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A B S T R A C T

Recent evidences show that terrestrial biogeochemical models have large uncertainty in estimating climate-
change effect on grassland net ecosystem productivity (NEP), which is defined as the difference between gross
ecosystem photosynthesis (GEP) and respiration (ER). It remains unclear that whether GEP or ER limits the
model capability to simulate NEP responses to climate change in semiarid grasslands. Given the surrogate
CENTURY-type model is widely used for Earth system modeling, we investigated two of them (i.e., DAYCENT
and TECO models) and examined which processes dominate their ability to capture the responses of NEP to
experimental climate changes in a temperate steppe of northern China. During the simulation from 2006 to
2008, the two models captured the observed mean annual NEP in the control plots when they were validated by
the observations from an adjacent eddy-flux tower. However, they failed to capture the treatment effects of
experimental warming and increased precipitation on NEP because of the poor estimations of ER responses.
DAYCENT model simulated a higher precipitation effect on ER (37.83%) and TECO model overestimated the
warming effect on ER by 8.18%. The simulation of treatment effects on ER and therefore NEP can be improved
by an optimized parameterization of the water-related decay functions for soil organic carbon (C). The simulated
cumulative loss of total ecosystem C stock during 2010–2100 were decreased when the TECO model used ex-
periment-fitted parameters (0.72 kg Cm−2) instead of using the initial validation with eddy-flux data
(0.96 kg Cm−2). The ecosystem shifted from C sink to source at threshold of 435mm of annual total pre-
cipitation. Our findings indicate that future projection of C cycle in semiarid grasslands could be improved by
better understanding of water response of ecosystem respiratory processes.

1. Introduction

Convincing projections of terrestrial carbon (C) feedback to climate
change need better understanding of the response of net ecosystem
productivity (NEP) to climate change. NEP represents the balance be-
tween gross ecosystem photosynthesis (GEP) and ecosystem respiration
(ER) (Oberbauer et al., 2007; Niu et al., 2008). Despite their im-
portance, large projection uncertainties of those ecosystem CO2 fluxes

and their sensitivities to climate change still remain in current Earth
system models (Arora et al., 2013; Friedlingstein et al., 2006, 2014;
Jones et al., 2013). Semi-arid grassland is one large contributor to the
trend and inter-annual variability of global land CO2 sink (Ahlström
et al., 2015). Thus, an improved simulation of grassland NEP and its
two components is particularly important for accurately predicting
global land C dynamics under future climate change.

The responses of terrestrial NEP to climate change have been

https://doi.org/10.1016/j.agrformet.2018.01.020
Received 9 November 2017; Received in revised form 15 January 2018; Accepted 16 January 2018

⁎ Corresponding author at: Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Science, East China Normal University, Shanghai,
China.

⁎⁎ Corresponding author.
E-mail addresses: jyxia@des.ecnu.edu.cn (J. Xia), swan@henu.edu.cn (S. Wan).

Agricultural and Forest Meteorology 252 (2018) 175–191

0168-1923/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2018.01.020
https://doi.org/10.1016/j.agrformet.2018.01.020
mailto:jyxia@des.ecnu.edu.cn
mailto:swan@henu.edu.cn
https://doi.org/10.1016/j.agrformet.2018.01.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2018.01.020&domain=pdf


studied by many field manipulative experiments (Wu et al., 2011; Lu
et al., 2013), so results from these studies have been increasingly used
to evaluate model performance on terrestrial C cycle. Some studies
evaluate the model performance indirectly using the meta-analysis re-
sults of multiple experiments. For example, Piao et al. (2013) used the
weighted response of multiple global-change experiments from a meta-
analysis to assess the modeled response of GEP to climate change. In
that study, the averaged response ratios among experiments were used
to evaluate the regression coefficients derived from the time-series
analysis of GEP against climate factors. This approach is useful to ex-
plore the systematic bias of the models, but is hard to tell which pro-
cesses or parameters of the models could be improved. Also, the ap-
plication of this approach is strongly challenged by the large difference
in the spatial scale between field experiments (101–102m2) and global
land models (0.5°–1° of latitude-longitude degree). Some recent studies
have tried to use field experiments to improve model performance at
the site level. One excellent example is the FACE Model-Data Synthesis
(FACE-MDS) project (e.g., De Kauwe et al., 2013; Medlyn et al., 2016),
which runs multiple models at different FACE experimental sites to
explore the research needs for current terrestrial ecosystem models. For
example, they found the models were unable to replicate the observed
aboveground net primary productivity from both ambient and treat-
ment plots in the Prairie Heating and CO2 Enrichment (PHACE) ex-
periment in the semiarid grassland in Wyoming, USA (De Kauwe et al.,
2017). As suggested by that study, using multi-model comparisons in
advance of ecosystem-scale experiments need to become normal prac-
tice in grassland. However, the ecosystem-level CO2 fluxes (i.e., GEP
and ER) are difficult to measure directly, thus it remains unclear that
how their observations could improve the model performance in the
semiarid grassland.

