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Abstract
NASA has launched the decade-long Arctic-Boreal Vulnerability Experiment (ABoVE). While the
initial phases focus on field and airborne data collection, early integration with modeling activities is
important to benefit future modeling syntheses. We compiled feedback from ecosystem modeling
teams on key data needs, which encompass carbon biogeochemistry, vegetation, permafrost,
hydrology, and disturbance dynamics. A suite of variables was identified as part of this activity with a
critical requirement that they are collected concurrently and representatively over space and time.
Individual projects in ABoVE may not capture all these needs, and thus there is both demand and
opportunity for the augmentation of field observations, and synthesis of the observations that are
collected, to ensure that science questions and integrated modeling activities are successfully
implemented.

© 2018 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/aa9d9a
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0002-3680-0160
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aa9d9a&domain=pdf&date_stamp=2016-03-30
http://creativecommons.org/licenses/by/3.0
mailto:jbfisher@jpl.nasa.gov


Environ. Res. Lett. 13 (2018) 020202 J B Fisher et al

Climate is changing worldwide, but temperatures are
risingdisproportionately in the high northern latitudes,
i.e. the Arctic-Boreal Region—home to the largest
biome in the world (Chapman and Walsh 2007, Hinz-
man et al 2005, IPCC 2007, 2014, McGuire et al 2006,
Overpeck et al 1997, Screen and Simmonds 2010,
Serreze and Barry 2011, Winton 2006). Warming tem-
peratures insuchcoldenvironmentsmaybenefitplants,
improve productivity, enable a green-up of new areas,
accelerate nutrient cycling, and increase CO2 uptake
from the atmosphere (Euskirchen et al 2009, Forkel
et al 2016, Jia et al 2003, Mack et al 2004, Myneni et al
1997, Natali et al 2012, Qian et al 2010). However, ris-
ing temperatures are also thawing permafrost, altering
hydrology andecology, changing albedo, browning and
decreasing productivity in some areas, increasing fire
frequency/severity and disease infestations, and expos-
ing enormous amounts of previously preserved soil
organic carbon to the atmosphere (Beck and Goetz
2011, Goetz et al 2005, Koven et al 2011, Lloyd and
Bunn 2007, McGuire et al 2009, Olefeldt et al 2013,
Schädel et al2016, Schaefer et al2011, Schuur et al2009,
Zimov et al 2006). This stored soil carbon has accumu-
lated over millennia, and its exposure and mobilization
is tipping the historical carbon sink of the Arctic-Boreal
Region into a volatile source of increasing carbon to
the atmosphere (Belshe et al 2013, Hayes et al 2011,
Oechel et al 1993, Schaefer et al 2014, Schuur et al
2013, Turetsky et al 2011, Zona et al 2016).

Our predictive ecosystem modeling capabilities for
the region have substantial uncertainties due to the
complexity of these interacting ecosystem components,
tipping carbon sink/source dynamics, large and remote
area, extreme environment, and consequent dearth of
measurements. As a result, carbon cycle dynamics in
the Arctic-Boreal Region are among the largest sources
of identified uncertainties to global climate projections
(Chapin et al 2000, IPCC 2014, Ito et al 2016, Koven
et al 2011, McGuire et al 2006, Parmentier et al 2015,
Schaefer et al 2014, Snyder and Liess 2014, Zhang et al
2017). These uncertainties can be conceptually consid-
ered as missing pieces to a modeling ‘puzzle’ that can
inform ecosystem function and dynamics with chang-
ing climate. Models are challenged in how to initialize
current conditions and carbon pools, determine the
precise sensitivities of soil and vegetation responses to
changing temperature and hydrological regimes, and
scale highly heterogeneous processes to large grid sizes
(Fisher et al 2014a, Fisher et al 2014b, Hayes et al
2014, Loranty et al 2014, McGuire et al 2012, Melton
et al 2013, Rogers et al 2017, Schuur et al 2015, Sitch
et al 2007). The lack of observational data has limited
model improvements, testing, and evaluation for the
Arctic-Boreal Region: evidence of this is seen in the fact
that models have exhibited nearly every possible com-
bination of carbon sink/source dynamics with orders
of magnitude differences in carbon stocks (Fisher et al
2014b, McGuire et al 2006, McGuire et al 2012, Melton
et al 2013, Schuur et al 2015, Sitch et al 2007).

