria, Proteobacteria, Bacteroidetes

and Proteobacteria1Bacteroidetes varied with the land-use change

types (Figure 2d,f–h). Forest degradation consistently decreased

the fungi to bacteria ratio, Acidobacteria to Proteobacteria ratio,

Actinobacteria to Bacteroidetes ratio and Acidobacteria1Actinobac-

teria to Proteobacteria1Bacteroidetes ratio across all the land-use

change types except for the Actinobacteria to Bacteroidetes ratio for

the conversion of primary forest to plantation (Figure 2i–l). Forest

degradation significantly (p< .05) increased both the Shannon index

and richness for all the land-use change types except for the Shan-

non index for the conversion of primary forest to secondary forest

(Figure 2m,n).

3.2 | Effects of forest degradation on microbial

biomass and activity

Forest degradation consistently decreased the microbial C and N across

all the land-use change types, with decreases in microbial C varying

from 25.4% (secondary forest to grassland) to 56.7% (primary forest to

cropland) and decreases in microbial N varying from 28.2% (secondary

forest to grassland) to 54.5% (primary forest to cropland; Figure 3a,b).

However, the response directions of the microbial C:N ratio varied

with the land-use change types (Figure 3c). Negative responses of the

qMBC and qMBN to all the forest degradation types were found

except for a positive response of the qMBN for the conversion of sec-

ondary forest to plantation (Figure 3d,e). Forest degradation signifi-

cantly decreased microbial respiration (Figure 3f), but increased the

qCO2 across all the land-use change types (Figure 3h). Forest degrada-

tion increased soil C decomposition rates across all the land-use change

types, but the RRs for the conversions from primary forest to grassland,

secondary forest to plantation and secondary forest to grassland were

not significant (Figure 3g). The overall RRs across all the land-use

change types ranked as microbial C (240.4%)> soil C (233.3%)>

microbial respiration (218.9%)> qMBC (215.9%); and those of the

qCO2 and soil C decomposition rate increased, on average, by 143.2

and 125.0%, respectively (Figure 3).

3.3 | Factors affecting microbial responses to forest

degradation

Forest degradation significantly decreased soil C and N content

(Figure 4b,c), with decreases varying from 8.6 to 61.5% for soil C

and from 28.2 to 54.5% for soil N. Inconsistent response directions

of soil pH and C:N to forest degradation were found among differ-

ent land-use change types (Figure 4a,d).

Pooling the data across all the land-use change types, we found that

the RRs of the ratios of K-strategists to r-strategists (i.e., fungi to bacteria

ratio, Acidobacteria to Proteobacteria ratio, Actinobacteria to Bacteroidetes

ratio and Acidobacteria1Actinobacteria to Proteobacteria1Bacteroidetes

ratio) consistently decreased and increased with increased RRs of the

soil pH and soil C:N, respectively (Figure 5 and Table 1). Both RRs of the

Shannon and richness of bacterial diversity increased and decreased

with increased RRs of the soil pH and soil C:N, respectively (Figure 5f,l).

The RR of the microbial C:N ratio decreased and increased with
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increased RRs of the soil pH and soil C:N, respectively (Figure 5a,g). The

RR of the qMBC was negatively correlated with the RR of the soil C:N

but positively with the RR of the microbial C:N, whereas the RR of the

qCO2 displayed the opposite correlations (Figure 6).

The stepwise regression analysis showed that the effect of soil

properties on the ratios of K-strategists to r-strategists was significant

(p< .05), but the effect of climate factors was not significant (p> .05)

and thus excluded in the regression models (Table 1). However, the

MAP contributed significantly (p< .05) to the RRs of the qMBC and

qCO2 given that the soil variables were considered (Table 1). The RR of

the qMBC tended to decrease as the MAT and MAP increased for

most of the land-use change types, whereas the RR of the qCO2

tended to increase as the MAT and MAP increased (Supporting Infor-

mation Figure S1).

FIGURE 2 Effects of forest degradation on microbial community composition and bacterial diversity by pooled and separate land-use
change types. The bars represent the 95% confidence intervals (CIs). The vertical dashed lines are the reference of a response ratio of zero.