The temperate steppe in arid and semiarid regions of northern China
is one of dominant grassland types on the Eurasian continent (Li et al.,
2003; Niu et al., 2011). With the large diurnal temperature difference
and uneven distribution of precipitation, ecosystem C cycle in this area
is sensitive to climate warming and changing precipitation regimes
(Christensen et al., 2004; Xia et al., 2009; Niu et al., 2011). Many
ecosystem manipulative experiments have been done to investigate the
response of CO2 exchange to warming and increased precipitation in
this grassland (Niu et al., 2008; Xia et al., 2009; Zhao et al., 2016). Most
of them have demonstrated that soil water availability plays a pre-
dominant role in mediating ecosystem CO2 response to climate change
(Song et al., 2012; Xia and Wan, 2012; Liu et al., 2016). For example,
water availability regulates the responses of ecosystem C uptake (Niu
et al., 2008, 2011) and soil respiration (Liu et al., 2009) to experimental
warming. In addition, previous analysis has already shown that pre-
cipitation non-linearly regulates C cycle in semiarid grassland of Inner
Mongolia (Peng et al., 2013). Thus, it is important to examine which
model processes can be improved and thus better predict C feedback to
climate changes in this area.

In this study, we used data from a field manipulative experiment
with warming and increased precipitation to evaluate the performance
of two ecosystem models. The field experiment has been run since 2005
in the Mongolian Plateau and has four treatments, including control,
warming, increased precipitation, and warming plus increased pre-
cipitation. DAYCENT and TECO models as the representative of
CENTURY-type model have been used to simulate response of C cycle to
climate change in grassland (Shi et al., 2014; Ryals et al., 2015). We
force the two models with the climate conditions from different treat-
ments, and then evaluate (1) how the models perform in simulating the
observed NEP response to climate change in the experiment, and (2)
whether the photosynthetic or respiratory processes limit the model
estimates of NEP responses to future climate change in this region.

2. Materials and methods

2.1. Experimental description

The experiment was conducted in Duolun County, Inner Mongolia,
China (42°02′ N, 116°17′ E, 1324m). The mean annual temperature is
2.1 °C, with monthly average temperature ranging from −17.5 °C in
January to 18.9 °C in July. The mean annual precipitation is 385.5 mm,
with approximately 90% occurring from May to October. The soil type
is classified as Haplic Calcisols according to the FAO classification, with
62.75 ± 0.04% sand, 20.30 ± 0.01% silt, and 16.95 ± 0.01% clay.
This typical temperate steppe is dominated by Stipa krylovii, Artemisia
frigida, Potentilla acaulis, Cleistogenes squarrosa, Allium bidentatum, and
Agropyron cristatum.

The field experiment used a nested design with increased pre-
cipitation as the main factor, and warming as subplot level. Thus, four
treatments in the experiment were control, warming, increased pre-
cipitation, and warming plus increased precipitation with six replicates.
The warming subplots were heated by infrared radiators (Kalglo
Electronics Inc., Bethlehem, PA, USA). In the increased precipitation
plots, 15mm of water was supplied weekly in July and August by
sprinklers. Therefore, totally 120mm precipitation was added in each
year, which was equivalent to about 30% of mean annual precipitation
at the study site. The detailed experimental design has been provided
by Liu et al. (2009).

ER and NEP were measured using a transparent chamber
(0.5 m×0.5m×0.5m) attached to an infrared gas analyzer (IRGA; LI-
6400, LiCor, Lincoln, NE, USA). The chamber was placed on the per-
manent square aluminum frame in each plot during measurement
(Steduto et al., 2002; Huxman et al., 2004c; Niu et al., 2011; Ganjurjav
et al., 2016). GEP was calculated as the sum of ER and NEP. All mea-
surements were taken during 9:00–12:00 in the sunny morning during
the growing season (from May to October). The details of the measuring
method have been described in Niu et al. (2008, 2011) and Xia et al.
(2009). The daily estimate of the CO2 fluxes were derived from their
relationships between hourly observations and daily averages in an
adjacent experiment (Xia et al., 2009; Wan et al., 2009; Fig. A1). In this
paper, NEP represented the net CO2 exchange between ecosystem and
atmosphere. The CO2 flux from atmosphere to biosphere was defined as
a positive value and from biosphere to atmosphere was defined as a
negative value.

2.2. DAYCENT model

The DAYCENT model is the version of the CENTURY model with
daily time step, which has been widely used for simulating ecosystem
processes in grasslands and croplands (Abdalla et al., 2010; Lee et al.,
2012; Chang et al., 2013; Lugato et al., 2014). The input parameters
include daily climate data (e.g., precipitation, the maximum and
minimum air temperature, relative humidity, solar radiation, and wind
speed), site latitude and longitude, soil properties, and plant growth
characteristics (Table A1). Net primary productivity (NPP) (Fig. 1a) is
calculated by a function of plant potential growth rate, which is limited
by solar radiation, temperature, soil water, and vegetation type. C flow
is affected by many factors, such as C sources, temperature, soil water
content, and soil physical properties. Decomposition rate (k) of litters or
soil organic C (SOC) is calculated by a nonlinear function, which is
expressed as:

=k d ξ ξ ξC T W (1)

where d is intrinsic decomposition rate of surface or soil. ξC, ξT, and ξW
are soil texture or litter, temperature, and water response function,
respectively. ξT and ξW are calculated by:

ξT=0.65+0.5 atan(0.097 (Ts−21.5)) (2)
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= +ξ 1 / (1 30 e )W
-8.5 χ                (3)

Ts is soil temperature, and χ represents the ratio of precipitation to
potential evapotranspiration. The land surface submodel is modified by
the water flow submodel and soil temperature submodel (Parton et al.,
1998). The daily water flow from plant canopy to soil is calculated by
the water flow submodel. The soil temperature submodel simulates
thermal diffusivity and daily maximum soil temperature.