In 2015, NASA launched the decade-long Arctic-
Boreal Vulnerability Experiment (ABoVE) focused in
Alaska and Western Canada to study the ecosystems in
response to a changing environment (above.nasa.gov).
NASA is able to leverage its remote sensing strengths
to combine airborne and satellite observations with
in situ measurements to capture ecosystem dynam-
ics across large scales (Goetz et al 2011, Griffith et al
2012, Kasischke et al 2013). ABoVE is partitioned into
three phases, with the first two phases focused pre-
dominantly on science-driven intensive data collection
from field studies and airborne campaigns; the last
phase is focused on analysis and synthesis of these
data, including integration with modeling. Although
the last phase is reserved for model integration, with
foresight NASA included a model–data integration
framework in Phase I (Stofferahn et al 2016). This
framework lays the foundation for the modeling activ-
ities, connects modeling efforts to the field activities
early on, and aims to ensure that the data collected
meet the needs of the modeling community. This
is a lesson learned from previous large-scale NASA
campaigns. For example, in the Large-Scale Biosphere-
Atmosphere Experiment in Amazonia an extensive
network of flux towers was installed throughout Ama-
zonia, but did not include sensors for downwelling
longwave radiation, a crucial input for modelers (de
Gonçalves et al 2013). Including the instruments dur-
ing installation would have been relatively cheap and
easy, but doing so after the fact proved very difficult
and time-consuming. Although many ABoVE projects
are primarily field- and remote sensing-based stud-
ies targeting individual science questions with specific
data collection requirements, opportunities exist for
ABoVE-sponsored projects and/or ABoVE-affiliated
projects to include additional data needed by the
modeling community. However, the modeling com-
munity must define their data requirements now so
that NASA and the ABoVE project teams can augment
their implementationplans in time to collect the critical
observations.

We surveyed 18 modeling teams from around the
world on data needs for modeling terrestrial ecosys-
tem dynamics in the Arctic-Boreal Region. Our focus
was on global terrestrial biosphere models used within
global climate projections, and whose inter-model vari-
abilities define global uncertainties (Friedlingstein et al
2006, Friedlingstein et al 2014, IPCC 2007, 2014). The
18 models included: CABLE (Wang et al 2010), Biome-
BGC (Thornton et al 2002), CLM (Koven et al 2015),
CLM4 V IC (Lei et al 2014), DLEM (Tian et al 2014),
ECOSYS (Grant et al 2009), ISAM (Jain and Yang
2005), JeDI (Pavlick et al 2013), JULES (Clark et al
2011), LPJ (Zhang et al 2016), MC2 (Bachelet et al
2015), Noah-MP (Niu et al 2011), ORCHIDEE
(Krinner et al 2005), SiB4 (Baker et al 2008), SSiB
(Xue et al 1991), TEM (Hayes et al 2011), VEGAS
(Zeng et al 2005), and VISIT (Ito 2010). Some mod-
els represent more processes than others with respect
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Figure 1. Terrestrial biosphere modeling needs for the Arctic-Boreal Region highlight soil and vegetation dynamics, as illustrated by
font size proportional to frequency of response from 18 modeling groups.

to Arctic-Boreal ecosystem dynamics, but all show
divergent results in terms of carbon pools and fluxes
(Fisher et al 2014b). Our survey centered on ecosys-
tem dynamics, building on previous similar inquiries
focused specifically on soil carbon dynamics (Luo et al
2016, Tian et al 2015). Further, we used a set of
20 models featured in a previous analysis of Alaskan
carbon dynamics (Fisher et al 2014b) to calculate the
inter-model variability for the ABoVE domain (western
North America) as an indicator of modeling commu-
nity disagreement, or uncertainty; these models were
also included in the TRENDY (Sitch et al 2015) and
North American Carbon Program (NACP) regional
synthesis (Huntzinger et al 2012).