The numbers next to the CI bars are sample sizes, and the asterisks indicate significant responses
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FIGURE 3 Effects of forest degradation on microbial biomass and activity by pooled and separate land-use change types. C decomposition
rate5 respiration per unit soil C; microbial C5microbial biomass carbon; microbial C:N5microbial biomass carbon to nitrogen ratio; micro-
bial N5microbial biomass nitrogen; qCO25microbial respiration per unit microbial C; qMBC5microbial C to soil C ratio; qMBN5microbial
N to soil N ratio. The bars represent the 95% confidence intervals (CIs). The vertical dashed lines are the reference of a response ratio of
zero. The numbers next to the CI bars are sample sizes, and the asterisks indicate significant responses
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FIGURE 4 Effects of forest degradation on soil properties by pooled and separate land-use change types. Soil C5 soil carbon; soil C:
N5 soil carbon to nitrogen ratio; soil N5 soil nitrogen. The bars represent the 95% confidence intervals (CIs). The vertical dashed lines are
the reference of a response ratio of zero. The numbers next to the CI bars are sample sizes, and the asterisks indicate significant responses
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4 | DISCUSSION

The present meta-analysis examined responses of soil microbial

communities to forest degradation, for the first time, at two taxo-

nomic resolutions based on 408 cases investigated with molecular,

physiological, count or PLFA methods from 119 independent stud-

ies during the period between 1993 and 2017 in the world. A con-

sistent and general response pattern of soil microbial communities

to forest degradation was found; forest degradation significantly

decreased the ratios of K-strategists to r-strategists, and conse-

quently, increased the microbial metabolic quotient (qCO2) and soil

C decomposition rate by 143.2 and 125.0%, respectively. Overall,

our results support the hypothesis that Odum’s (1969, 1985) mac-

roecology theory on ecosystem succession and disturbance can be

applied in microbial ecology. Below, we discuss possible mecha-

nisms for the observed patterns of microbial attributes in response

to forest degradation and their implications in soil C cycling and

ecosystem modelling.

FIGURE 5 Relationships between the response ratios (RRs) of soil properties (soil pH and soil C:N) and the RRs of microbial community
composition and bacterial diversity index for pooled land-use change types

TABLE 1 Stepwise regression models of the response ratios (RRs) of microbial variables against soil and climate factors

Dependent variable Regression model n R2 p value

RR of qMBC y520.19RR(Csoil)2 0.29RR(C:Nsoil)20.00023MAP1 0.14 217 0.28 < .01

RR of qCO2 y520.39RR(Csoil)1 0.40RR(C:Nsoil)10.00047MAP2 0.40 188 0.25 < .01

RR of fungi : bacteria y50.37RR(C:Nsoil)20.068 59 0.09 .02

RR of AcidoB : ProteoB y520.73RR(Csoil)1 1.07RR(C:Nsoil)20.43 46 0.50 < .01

RR of ActinoB : BacB y520.63RR(Csoil)2 2.56RR(pH)20.45 43 0.36 < .01

RR of RR of (AcidoB1ActinoB) : (ProteoB1BacB) y520.72RR(Csoil)1 0.99RR(C:Nsoil)20.36 46 0.47 < .01

Note. The microbial variables include microbial C to soil C ratio (qMBC), microbial respiration per unit microbial C (qCO2), Acidobacteria to Proteobacteria
ratio (AcidoB : ProteoB), Actinobacteria to Bacteroidetes ratio (ActinoB : BacB) and Acidobacteria1Actinobacteria to Proteobacteria1Bacteroidetes ratio
[(AcidoB1ActinoB) : (ProteoB1BacB)]. The independent variables for the stepwise selection procedure include four soil factors [i.e., soil C (Csoil), soil
N (Nsoil), soil C:N ratio (C:Nsoil) and soil pH] and two climate factors [mean annual temperature (MAT) and mean annual precipitation (MAP)]. All insignif-
icant terms (p> .05) are excluded in the models. The sample sizes (n), determination coefficients (R2) and p values are given.
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4.1 | Effects of forest degradation on soil microbial

communities: Applying the macroecology theory on

ecosystem succession and disturbance

Applying the K- and r-selection framework often used in macroecology to

explain microbial responses to forest degradation is challenging and debat-

able, probably for two main reasons. First, microbes are extremely diversi-

fied owing to both abiotic and biotic environmental selection pressures (Ho

et al., 2017), and the data of microbial communities with finer taxonomic

resolutions are still lacking because of methodological limitations (Ho et al.,

2017 and references therein). Second, it is difficult to discern whether the

changes in microbial communities are acclimation or adaptation to the new

soil conditions caused by forest degradation, because forest conversions to

other land-use types usually take years to decades, whereas changes in soil

microbial attributes normally occur in days toweeks.

Despite the limitations, we found that forest degradation consis-

tently and significantly decreased the ratio of K-strategists to r-strate-

gists for almost all the land-use change types (Figure 2), supporting

Odum’s (1969, 1985) theory on ecosystem succession and disturbance.

A recent global synthesis of 85 chronosequences also found that sec-

ondary succession had a rising trend in fungi to bacteria ratio (Zhou,

Wang, Jiang, & Luo, 2017). Given the fact that it has been effectively

applied in recent microbial studies (e.g., Chen, Chen, Peng et al., 2016;

Chen, Chen, Robinson et al., 2016; Kaiser et al., 2014; Zechmeister-

Boltenstern et al., 2015; Zhou, Wang, Jiang et al., 2017), adopting the

K- and r-selection framework for microbial ecology can improve our

understanding of the behaviour and responses of microbial commun-

ities to land-use changes and global change (Ho et al., 2017) and their

functioning in soil systems (Fierer et al., 2007).

