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Model structures amplify uncertainty in predicted
soil carbon responses to climate change
Zheng Shi 1,2, Sean Crowell2, Yiqi Luo3,4 & Berrien Moore III2

Large model uncertainty in projected future soil carbon (C) dynamics has been well docu-

mented. However, our understanding of the sources of this uncertainty is limited. Here we

quantify the uncertainties arising from model parameters, structures and their interactions,

and how those uncertainties propagate through different models to projections of future soil

carbon stocks. Both the vertically resolved model and the microbial explicit model project

much greater uncertainties to climate change than the conventional soil C model, with both

positive and negative C-climate feedbacks, whereas the conventional model consistently

predicts positive soil C-climate feedback. Our findings suggest that diverse model structures

are necessary to increase confidence in soil C projection. However, the larger uncertainty in

the complex models also suggests that we need to strike a balance between model com-

plexity and the need to include diverse model structures in order to forecast soil C dynamics

with high confidence and low uncertainty.
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Human activities such as fossil fuel combustion and land
use change are the dominant drivers of the fast increase in
atmospheric CO2 concentration1,2. The increase in

atmospheric CO2 concentration has been altering the climate
system through additional radiative forcing1. Carbon-climate
feedback is a major mechanism for regulating climate change. For
example, terrestrial ecosystems can uptake about 1/3 fossil-fuel
CO2 emissions3 and thus have the potential to slow down climate
warming. Soils contain the largest carbon (C) stock in terrestrial
ecosystems, twice as large as the content of the atmospheric C
pool4. Therefore, a slight loss in the soil C stock to climate change
may cause substantially positive feedback to the atmospheric
CO2, which could further warm the climate system. It is therefore
essential to determine the sign and strength of such soil C-climate
feedback.

Global land C models are critical tools for quantifying the
response of soil C to climate change5,6. Large uncertainty in the
predictions of soil C has been well documented among these
models. Several model inter-comparisons (e.g., CMIP7 and
MsTMIP8) have demonstrated that global land C models vary
considerably in their estimates of the global soil C stock for the
contemporary period5,9 and for the future greenhouse gas emis-
sion scenarios6. For example, Todd-Brown et al.5,6 reported large
differences in estimated contemporary global soil C stocks, ran-
ging from 510 to 3040 Pg C projected by 11 Earth system models,
and in projected change over 21st century ranging from a loss of
72 Pg C to a gain of 253 Pg C under the worst-case greenhouse
gas emission scenario; Tian et al.9 reported substantial differences
in estimated contemporary global soil C stocks ranging from 425
Pg C to 2111 Pg C by ten terrestrial biosphere models in the
Multi-scale Synthesis and Terrestrial Model Intercomparison
Project (MsTMIP).

The global land C models differ in model structure, parameter
values, and initial conditions, each of which may contribute
substantially to the overall uncertainty across models. Past studies
have shown that different model structures can generate different
soil C projections10–12; initial conditions positively correlate with

projected soil C content5,13; and classical parameterization causes
large uncertainty in projected changes in soil C14,15. Model
structure may determine the range of model projection and
meantime the choice of parameter values for a given model
structure defines the quantitative accuracy relative to observa-
tions. Therefore, parameterization is likely to interact with model
structure and even initial conditions to impact the model pro-
jections. These considerations imply that diverse soil C decom-
position models are needed to increase projection confidence16.
Alternative structures to the conventional Century-type models
include microbial models that simulate decomposition processes
with explicit microbial traits as well as models that simulate
interactions between soil layers at different depths16–19. Exploring
uncertainty generated by these model structures and para-
meterization is critical for global land C modeling, but little effort
has been dedicated to addressing it, especially at a global scale due
mostly to computational cost.

In this work, we utilized a Markov Chain Monte Carlo (MCMC)
technique to sample the parameter space for three different mod-
eling frameworks in order to produce a calibrated ensemble of
parameter values weighted by agreement with soil C observations.
We chose three representative global soil C decomposition models
with different structures (Fig. 1), among which were conventional
Century-type model, a vertically resolved soil C model with explicit
soil depth embedded in CLM 4.511 (CLM 4.5bgc) and a microbial
model (the MIcrobial-MIneral Carbon Stabilization: MIMICS20). A
set of projections driven by the Representative Concentration
Pathway 8.5 (RCP 8.5) was carried out for all the three models with
their posterior parameter ensembles to generate a distribution of
predicted soil C, from which statistics such as the mean and
uncertainty were estimated.