2.3. TECO model

The TECO model is a process-based ecosystem model, which is used
to simulate ecosystem responses to climatic perturbations (Weng and
Luo, 2008). TECO has been widely used to model C and hydrological
cycle in grassland and forest ecosystems (Zhou et al., 2008; Bell et al.,
2010; Shi et al., 2014; Xu et al., 2015). The TECO model includes four
submodels, which are canopy photosynthesis, plant growth, soil C
transfer (Fig. 1b), and soil water dynamic. The canopy photosynthesis
and soil water dynamics submodels run at hourly time step, and the
plant growth and soil C transfer submodels are simulated at daily time
step. The canopy photosynthesis submodel, which is a two-leaf photo-
synthesis model, is used to simulate canopy energy balance, canopy
photosynthesis, and conductance (Wang and Leuning, 1998). Leaf
photosynthesis is calculated by coupling the Farquhar photosynthesis
model (Farquhar et al., 1980) with the Ball-Berry stomatal conductance
model (Ball et al., 1987). The plant growth submodel simulates C al-
location of leaves, stems, and roots following the ALFALFA model (Luo
et al., 1995). Phenology is represented through changes in LAI. Auto-
trophic respiration (Ra) is controlled by air temperature (Ta) and tissue
biomass (B), which is expressed as:

= B ξR en T
fa a (4)

n is a constant. ξf is the response function of photosynthesis. The C
transfer submodel simulates the process of C flow from plant tissues to
atmosphere. Heterotrophic respiration (Rh) is calculated by following
equation:

=R q k fh        (5)

where q and k are the size and turnover rate (day−1) of the C-pool,
respectively. f is the ratio of CO2 flux released to the atmosphere from
the C-pool. Turnover rate (k) is calculated by independent turnover
time (τ), temperature response function (ξT), and water response
function (ξW):

=
+

k
(ξ 1) ξ

τ
T W   
     

(6)

=ξ e
19T

0.18 Ts
   

 

(7)

= +ξ 0.5 0.5 W - W
W - WW

C min

max min
         

   

    (8)

where WC is soil water content. Wmax is the field capacity. Wmin is the
wilting point. In soil water dynamic submodel, the soil is divided into
ten layers. Dynamics of soil water content is determined by precipita-
tion, transpiration, evaporation, and runoff.

2.4. Model simulations

All the four experimental treatments were mimicked by the two
ecosystem models. Hourly data of air and soil temperature were record
by CR1000 datalogger (Campbell Scientific, Logan, UT, USA) in each
experimental plot (Niu et al., 2008). Since DAYCENT model simulates
with a daily time step, we calculated daily climate data by averaging
hourly records. Hourly precipitation data were derived from an ad-
jacent eddy-flux tower (about 200m). Under the treatments of in-
creased precipitation, we added the same amount of precipitation
(15mm) in the same day as experimental treatment from 2006 to 2008.

2.5. Analyses of warming and increased precipitation effects

We calculated treatment effects of warming and increased pre-
cipitation as suggested by Sahai and Ojeda (2004) and Luo et al. (2008),
which used the percent changes of variables between control and
treatments as:

= ×Treatment effect (%) Treatment – Control
Control

100     
   

    (9)

2.6. Analyses of model performance

The goodness of fit between simulated C fluxes from two models and
observations were quantified by root mean square error (RMSE) and
Nash–Sutcliffe model efficiency coefficient (ME). The RMSE and ME
were calculated by following equations (Janssen and Heuberger, 1995):

=
∑ −

=RMSE
(S O )

N
i 1
N

i i
2

   
   

(10)

where S and O were simulated and observed C fluxes, respectively. N is
the number of data from 2006 to 2008.

Fig. 1. Schematic presentation of C cycle in (a)
DAYCENT model and (b) TECO model.
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where O was the mean of observed C flux. Simulations perfectly capture
observations when the RMSE is 0 and ME is 1.

3. Results

3.1. Model validation

The measurements from an eddy flux tower were used to validate
the simulated results. The eddy flux data included daily GEP, ER, and
NEP from May to October in 2006–2008. The simulated C fluxes mat-
ched well with observations (Figs. 2 and A2). The RMSE of GEP were
2.27 g Cm−2 day−1 for DAYCENT and 2.51 g Cm−2 day−1 for TECO.
The RMSE of ER were 1.80 and 1.14 g Cm−2 day−1 for DAYCENT and
TECO, respectively. The RMSE of NEE were 1.67 g Cm−2 day−1 for
DAYCENT and 1.02 g Cm−2 day−1 for TECO.

The monthly mean GEP and ER during the growing seasons (May-
October) simulated by DAYCENT and TECO agreed well with the
measured data in the experimental control plots in 2006, 2007, and
2008 (Fig. 3a and b). Over the three years, the simulated mean annual
GEP were 2.40 g Cm−2 day−1 by DAYCENT and 2.31 g Cm−2 day−1 by

TECO, both of which captured the observed GEP (2.43 ± 0.30 g
Cm−2 day−1). The simulated mean annual ER by DAYCNET
(2.22 g Cm−2 day−1) and TECO (2.04 g Cm−2 day−1) matched well
with the observed ER (2.28 ± 0.26 g Cm−2 day−1). In general, the
simulated mean annual GEP and ER were both within the variation
ranges of observed data under the control treatment.