Land-use changes modify substrate supplies and soil properties

(Don et al., 2011; Guo & Gifford, 2002), hence they affect soil microbial

diversity; but the direction and magnitude of the effect are inconclusive.

Rodrigues et al. (2013) reported that the conversion of the Amazonian

primary rainforests to agricultural systems had a strong negative effect

on biodiversity; they suggested that forest degradation increased local

diversity of soil bacteria (i.e., increase in alpha diversity), but the com-

munities became more similar across space during the conversion (i.e.,

decrease in beta diversity). In contrast, de Carvalho et al. (2016) showed

that the Amazonian forest degradation increased both alpha and beta

diversities of soil bacteria. More studies from tropical regions also

reported increased beta diversity during forest degradation (Lee-Cruz,

Edwards, Tripathi, & Adams, 2013; Tripathi et al., 2016). In this meta-

analysis, we found that forest degradation significantly increased the

alpha diversity of bacteria for almost all the land-use change types (Fig-

ure 2). The causes for such discrepancies are not clear and, we speculate,

might result from indirect effects of forest degradation on microbial indi-

ces via changes in the elemental stoichiometry and properties of soils.

Forest degradation significantly altered soil C and N contents and

soil C:N stoichiometry (Figure 4), which consequently changed the

microbial biomass C:N, K-strategists to r-strategists ratio and bacterial

FIGURE 6 Relationships between the response ratios (RRs) of soil or microbial C:N and the RRs of microbial C to soil C ratio (qMBC) or
microbial respiration per unit microbial C (qCO2) for pooled land-use change types
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diversity (Table 1 and Figures 5 and 6). The relationships between

these microbial indices and soil C:N ratio probably result from the stoi-

chiometric constraints, because the r-selected copiotrophs generally

require more N per unit biomass C accumulation than the K-selected

oligotrophs (Fierer et al., 2007, 2009; Waring et al., 2013). Meanwhile,

the K-selected microbes generally have higher biomass C:N ratio than

the r-selected microbes (Mooshammer, Wanek, Zechmeister-

Boltenstern, & Richter, 2014; Zechmeister-Boltenstern et al., 2015).

Therefore, stoichiometric constraints are probably one of many factors

that influence the microbial communities.

Changes in soil pH during forest degradation also indirectly

affected the microbial variables (Table 1 and Figures 5 and 6); they

explained 77 and 53% of the variances of the RRs of the richness and

Shannon index of bacteria, respectively (Figure 5f). This result is com-

parable to Fierer and Jackson’s (2006) study on 98 soil samples from

North and South America, in which soil pH could largely predict the

spatial pattern of the bacterial diversity (explaining 70% of the varian-

ces of the diversity and 58% of the richness). We also found that the

RR of soil pH to forest degradation tended to be correlated negatively

with the RRs of the microbial C:N ratio and the K-strategists to r-strate-

gists ratio (Figure 5); these relationships were partly attributed to the

K-selected microbes that have a greater capability of tolerating H1

concentration than the r-selected bacteria (H€ogberg, H€ogberg, & Myr-

old, 2007; Schimel et al., 2007). Nevertheless, the potential mecha-

nisms for the relationships between soil pH and bacterial diversity

need more investigation in spite of having attracted wide attention (de

Carvalho et al., 2016; Fierer & Jackson, 2006; Kuramae et al., 2012;

Stegen et al., 2016). Taken together, the effects of forest degradation

on microbial community composition and diversity should be taken

into account in forest management practices given the fact that soil

microbial communities represent the majority of biodiversity in terres-

trial ecosystems and are intimately involved in ecosystem functions

(Pointing et al., 2016; Rodrigues et al., 2013).

4.2 | Effects of forest degradation on soil C cycling:

Implication in ecosystem modelling

The microbial respiration is the predominant component of soil hetero-

trophic respiration, which is the largest C flux in soils; and the soil C

decomposition rate is determined by biomass and activity of the micro-

bial communities (Xu et al., 2017). We found that forest degradation

significantly decreased qMBC, but stimulated qCO2 and soil C decom-

position rate (Figure 3). These results are in agreement with a recent

comprehensive global synthesis by Xu et al. (2017) based on a total of

2,444 observations, in which the qCO2 is about two times higher in

cropland than natural ecosystems.