We hypothesized that uncertainty in projected soil C change by
varying parameter values can be substantial: specifically CLM 4.5
and MIMICS would have larger projection uncertainty than the
conventional Century-type model, especially the microbial model
which is nonlinear and has a larger parameter space than the
other two models; the two non-microbial models would predict
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decrease in soil C in response to climate change, but the microbial
model could predict either negative or positive responses
depending on parameter values; the projected soil C content
would be correlated with initial conditions in the two non-
microbial models but not in the microbial model. We found that
CLM 4.5 and MIMICS with data-driven parameter values pro-
jected much greater uncertainties in soil C responses to climate
change than the conventional Century-type soil C model, with
both positive and negative C-climate feedbacks.

Results
Posterior distribution of model parameters. Data-driven para-
meter ensembles were derived from assimilating re-gridded global
soil C data in the Harmonized World Soil Database (HWSD10)
and the Northern Circumpolar Soil Carbon Database (NCSCD21)
(Supplementary Figs. 1, 2 and see Methods). We assumed that the
soil C content in the HWSD and NCSCD was at steady state. Their
probability distributions are log-normal (Supplementary Fig. 3).
Applying Bayes’ theorem, we used the MCMC technique to gen-
erate posterior ensemble parameter values within parameter
boundaries (Tables 1 and 2, Supplementary Table 1). The prob-
ability inversion was effective in terms of constraining the targeted
parameters in the three soil C decomposition models (Fig. 2,
Supplementary Figs. 4, 5, 6). Specifically, coefficients (i.e., t1 and t2)
for calculating f21 (fraction of C in fast soil C transferring to slow

soil C), decay rate of passive soil C (k3), and temperature sensitivity
(Q10) were well constrained in the conventional Century-type
model (Fig. 2a and Supplementary Fig. 4); observed soil C vertical
profiles further helped constrain the decay rate of slow soil C (k2)
in the vertically resolved model, particularly for the vertical dif-
fusivity parameters (D1 and D2) and e-folding depth (zt) (Fig. 2b,
Supplementary Fig. 5). Interestingly, the posterior mean of D2 was
found to be larger than D1, as diffusivity in permafrost soil was
found to be faster than non-permafrost soil, which is mainly due to
higher cryoturbation11. The Q10 mean is 1.25 in the conventional
model and 1.06 in the vertically resolved model, both of which are
less than the default value (2), but close to empirical values22. The
transfer coefficients (fij) were not well constrained in either of the
two models.

In MIMICS, parameters related to uptake rate (Vs and Vi) and
desorption rate of physically protected soil C (Da and Db), and
proportion of litter input and the two microbial C pools (fm, fs,
and fr) were well constrained (Fig. 2c and Supplementary Fig. 6).
None of the modifiers (e.g., Vmrc, Vmkc, Kmrc, and Kmkc) for
calculating uptake rate and half saturation constant were well
constrained.

Steady states in soil carbon stock. The spatial patterns of the
estimated soil C content by the three models were comparable to
the soil C database (Fig. 3a, c, e). The conventional model

Table 1 Descriptions of parameters in the conventional model

Short name Description Unit LL UL Default Mean ± SD G-R

t1 Coefficient to calculate f21 (intercept) – 0 1 0.85 0.12 ± 0.064 1.00
t2 Coefficient to calculate f21 (slope) – 0 1 0.68 0.048 ± 0.04 1.00
f31 Fraction of C in fast soil C transferring to passive soil C – 0 0.01 0.005 0.006 ± 0.0025 1.00
f12 Fraction of C in slow soil C transferring to fast soil C – 0.1 0.6 0.4185 0.47 ± 0.084 1.00
f32 Fraction of C in slow soil C transferring to passive soil C – 0 0.05 0.0315 0.042 ± 0.0055 1.00
f13 Fraction of C in passive soil C transferring to fast soil C – 0.3 0.7 0.45 0.50 ± 0.11 1.00
k1 Turnover rate of C from fast soil C g C g C−1 yr−1 1 15 7.3 7.97 ± 3.72 1.00
k2 Turnover rate of C from slow soil C g C g C−1 yr−1 0.1 0.5 0.2 0.28 ± 0.11 1.00
k3 Turnover rate of C from passive soil C g C g C−1 yr−1 0.001 0.01 0.0045 0.0013 ± 0.00020 1.00
Q10 Temperature sensitivity – 1 3 2 1.28 ± 0.054 1.00