3.2. Comparisons between modeled and observed CO2 fluxes

We compared the simulated mean annual NEP with the experi-
mental data to evaluate the performance of DAYCNET and TECO model
under the four treatments from May to October in 2006–2008. Over the
three years, the simulated mean annual NEP by DAYCNET
(0.19 g Cm−2 day−1) and TECO (0.19 g Cm−2 day−1) satisfactorily
represented the observed mean annual NEP
(0.16 ± 0.05 g Cm−2 day−1) under the control treatment (Fig. 4a).
Under the climate-change treatments, however, the two models per-
formed differently. DAYCENT overestimated the strength of net CO2

uptake under the warming treatment (0.07 ± 0.07 vs.
0.26 g Cm−2 day−1), but simulated a net CO2 loss under the increased
precipitation and warming plus increased precipitation treatments
(Fig. 4a). TECO model well captured mean annual NEP under all the
warming (0.05 g Cm−2 day−1), increased precipitation

Fig. 2. Observed and simulated daily (a) GEP, (b) ER, and (c) NEP in Inner
Mongolia grassland from May to October in 2006–2008. Eddy flux data
(Eddy flux) are compared with the DAYCENT model (DAYCENT) and the
TECO model (TECO). GEP: gross ecosystem photosynthesis, ER: ecosystem
respiration, NEP: net ecosystem productivity.
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Fig. 3. Monthly dynamics of observed (means ± SD) and simulated (a)
GEP and (b) ER in 2006, 2007, and 2008. The gray shaded areas show the
ranges of the simulated values by DAYCENT and TECO. Inset figures show
mean annual of observed (means ± SD) and simulated values over three
years. See Fig. 2 for abbreviations.

Fig. 4. Observed (means ± SD) and simulated (a) mean annual NEP, and (b) the responses of GEP and ER to warming, increased precipitation, and warming plus increased precipitation
from May to October in 2006–2008. C: control treatment, W: warming treatment, P: increased precipitation treatment, WP: warming plus increased precipitation treatment. See Fig. 2 for
abbreviations.
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(0.31 g Cm−2 day−1), and warming plus increased precipitation
(0.26 g Cm−2 day−1) treatments.

The ER mismatches between the observed and simulated treatment
responses were larger than those of GEP. The observed ER responses
were −1.60 ± 4.88%, 17.32 ± 7.74%, and 15.67 ± 5.96% to
warming, increased precipitation, and warming plus increased pre-
cipitation, respectively (Fig. 4b). TECO overestimated the warming
effect on ER (8.18%), but underestimated ER response to increased
precipitation (4.31%). DAYCENT produced higher ER responses in the
plots with both increased precipitation (37.83%) and warming plus
increased precipitation (38.25%).

3.3. Water response functions of SOC decomposition in the models

The experimental observations showed that warming increased
mean annual air and soil temperature (Fig. A3a), but reduced mean
annual soil water content (Fig. A3b) over the three years. Increased
precipitation significantly enhanced mean annual soil water content
(Fig. A3b). In TECO model, warming not only directly affected Rh by
elevating soil temperature, but also indirectly affected Rh by altering
soil water content (Eqs. (5–8)), and Ra was only directly influenced by
warming through changing air temperature (Eq. (4)) (Weng and Luo,
2008). Warming effect on Rh was larger than that on Ra (Fig. A3c), thus

the discrepancy of simulated and observed climate-change effect on ER
might largely come from the different responses of Rh response func-
tions to climate change (Fig. A3d).

We incorporated five water response functions of SOC decomposi-
tion from DAYCENT and four terrestrial biogeochemical models (IBIS,
LPJ-DGVM, ORCHIDEE, and CABLE) (Table 1) into the TECO model
and examined whether they can capture the observed ER responses in
Fig. 4b. The six water response functions varied with soil water content
differently (Fig. 5a). The results showed that all the water response
functions produced lower precipitation impact on ER (Fig. 5b), which
was consistent with results using the original water response function in
TECO (Fig. 4b). Simulated response of ER to increased precipitation by
DAYCENT (8.51%) and ORCHIDEE (8.34%) water response functions
were more close to observations (17.32 ± 7.74%) than that using
water response function in TECO (4.31%).

3.4. Parameters evaluated by experimental observations

Water response functions in TECO model (Eq. (8)) were calculated
by parameters of field capacity (Wmax) and wilting point (Wmin),
which determined the model performance of simulated climate-change
effects. Through random selecting parameters for 1200 times, Wmax
and Wmin were estimated using the observed CO2 flux data under the
warming, increased precipitation, and warming plus increased pre-
cipitation treatments, respectively. The distribution ranges of Wmax
and Wmin showed substantial differences under the three climate-
change treatments (Fig. 6a). Performance of the TECO model was im-
proved by optimized parameterization in water response function of
soil decomposition. With the optimized Wmax and Wmin (Fig. A4),
TECO performed well in capturing the response of ER to climate change
under the warming, increased precipitation, and warming plus in-
creased precipitation treatments (Fig. 6b). Simulated climate-change
effect on ER were 1.80%, 20.93%, and 17.76% under the warming,
increased precipitation, and warming plus increased precipitation
treatments, respectively, which were all within the range of observa-
tions. ME of monthly ER was increased by 17% with the optimized

Table 1
Water and temperature response functions on soil decomposition from four different
terrestrial biosphere models. WC: soil water content, Ts: soil temperature, To: optimal soil
temperature.