It is increasingly being recognized that microbial community com-

position plays a crucial role in determining the ecosystem C cycling

rates (Fierer et al., 2007; Malik et al., 2016; Schimel, 2016; Strickland,

Lauber, Fierer, & Bradford, 2009; Strickland, Osburn et al., 2009;

Waring et al., 2013). The increased qCO2 during forest degradation

(Figure 3) was associated with the shifts of the microbial community

composition from K-strategists to r-strategists (Figure 2; Fierer et al.,

2007). The r-strategist-dominated soils generally have a higher qCO2

than K-strategist-dominated soils (Bailey et al., 2002; Blagodatskaya &

Anderson, 1998; Fierer et al., 2007; Malik et al., 2016; Six et al., 2006;

Tosi et al., 2016; Waring et al., 2013).

Microbial C use efficiency, defined as the ratio of the amount of C

used in new biomass (excluding the C excreted in the form of metabo-

lites and enzymes) to the amount of C that has been consumed

(Manzoni, Taylor, Richter, Porporato, & Ågren, 2012; Sinsabaugh, Man-

zoni, Moorhead, & Richter, 2013), is commonly used to quantify how

the C is partitioned between growth and respiration. Microbes fed with

lower C:N resources often have a higher C use efficiency than

microbes fed with higher C:N resources, reflecting an efficient growth

and little C release through respiration (Manzoni et al., 2012; Sinsa-

baugh et al., 2013; Xu et al., 2014). Thus, the negative correlation

between the soil C:N and qMBC and the positive correlation between

the soil C:N and qCO2 are expected (Table 1 and Figure 6), which are

also consistent with recent field studies, meta-analyses, modelling

research and N addition experiments (Spohn, & Chodak, 2015; Xu

et al., 2014, 2017; Zhou & Wang, 2015; Zhou, Wang, & Jin, 2017).

Besides, microbes can also mobilize resources by producing specific

extracellular enzymes to meet their elemental demand (Mooshammer

et al., 2014; Sinsabaugh & Follstad Shah, 2012; Sinsabaugh et al.,

2013). Therefore, changes in microbial resource use and synthesis effi-

ciency will reflect the variations in both chemical structure and elemen-

tal ratios of the microbial biomass, and eventually, control the soil C

and nutrient cycling (Sistla & Schimel, 2012; Sterner & Elser, 2002).

Additionally, our results showed that the RR of the qMBC

decreased with increased MAT and MAP for most of the forest degra-

dation types, whereas the RR of the qCO2 increased with increased

MAT and MAP (Supporting Information Figure S1). Based on previous

global analyses, the tropical region has a higher qMBC than temperate

and boreal regions (Serna-Chavez et al., 2013), whereas the low lati-

tude areas have a significantly lower qCO2 than high latitude areas (Xu

et al., 2017). Unfortunately, we do not know why temperature and

moisture amplify the effects of forest degradation on the qMBC and

qCO2 and their interaction with substrate quality and quantity (David-

son & Janssens, 2006; Sihi, Inglett, & Inglett, 2016).

All the discussion above, together with our finding of the close cor-

relations between the RRs of the soil C, microbial C and microbial res-

piration with forest degradation (Supporting Information Figure S2),

suggests that the attributes of soils and microbes during forest degra-

dation interact and feedback on one another (Bailey et al., 2002; Fierer

et al., 2007; Xu et al., 2016), and jointly drive the soil C and nutrient

cycling. The increased soil C decomposition rate during forest degrada-

tion may mainly depend upon the increased microbial activity (i.e.,

qCO2) given the decreased qMBC (Figure 3). Recently, Xu et al. (2017)

conducted a global analysis and suggested that the qCO2 can reflect

microbial C use efficiency, and consequently, is a direct parameter con-

trolling the soil microbial activity on the C cycling. To simulate the

microbial contribution to soil C cycling, however, traditional ecosystem

models mostly use the first-order differential equations that typically

treat the microbial communities as a single, homogeneous functioning

entity (Strickland, Lauber et al., 2009; Xu et al., 2017). The implicit
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assumption of these models that microbial communities are function-

ally equivalent may not be correct. To predict accurately how terrestrial

biogeochemical processes respond to land-use changes and global

change may require a consideration of changes in microbial community

composition and physiological acclimation and/or adaptation to dis-

turbance regimes and environmental changes.

In summary, the present meta-analysis found consistent and pre-

dictable patterns of responses of the ratios of K-strategists to r-strate-

gists, microbial C to soil C ratio and microbial respiration rate to

microbial C ratio to forest degradation, supporting the hypothesis that

the macroecology theory of Odum (1969, 1985) on ecosystem succes-

sion and disturbance can be applied in microbial ecology to some

degree. Forest degradation significantly increased the soil C decompo-

sition rate mainly through shifting the microbial community composi-

tion and stimulating the microbial activity. Accurate assessment and

modelling of soil C budgets under global change scenarios may require

a consideration of the microbial community composition and physiolog-

ical acclimation and/or adaptation to disturbances.
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