LL lower limit, UL upper limit
Parameter names, ranges, units, default values, posterior mean, and standard deviation (SD), and G-R statistics in the conventional Century-type model

Table 2 Descriptions of parameters in the vertically resolved model

Short name Description Unit LL UL Default Mean ± SD G-R

D1 Diffusivity in non-permafrost regions m2 yr−1 0.3 × 10−4 16 × 10−4 1 × 10−4 (1.4 ± 0.81) × 10−4 1.02
D2 Diffusivity in permafrost regions m2 yr−1 0.3 × 10−4 16 × 10−4 4 × 10−4 (9.3 ± 4.0) × 10−4 1.00
zt e-folding depth for depth scalar m 0 1 0.5 0.41 ± 0.05 1.00
t1 Coefficient to calculate f21 (intercept) – 0 1 0.85 0.28 ± 0.14 1.00
t2 Coefficient to calculate f21 (slope) – 0 1 0.68 0.089 ± 0.069 1.00
f31 Fraction of C in fast soil C transferring to passive soil C – 0 0.01 0.005 0.0053 ± 0.0026 1.00
f12 Fraction of C in slow soil C transferring to fast soil C – 0.1 0.6 0.4185 0.37 ± 0.13 1.00
f32 Fraction of C in slow soil C transferring to passive soil C – 0 0.05 0.0315 0.031 ± 0.011 1.00
f13 Fraction of C in passive soil C transferring to fast soil C – 0.3 0.7 0.45 0.50 ± 0.11 1.00
k1 Turnover rate of C from fast soil C g C g C−1 yr

−1
1 15 7.3 7.52 ± 3.76 1.00

k2 Turnover rate of C from slow soil C g C g C−1 yr
−1

0.1 0.5 0.2 0.22 ± 0.086 1.01

k3 Turnover rate of C from passive soil C g C g C−1 yr
−1

0.001 0.01 0.0045 0.0048 ± 0.0018 1.01

Q10 Temperature sensitivity – 1 3 2 1.03 ± 0.024 1.00

LL lower limit, UL upper limit
Parameter names, ranges, units, default values, posterior mean, and standard deviation (SD), and G-R statistics in the vertically resolved model
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significantly underestimated soil C in the high latitude (Fig. 3a)
with large errors (Fig. 3b). However, the vertically resolved model
generated relative small biases and errors in the high latitude
(Fig. 3c, d) due to its vertical dynamics and explicit para-
meterization for permafrost soil. This finding highlights the
advantage of adding soil layers to simulating high latitude soil C.
The smaller soil C biases in the high latitude in MIMICS is due
partly to the fact that observed soil C down to 1 m depth instead
of 3 m was compared with the modeled soil C (Fig. 3e, f).

Positive biases compared to the observational data were
widespread in the conventional and vertically resolved models
in low latitude (Fig. 3a, c). In particular, the conventional
Century-type model strongly overestimated soil C in tropical and
near-coastal areas with large errors (Fig. 3a, b). The similar spatial
biases between the two non-microbial models suggest the
similarity in their structures. However, compared with the
conventional model, the vertically resolved model had smaller
errors, showing improvement by explicitly adding soil depth. In
contrast to the two non-microbial models, the microbial model
estimation showed small biases in the low latitude (Fig. 3e) with
small errors (Fig. 3f). Overall, MIMICS estimated the best spatial
fit to the observational data due possibly to having more
parameters and explicit microbial dynamics20,23,24. As a result,
CLM 4.5 and MIMICS generated smaller contemporary global
total soil C relative to the observations, while the conventional
Century-type model generated greater contemporary global total
soil C in comparison to the observations (Supplementary Fig. 7).