Provenance Water response function Temperature response function

IBIS − −
e

WC( 0.6)2
0.08 +e308.56 ( 1

81.02 - 1
Ts 46.02 )

LPJ-DGVM 0.25+ 0.75WC

ORCHIDEE −1.1WC
2+ 2.4 WC− 0.29

2
Ts- To

10CABLE +( ) ( )1.7 - WC
1.15

6.6481 WC 0.007
0.557

3.22

Fig. 5. (a) Relationships of water response scalars from six terrestrial biogeochemical models with soil water content. The ranges of soil water content varied from 3.8 to 30.5 V/V% in
2006–2008 under the control treatment (the pink shaded area). Increased precipitation enhanced soil water content, which ranged from 4.1 to 31.3 V/V% (the blue shaded area). The
relationship in DAYCENT was cubic polynomial fitted by water response scalar with simulated soil water content. (b) Simulated increased precipitation effect on ecosystem respiration
(ER) by different water response functions. Dash line and oblique line area show the observed means and range (means ± SD) of increased precipitation effect on ER, respectively.
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parameters under the increased precipitation treatment (Table 2).

3.5. The difference of simulated cumulative change in ecosystem C pool

We performed the forward simulations from 2010 to 2100 to esti-
mate the cumulative changes in ecosystem C pool. The climate forcing
data were provided by the HadGEM2-ES model (https://esg.pik-
potsdam.de/search/isimip2/) for the Representative Concentration
Pathway 4.5 (RCP 4.5). Based on the modified water response functions
from DAYCENT, IBIS, LPJ-DGVM, ORCHIDEE, and CABLE, the cumu-
lative changes in ecosystem C pool ranged from a C sink of 0.8 kg Cm−2

to a C source of 2.2 kg Cm−2 in 2100 (Fig. 7). Over the whole time
period, the grassland ecosystem released 0.3 kg Cm−2 using TECO

Fig. 6. (a) The distribution ranges of field capacity (Wmax) and wilting point (Wmin) under warming, increased precipitation, and warming plus increased precipitation treatments. (b)
Observed (mean ± SD) and simulated (TECO) climate-change effect on ER over three years from 2006 to 2008. See Fig. 2 and Fig. 4 for abbreviations.

Table 2
The root mean square error (RMSE) and Nash–Sutcliffe model efficiency coefficient (ME)
of monthly ecosystem respiration (g Cm−2 day−1) by eddy-flux validated parameters
(validated) and optimized parameters (optimized), respectively. See Fig. 4 for abbrevia-
tions.

Treatment RMSE ME

Validated Optimized Validated Optimized

W 1.3 1.26 0.48 0.51
P 1.61 1.48 0.48 0.56
WP 1.51 1.48 0.51 0.53

Fig. 7. Simulated cumulative changes in ecosystem C pool from 2010 to
2100. Dash line and gray shaded area represent means and ranges of si-
mulated cumulative change in ecosystem C pool by modifying water re-
sponse function from DAYCENT, IBIS, LPJ-DGVM, ORCHIDEE, and CABLE,
respectively. Green, red, and blue lines represent the cumulative changes
in ecosystem C pool simulated by TECO original parameters, validated
parameters using eddy flux data, and optimum parameters under warming
plus increased precipitation treatment (WP), respectively.
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original parameters. The cumulative ecosystem C loss was increased
with the parameters validated by eddy-flux measurements
(−0.96 kg Cm−2), and with the optimized Wmax (15.6 V/V%) and
Wmin (4 V/V%) under the warming plus increased precipitation treat-
ment (−0.72 kg Cm−2).

4. Discussions

4.1. Role of water responses in model performance on ecosystem C cycle in
grassland

Although two models can well capture the major ecosystem CO2

fluxes (i.e., GEP and ER) and their balance (i.e., NEP) under the control
treatment, they failed to predict the treatment effects of climate-change
on NEP. The results indicate that models calibrated with current ob-
servations, e.g., eddy-flux measurements, may not be able to success-
fully predict ecosystem C cycle associated with climate change in the
future (Hararuk et al., 2014; Shi et al., 2015). Our findings highlight
that model evaluations need to focus on not only the direct comparisons
against observations, but also the assumptions revealed by manip-
ulative experiments (Medlyn et al., 2015, Medlyn et al., 2015, 2016).

Improving the water response function in grassland model perfor-
mance is an important research agenda during the past decades. In
water-limited regions, biogeochemical models would be meaningless
without well simulating the hydrological processes and their impacts on
C processes (Noy-Meir, 1973; Rodriguez-Iturbe et al., 2001; Huxman
et al., 2004a; Knapp et al., 2017). In this study, the models perform
better in simulating the response of GEP than ER to precipitation
change (Fig. 4b). This might mainly due to that the ecosystem CO2

uptake usually responds to precipitation change in a linear manner at a
given location (Huxman et al., 2004a; Luo et al., 2017). However,
Knapp et al. (2017) has recently hypothesized a double asymmetric
model which suggests nonlinear response of aboveground net primary
productivity to precipitation changes associated with more extremely
dry and wet years. This hypothesis indicates a more complexity of si-
mulating ecosystem CO2 uptake under future climate scenarios. Non-
linear response of soil respiration to precipitation change has been
widely confirmed by both field experiments (Liu et al., 2002; Huxman
et al., 2004b; Yan et al., 2010) and modeling studies (Zhou et al., 2008).
Many previous studies have already indicated that models have diffi-
culty in capturing climate-change effect on ecosystem respiration
(Vicca et al., 2014; Tang and Riley, 2015), especially in the water-
limited ecosystems (Reichstein et al., 2003). We detected that the poor
simulation of respiratory responses at ecosystem scale is also largely
accounted for the unrealistic relationship between Rh and soil water
availability in this study (Fig. 5). By replacing the water response
functions of Rh in TECO with those in other models, we found a large
inter-model variation of simulated precipitation effect on ER (Fig. 5b).
Among the six models, the water-response function of DAYCENT
(8.51%) and ORCHIDEE (8.34%) produced closer ER response to in-
creased precipitation than the original functions in TECO (4.31%) to
the measurements (17.32 ± 7.74%). It means that the water-response
function in the current version of TECO model needs improvement
when it is used for predicting ecosystem C cycle in the Eurasian
grassland.