The modeling teams provided a wide range of
responses, which we grouped into common categorical
phrases for analysis. There was a total of 115 unique
phrases, which, for illustration we plotted as a ‘Wordle’
(wordle.net), where the font size of the word is propor-
tional to the frequency of the response (figure 1). By far
the most common response was soil carbon, followed
by net primary productivity (NPP), plant biomass,
soil moisture, plant functional types, and gross pri-
mary productivity (GPP). The next tier of modeling
needs included soil respiration, litter biomass, active
layer thickness, freeze/thaw dynamics, net ecosystem
exchange (NEE), soil temperature, evapotranspiration,
water table, permafrost, soil vertical profile, and leaf
area index. We note that other types of data, such
as meteorology, are critical model inputs, but are
more commonly available so are less in demand. We

also note that some of these variables are somewhat
ambiguously defined or not directly aligned with exact
measurements. Some key variables to modelers may be
overlooked due to inherent biases or lack of knowl-
edge of arctic-boreal processes. Still, the diversity of
responses contributed by modelers points to the overall
lackofobservationaldata,whichmustbeaddressed,but
alsohighlights that thevery fundamental processes gov-
erning terrestrial carbon cycling are poorly understood
and constrained in Arctic-Boreal ecosystems. Indeed,
this list would likely mirror modeling needs for most
global biomes (Fisher et al 2014a)—but, with addi-
tional key requirements related to permafrost, active
layer thickness, and freeze/thaw dynamics, reinforcing
the top priority of understanding the magnitude and
fate of soil carbon, particular to northern high latitude
terrestrial ecosystems (Koven et al 2017).

It is important to emphasize that many of these
variables are needed concurrently, and such that they
sufficiently represent variability over space and time.
Concurrency forms the basis of the response functions
that structures models (e.g. temperature versus
respiration)—variables collected in isolation may lack
the spatiotemporal robustness needed to inform and
improve the model as a whole. These concurrency
requirements enable modelers to extrapolate spatially
beyond existing intensive but sparse study sites, as well
as refine sensitivities and tipping points/thresholds
temporally. This is particularly acute for residence time
and turnover of soil and plant carbon stocks; implicit
here is turnover related to disturbance with respect to
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0          20
Uncertainty in Total Soil Carbon ( kg C m 2 )

0               0.005
Uncertainty in Net Ecosystem Exchange ( kg C m 2 month 1 )

0             0.05
Uncertainty in Gross Primary Production ( kg C m 2 month 1 )

0               0.025
Uncertainty in Autotrophic Respiration ( kg C m 2 month 1 )

0               0.025
Uncertainty in Net Primary Production ( kg C m 2 month 1 )

0               0.025
Uncertainty in Heterotrophic Respiration ( kg C m 2 month 1 )

Figure 2. Uncertainty in ecosystem carbon stocks and fluxes across NASA’s ABoVE domain. Maps are calculated from multi-model
(n = 20) disagreement, i.e. standard deviation, from the TRENDY (Piao et al 2013) and the NACP regional synthesis (Huntzinger et
al 2012) averaged to annual means (reference year 2003). Variables included: total soil carbon, net ecosystem exchange, gross primary
production, autotrophic respiration, net primary production, and heterotrophic respiration. Flux units are in kg C m−2 month−1;
stock units are in kg C m−2.

accurate quantification of fuels, fates, and frequencies.
A particular strength of ABoVE for modeling is
that there is a concerted effort to scale up site level
data through airborne and satellite observations (see:
above.nasa.gov/images/Scaling%20Diagram_169.jpg).
This allows an improved direct comparison between
the coarse model pixels and the ground data. Spatially,
we identify where these variables should be collected
based on uncertainty in modeled soil carbon, NEE,
NPP, GPP, heterotrophic respiration, and autotrophic
respiration (figure 2). We show absolute uncertainty
for transparency and direct connection to mea-
surements, though other statistical metrics, such as
interannual variability, can readily be derived. Low
uncertainty regions may be classed as such due to our
uncertainty definition, but models may have converged
due to equifinality or other shared assumptions, while
uncertainty by other definitions may be large. Much
of the carbon flux uncertainty is co-located in the
southwest areas of Alaska and the Canadian part of
the ABoVE domain (roughly congruent with boreal
biome extent), while the soil carbon uncertainty is

located throughout tundra regions of northern Canada
and Alaska, and the Yukon area (areas with high soil
carbon concentration).