The large impact of the water-response function on simulated ER
response in current ecosystem models (Fig. 5b) indicates that it could be
one large source for the uncertain grassland C feedback to climate
change (Weltzin et al., 2003; Kucharik and Twine, 2007; Hoover and
Rogers, 2016). Diagnostic studies on current global land models, e.g.,
Exbrayat et al. (2013), also have shown that the water-response func-
tions for decomposition of SOC are highly uncertain. In fact, the

response of ecosystem C cycle to precipitation change is a complex and
changeable process in the arid and semiarid regions (Knapp et al., 2002;
Thomey et al., 2011; Shen et al., 2015). Many manipulative experi-
ments have illustrated that available water can directly and indirectly
limit primary production (Knapp et al., 2002; Huxman et al., 2004a;
Fay et al., 2008; Robertson et al., 2009) and the different components of
ecosystem respiration (Wan et al., 2007; Ross et al., 2012; Suseela et al.,
2012). A meta-analysis has demonstrated that ER responds more
strongly to increased precipitation than decreased precipitation (Wu
et al., 2011). In addition, the nonlinear responses of ecosystem C pro-
cesses to precipitation change have been widely reported in modeling
studies (Cowling and Shin, 2006; Zhou et al., 2008). Thus, such com-
plicated responses of ecosystem CO2 fluxes to precipitation are difficult
to precisely describe in the model. Given the important role of pre-
cipitation in regulating plant growth and productivity, reasonable
evaluating precipitation effect on ecosystem C fluxes is beneficial to
accurately simulate future ecosystem processes.

4.2. Varied parameters of C cycle with changing climate

This study found that models using the parameters under current
climate conditions had difficulty in predicting future ecosystem pro-
gresses (Fig. 4). In this study, the difference between the simulations
and observations mainly results from the fixed values of parameters.
These fixed parameters would lead to substantial errors in model pro-
jections for future ecosystem C cycle (Wythers et al., 2005; Shi et al.,
2015; Tang and Riley, 2015). When the water-related parameters are
constrained by the experimental observations, they showed large
variability under different climate-change treatments (Figs. 6a and A3).
Wmax and Wmin in the water response function of soil decomposition
are important in representing soil texture in the TECO model (Xu et al.,
2015). Climate change would influenceWmax more than Wmin because
Wmax is positively regulated by the total porosity (Xu et al., 1997),
which could be increased by warming but be reduced by increased
precipitation (Chen et al., 2013). These variations of Wmax under dif-
ferent climate-change treatments were also found in an unpublished
experiment in this area. These results suggest the models to switch the
water-related parameters from constants to variables. Thus, more re-
search efforts on the covariations between those water-related para-
meters and environmental factors are needed to improve the simulation
accuracy of biogeochemical model under climate-change scenarios. The
varied parameters improve model performance on reproducing the
observed responses of ER to climate change (Fig. 6b) because the
changed parameters can reflect the altered temperature and moisture
sensitivity under climate change. Temperature acclimation of C fluxes
has been demonstrated as a fundamental characteristic of terrestrial
ecosystem processes (Smith et al., 2016). With long-term warming, the
temperature sensitivity of decomposition rate and ecosystem respira-
tion are reduced (Giardina and Ryan, 2000; Luo et al., 2001; Knorr
et al., 2005; Atkin et al., 2008; Reich et al., 2016) or enhanced (Karhu
et al., 2014) by temperature acclimation. The mechanism of altered
moisture sensitivity is still unclear (Jiang et al., 2013), but it has been
demonstrated that increased precipitation has significant impact on soil
microbial respiration (Liu et al., 2009), root production (Bai et al.,
2010), water-use efficiency (Niu et al., 2011), SOC fractions (Song
et al., 2012), and soil microbial community composition (Zhao et al.,
2016) in this grassland. Altered moisture sensitivity can be partly ex-
plained by the differential relationships of biotic and abiotic factors
with changing precipitation regime. Omitting the changes of tempera-
ture and moisture sensitivity may cause biased projections of future C
cycle (Jiang et al., 2013; Smith et al., 2016).

The changes of key C-cycle parameters with climate change have
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been reported by many studies. For example, model parameters of
carboxylation capacity and electron transport capacity can vary with
leaf temperature (Kattge and Knorr, 2007). Using data assimilation to
assess model parameters also indicates that the parameters of C allo-
cation have large difference under different treatments (Xu et al., 2006;
Shi et al., 2015). Thus, models used for projections of future climate
change and ecosystem states should consider the flexibility of those key
parameters related to temperature and moisture in grasslands.

4.3. Field manipulative experiment as a platform for evaluating ecosystem
models

This study has revealed that the diverse response functions among
different models can generate huge uncertainty in projection of ter-
restrial C cycle in the future (Fig. 7). Due to GEP was more sensitive to

decreased precipitation than ER (Shi et al., 2014), dramatic reductions
in GEP rather than ER was simulated in extremely dry years (Fig. 8a).
There is a threshold of annual total precipitation (≈435mm), below
which the ecosystem shifted from C sink to source. The switch of NEP
(Fig. 8b) is attributed to the rapid response of ecosystem function (e.g.
leaf area index and leaf-level stomatal opening) to drying-rewetting
periods in grassland (Scott et al., 2015). However, the decreased de-
grees of cumulative changes in ecosystem C pool in 2100 were incon-
sistent under different functions and parameters (Fig. 7). To diagnose
and reduce such uncertainty, previous efforts usually examine the
model performances against a suite of observational data, such as the
benchmarking analysis (Luo et al., 2012). This approach is useful to
diagnose whether the model performances are good or bad in the areas
or periods that covered by the data, but is difficult to benefit model
projections of future ecosystem dynamics. In this study, the TECO

Fig. 8. (a) The annual dynamic of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER), and precipitation amount from 2010 to 2100. The black line represents the threshold
of annual total precipitation (≈435mm). (b) Relationships of annual mean net ecosystem productivity (NEP) with precipitation amount from 2010 to 2100.

Fig. 9. Observed mean annual relative percent cover under the four
treatments from May to October in 2006–2008. See Fig. 4 for abbrevia-
tions.
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model predicts losses of 0.3, 0.96, and 0.72 kg Cm−2 in 2100 with the
original parameters, tuned parameters with eddy-flux measurements
and optimized parameters with experimental observations, respectively
(Fig. 7). Although it is worthy of discussion that whether the experi-
ment-based prediction is more accurate than the simulation bench-
marked by eddy-flux data, the findings in this study suggest that ma-
nipulative experiments provide, to some extent, a good platform for
assessing ecosystem models in specific ecosystem or region. In fact,
manipulative experiments have revealed diverse response patterns of
ecosystem processes to different drivers of climate change (Wu et al.,
2011; Lu et al., 2013). Thus, harmonizing the observed responses in
experiments and models are critical for improving model performance
in predicting future C cycle.

A growing body of research has been done to improve terrestrial
ecosystem models with experimental studies (Dukes et al., 2014). For
example, the ‘assumption-centred’ approach used in free-air CO2 en-
richment (FACE) model-data synthesis (FACE-MDS) project provides us
an effective way for integrating FACE experiments with terrestrial
ecosystem and biosphere models (Walker et al., 2014; Medlyn et al.,
2015; Norby et al., 2016). This approach allows models to test ecolo-
gical hypotheses revealed by field experiments, and linking these ob-
servations with models can explain how and why differences appear in
predictions of ecosystem responses (Medlyn et al., 2015; Norby et al.,
2016). In the temperate steppe of northern China, the experimental
studies have hypothesized that ecosystem C responses to climate change
are mainly regulated by water availability in the soil (Niu et al., 2008;
Liu et al., 2009; Xia et al., 2009). Based on such assumption, this study
shows that the projection of C cycle in this area could be more accurate
with a better parameterization of the water-related processes in the
models. However, in comparison with the large amount of field studies
at the global scale (Norby and Luo, 2004; Wu et al., 2011; Zeppel et al.,
2014), the attempt of using experimental data to evaluate and improve
models is still at an early stage. Therefore, more research efforts are
needed to incorporate field experimental studies into the evaluation of
terrestrial ecosystem models.

4.4. Challenges for integrating grassland experiments and terrestrial
ecosystem models

Manipulative experiments provide direct responses of ecosystem
processes to climate change for improving model structures and para-
meters. Though model performance is improved by evaluating para-
meters using experimental data, there are still some limitations in our
research. First, initial conditions can affect the measured impacts of
climate change on ecosystem CO2 fluxes (Shaver et al., 2000), but they
are not examined in this and most previous modeling studies. We
suggest future field experiments could be designed to measure more
initial conditions of vegetation, soil nutrients, and microclimate in both
control and treatment plots. Second, given the scale limitation, it might
be biased to directly using plot-scale experimental observations to
evaluate regional-scale models (Dukes et al., 2014; Norby et al., 2016).
Due to the complexity of ecosystem processes, models may not be able
to capture plot-scale experimental observations at each site (Bonan,
2014). To overcome this limitation, the observed relationships should
be proved in different ecosystems and time scales before integrating
into the models (Schwalm et al., 2010; Piao et al., 2013; Bonan, 2014).
Third, plant functional groups have been altered under the warming
and/or increased precipitation treatments in this grassland (Yang et al.,
2011), but both models use constant vegetation types. From 2006 to
2008, relative percent cover of legumes and grass were decreased,

while forb was enhanced under both the warming and increased pre-
cipitation treatments (Fig. 9). Warming and increased precipitation
directly influenced relative percent cover via altering temperature and
soil water content (Fig. A3a and b; Yang et al., 2011). With intrinsic
difference in optimum temperature and water use efficiency, the
dominant species would shift under climate change (Way et al., 2014;
Shi et al., 2016). Many previous studies have demonstrated that
warming and increased precipitation have profound influence on plant
functional group (Shi et al., 2016), species richness, and diversity
(Walker et al., 2006; Hou et al., 2013), and consequently affect eco-
system functions (Chisholm et al., 2013; Shi et al., 2016; Yang et al.,
2016). Fourth, explicit soil microbial processes were omitted in this
study. Soil decomposition processes were calculated by empirical
functions in most CENTURY-type models (Parton et al., 1987). Many
previous studies have indicated soil microbial respiration reacts rapidly
to change of soil water availability in this area (Liu et al., 2009; Zhao
et al., 2016). Modeling studies also showed that model performance
was improved by incorporating microbial processes (Wieder et al.,
2013, 2015; Hararuk et al., 2015). Thus, we recommend the biogeo-
chemical models to explicitly simulate the drying-rewetting cycles in
the grassland ecosystems. Finally, the two models used in this study are
typical CENTURY-type models which are broadly used for Earth system
modeling. The soil C module in both of the CENTURY and TECO models
is composed by three SOC pools, including fast, slow and passive pool of
soil organic matter (Parton et al., 1987; Weng and Luo, 2008). How-
ever, this CENTURY-type soil C module is not used in some other
ecosystem models. For example, the soil module in the JULES model is
developed from the RothC model, which consists of decomposable plant
material (DPM), recalcitrant plant material (RPM), microbial biomass
(BIO separated into slow and fast), humus (HUM) and biologically
stable or inert organic matter (IOM) (Coleman and Jenkinson, 1996).
Thus, when more models are used for predicting the regional C cycle,
uncertainty could be a new issue (Xia et al., 2013; Luo et al., 2016). As
shown in this study (Fig. 5), the water response equations in current
models need further validation and diagnose before they are used for
regional grassland C projections.