Generally, the survey results align with five of
ABoVE’s overarching science themes—carbon bio-
geochemistry, vegetation, permafrost, hydrology, and
disturbance. ABoVE’s field and airborne campaigns
have targeted known geographic areas of interest and
uncertainty, though our uncertainty maps in figure
2 provide direct and quantitative guidance to these
campaigns specifically where models most need
data. For instance, it may be that the feedbacks
between ecosystem dynamics and atmospheric condi-
tions unique to particular locations expose particular
model sensitivities, thereby causing large divergence;
data specifically from these areas may help both to
constrain these sensitivities as well as to provide
benchmark data to assess the accuracy of models. Mul-
tiple field-based projects are funded by or affiliated
with ABoVE within each of these categories, so this
alignment may bode well for data capture for mod-
eling requirements. A live list of measurements being
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collected in ABoVE as of this writing can be found
online (above.nasa.gov/cgi-bin/above_meas.pl). Syn-
thesis activities across projects, especially, can help
integrate datasets within modeling frameworks. How-
ever, many of the variables required by models may be
absent, non-concurrent with other variables, or lacking
the spatial or temporal resolutions and domains from
the field campaigns needed to sufficiently refine model
performance. For instance, soil carbon dynamics, such
as stocks and change trajectories/sensitivities to various
forcing variables, were clearly the highest demand by
the modelers. At the time of this writing there were 20
projects listed under the Carbon Dynamics category
within ABoVE. Nonetheless, most of these projects
were not focused on soil carbon (due in part, for
example, to available proposals, solicitation wording,
and technical difficulty). Rather, they focus predomi-
nantly on carbon fluxes between the land surface and
the atmosphere, which while critically important to
the modeling community, may overlook some of the
key data needs for modelers, presenting a potentially
worrisome gap for model–data integration.

There is an enormous wealth of complemen-
tary data and information existing or in development
by programs outside of ABoVE that are relevant to
modelers. These include, for example: DOE’s NGEE
Arctic (Wullschleger et al2011), ESA’s GlobPermafrost
(Bartsch et al 2017), the Permafrost Carbon Net-
work (Schuur and Abbott 2011), the International Soil
Carbon Network (Jandl et al 2014), the Northern Cir-
cumpolar Soil Carbon Database (Hugelius et al 2013),
the Study of Environmental Arctic Change (Bromwich
et al 2010), the Arctic System Reanalysis (Bromwich
et al 2016), the Polar Geospatial Center (Noh and
Howat 2015), theNationalEcologicalObservatoryNet-
work (Keller et al 2008), the Long-Term Ecological
Research network (Hobbie et al 2003), and individual
AmeriFlux/FLUXNET sites (Oechel et al 2014). Other
agencies such as the Interagency Arctic Research Pol-
icy Committee (IARPC) coordinates among some of
these networks (Arctic Research and Policy Act 1984);
but, a stronger international cooperative effort is still
greatly needed, especially in the face of international
politics that may present barriers to scientific collab-
oration. ABoVE has been coordinating with each of
these programs and it may be that some potential gaps
in ABoVE’s data collection will be filled by these other
efforts. However, while such datasets will be useful for
model initialization, benchmarking, and evaluation,
they may not meet the equally critical demand for vari-
ables to be collected concurrently, which is essential
for advancing model development and performance.
Moreover, these data are primarily focused in N. Amer-
ica, whereas there is an even greater data dearth in the
larger pan-Arctic and Boreal region across the globe.