5. Conclusions

This study demonstrated that, although the two models captured the
values of CO2 fluxes under the control treatment, they poorly re-
produced the responses of NEP to experimental climate change. The
poor simulation of NEP response can be largely improved by a better
parameterization of the water-response functions of respiratory pro-
cesses. Models validated by observations of current ecosystem state,
such as the eddy-flux measurements in this study, cannot guarantee the
accurate projection of future net C accumulation in the grassland in
northern China. Thus, more research efforts incorporating field ex-
perimental data into benefit model evaluation and development are
urgently needed for a convincing projection of future terrestrial C cycle.
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Appendix A

See Table A1.

Table A1
The symbols, definitions, units, and values of main parameters effect on plant growth and soil decomposition in DAYCENT and TECO. PET represents potential
evapotranspiration.

Parameter Definition Units Values

DAYCENT
dec1(1) Maximum surface structural

decomposition rate
year−1 9

dec1(2) Maximum soil structural decomposition
rate

year−1 2.5

dec2(1) Maximum surface metabolic
decomposition rate

year−1 4.2

dec2(2) Maximum soil metabolic decomposition
rate

year−1 1

dec3(1) Maximum decay rate of surface organic
matter with active turnover

year−1 7.9

dec3(2) Maximum decay rate of soil organic matter
with active turnover

year−1 1

dec4 Maximum decay rate of soil organic matter
with slow turnover

year−1 0.001774

PPDF Poisson Density Function curve to simulate
temperature effect on growth:

Optimum temperature for production °C 18
Maximum temperature for production °C 36.5
Left curve shape 1.2
Right curve shape 3.8

PPRPTS Water restriction on production:
The minimum ratio of available water to

PET
0.01

The effect of water content on the
intercept

0.4

The lowest ratio of available water to
PET

0.7

PRDX Coefficient for calculating potential
aboveground monthly

0.8

TEFF Determining the temperature component
of temperature scalar:

"x" location of inflection point 19
"y" location of inflection point 11.75
Step size 29.7
Slope of line at inflection point 0.031

TECO
LAImax Maximum leaf area index 3
LAImin Minimum leaf area index 0.1
SLA Specific leaf area m2 g−1 0.035
tau_F Residence time of fine litter carbon pool year 3.1
tau_S1 Residence time of the first soil layer year 15
tau_S2 Residence time of the second soil layer year 110
tau_S3 Residence time of the third soil layer year 200
Tmax High temperature intercept of temperature

function
°C 25

Tmin Low temperature intercept of temperature
function

°C −5

Topt Optimum temperature for photosynthesis °C 18
Wmax Maximum soil water content V/ V% 21
Wmin Minimum soil water content V/ V% 2
Vcmx0 Maximum carboxylation rate μmol m−2

s-1
0.0001

L. Lei et al. Agricultural and Forest Meteorology 252 (2018) 175–191

185



Fig. A1. The linear relationships were fitted by observed (a) daily mean ecosystem respiration (ER) with hourly ER at 9:00, and (b) daily mean net ecosystem productivity (NEP) with
hourly NEP at 9:00 on Aug. 21st, 2006 in an adjacent experiment. The diurnal dynamics of ER and NEP were measured once or twice a month under the control treatment from May to
October in 2006–2008. Observed ER and NEP at 9:00 on Aug. 24th, 2006 (x-axis) in this study were modified by the linear relation to estimate daily average observations (y-axis),
respectively. Colors show observed hourly and estimated daily data under four treatments.

Fig. A2. Observed and simulated weekly (a) gross ecosystem photosynthesis (GEP), and (b) ecosystem respiration (ER) in Inner Mongolia grassland from May to October in 2006–2008.
ME of GEP were −0.7 for DAYCENT and 0.2 for TECO. ME of ER were −0.7 for DAYCENT and −0.07 for TECO.

L. Lei et al. Agricultural and Forest Meteorology 252 (2018) 175–191

186



Fig. A3. The observed mean annual (a) air and soil temperature, and (b) soil water content under the control (C), warming(W), and increased precipitation (P) treatments from May to
October over the three years, respectively. (c) Warming effect on autotrophic respiration (Ra) and heterotrophic respiration (Rh) in TECO model. (d) Warming (W) and increased
precipitation (P) effect on temperature (ξT) and water (ξW) response functions of Rh in TECO model, respectively.
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Fig. A4. The relative frequency distributions of field capacity (Wmax) and wilting point (Wmin) under (a and b) warming, (c and d) increased precipitation, and (e and f) warming plus
increased precipitation treatments, respectively.
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