The modeling community additionally needs
infrastructure to allow repeatable evaluation of model
performance compared to benchmark datasets. The
benchmark datasets, constructed from a suite of

observations, must thoroughly confront and challenge
models against the processes and response func-
tions important to Arctic-Boreal ecosystem dynamics
for models to improve. The ABoVE model–data
integration framework facilitates the construction,
integration, connection, and flow of the valuable
data collected by the ABoVE science teams and
other data networks to the modeling community
(Stofferahn et al 2016). Through the ABoVE Sci-
ence Cloud central data repository (daac.ornl.gov/cgi-
bin/dataset_lister.pl?p=34), the framework provides a
back-enddatabase link toa front-endwebuser interface
to access the ABoVE data. These data can and should
be used by the modeling community to update and
refine model parameterization and structural process
representation, especially where data highlight key gaps
in process representation in models (e.g. Li et al 2010).
In turn, as model versions advance, the framework can
be used as a benchmarking system to test improvement
in model performance against key ABoVE indicators
and science questions related specifically to important
Arctic-Boreal Region ecosystem dynamics. Moreover,
the integrated framework readily identifies key missing
datasets or uncertainties required to test and advance
models across the ABoVE indicators—highly useful
for feedback to ground campaigns. The benchmark-
ing system is based on the International Land Model
Benchmarkingproject (Collier et al2016,Hoffman et al
2016, Luo et al 2012), and affiliated with the Permafrost
Benchmarking System (Schaefer et al 2016) (i.e. some
shared datasets and statistical metrics). Additionally,
the model–data integration framework provides rela-
tively high-quality and high-resolution model driver
data for regional-scale runs, critical for modeling high
latitudes (Guimberteau et al 2017). In sum, this frame-
work helps ease the workload of connecting to all of
these disparate but related databases for the modeling
community.

There is tremendous and well-justified interest,
effort, and activity in understanding the Arctic-Boreal
Region. Much of the current focus is on identifying
what is happening now under a changing climate, but
there is particular interest in and concern for what
changes may occur in the future. Mathematical and
computational models of the terrestrial biosphere are
essential for understanding potential future changes,
and are ultimately the great integrators of our informa-
tionnow.With large and long-term investments suchas
NASA’s ABoVE currently underway, it is critical that a
community-wide modeling framework is incorporated
into data collection early so that we can add substan-
tially to the value of assimilating currently available data
assets. The challenge is in connecting the wide array
of datasets and focused science interests to a cohesive
and coherent integrated larger picture. A coordinated
and supported effort across these field and modeling
components will help complete the missing pieces to
modeling the complex dynamics and feedbacks of the
Arctic-Boreal puzzle.
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Bartsch A, Grosse G, Kääb A, Westermann S, Strozzi T, Wiesmann
A, Duguay C, Seifert F M, Obu J and Nitze I 2017 Examining
environmental gradients with remotely sensed data-the ESA
globpermafrost project Paper presented at EGU General
Assembly Conference Abstracts

Beck P S and Goetz S J 2011 Satellite observations of high northern
latitude vegetation productivity changes between 1982 and
2008: ecological variability and regional differences Environ.
Res. Lett. 6 045501

Belshe E F, Schuur E A G and Bolker B M 2013 Tundra ecosystems
observed to be CO2 sources due to differential amplification of
the carbon cycle Ecol. Lett. 16 1307–15

Bromwich D H, Kuo Y H, Serreze M, Walsh J, Bai L S, Barlage M,
Hines K and Slater A 2010 Arctic system reanalysis: call for
community involvement Eos, Trans. Am. Geophys. Union 91
13–4

Bromwich D H, Wilson A B, Bai L-S, Moore G W and Bauer P
2016 A comparison of the regional arctic system reanalysis and
the global ERA-interim reanalysis for the arctic Q. J. R.
Meteorol. Soc. 142 644–58

Chapin F, McGuire A, Randerson J, Pielke R, Baldocchi D, Hobbie
S, Roulet N, Eugster W, Kasischke E and Rastetter E 2000
Arctic and boreal ecosystems of western north America as
components of the climate system Glob. Change Biol. 6 211–23

Chapman W L and Walsh J E 2007 Simulations of Arctic
temperature and pressure by global coupled models J. Clim.
20 609–32

Clark D B et al 2011 The joint UK land environment simulator
(JULES), model description—part 2: carbon fluxes and
vegetation dynamics Geosci. Model. Dev. 4 701–22

Collier N, Hoffman F M, Mu M, Randerson J T and Riley W J 2016
International land Model Benchmarking (ILAMB)
BGCF-DATA (Biogeochemistry (BGC) Feedbacks)
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