Uncertainties in soil carbon projections. To illustrate the impact
of parameter uncertainty on long-term soil C projection, we
performed forward runs over 21st century with 1000 sets of

parameter values drawn from the posterior distribution for each
model (Methods). The three models projected substantially dif-
ferent changes and trajectories in global total soil C over 21st
century (Fig. 4). The conventional model projected consistent soil
C loss with the least uncertainty (95% confidence interval: −71
to −17 Pg). Adding vertical resolution or microbial dynamics to
the conventional model increased the projection uncertainty
(95% confidence interval: −222 to 583 Pg C and −397 to 144 Pg
C, respectively) as well as the sign of the soil C-climate feedback
depending on parameters. The uncertainties in the vertically
resolved model or MIMICS are more than 10 times larger than
that in the conventional model. This interesting result shows that
using more parameters and more explicit dynamics may lead to a
larger prediction uncertainty due to feedbacks in the model
dynamics, rather than less.

Sensitivity to initial conditions and model parameters.
Uncertainties in projected soil C among models have been linked
to the model initial conditions in previous research5,13. Our
results show that the initial conditions (Si) tightly correlated with
the projected soil C in the two non-microbial models at global
(Fig. 5; Supplementary Fig. 8a, c) and grid scale (Supplementary
Fig. 9a, c), but did not correlate well with the changes in soil C in
all the three models (Fig. 5; Supplementary Fig. 8b, d, f; Sup-
plementary Fig. 9b, d, f) except for some low-latitude areas in the
conventional model (Supplementary Fig. 9b). The microbial
model’s initial conditions were not correlated well with projected
soil C at the global scale (Fig. 5 and Supplementary Fig. 8e) or
grid scale (Supplementary Fig. 9e), except for significant corre-
lations with predicted soil C at high latitudes (Supplementary
Fig. 9e). The findings suggest that in general, uncertainty in the
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initial conditions propagates through the simulation to the pro-
jection of future soil C, and this propagation is especially evident
in the two non-microbial models.

Besides initial conditions, model parameters are also able to
affect predicted soil C or C changes directly or indirectly
through influencing initial conditions. In the conventional
model, predicted soil C did not significantly correlate with any

model parameters, but the initial conditions; changes in soil C
were positively associated with k2 (decay rate of slow soil C),
but negatively with k3 (turnover rate of passive soil C) and Q10

(temperature sensitivity of soil C turnover) (Fig. 5). Besides
positive correlation with initial conditions in the vertically
resolved model, predicted soil C also positively associated with
D1 (diffusivity in non-permafrost soils) and k3, but negatively
with k2; like predicted soil C, changes in soil C were positively
associated with D1 and k3, but negative with k2 (Fig. 5).
Predicted soil C change weakly associated with Vs (regression
coefficient for calculating maximum reaction rate) and Da

(coefficient for calculating desorption rate from physically
protected soil C to available soil C); projected soil C content
had no significantly linear relationships with any of the model
parameters (Fig. 5).

Consistent with previous research, turnover rates often control
soil C changes in the conventional model parameterizations12,25.
In this study, k2 is the key parameter for soil C dynamics in the
two non-microbial models. However, the relationships between k2
and soil C changes appear contradicted in the two models,
positive in the conventional model but negative in the vertically
resolved model. The possible reasoning is that conventional
model mainly predicted C loss but vertically resolve model mainly
predicted C gain; specifically, in the conventional model, more
soil C would be transformed to the passive soil C with larger k2 to
minimize soil C loss; in the vertically resolved model, larger k2
would cause more C loss to counteract soil C gain. In contrast,
neither predicted soil C nor soil C changes were strongly
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correlated with any single parameter in the microbial model, but
weakly associated with parameters related to decomposition of
physically and chemically protected soil C. This finding indicates
the complexity of process dynamic and interactions in the
microbial model.

Discussion
Substantial uncertainties in soil C-climate feedback existed as a
result of different model structures, parameter values, and initial
conditions. The conventional Century-type model predicted
consistently positive soil C-climate feedback with small uncer-
tainty, which indicates effectiveness of data-driven projections.
The consistently positive feedback suggests that the model
structure determines the trajectory of soil C response to climate
change for this family of models19. These projections are con-
sistent with Hararuk et al.14, who showed decreasing soil C under
RCP 8.5 in a similar model to the one employed here, and are also
within the predicted range in CMIP5 models5.

We expected a similar, positive soil C-climate feedback in the
vertically resolved model to that in the conventional model. Even
though the vertically resolved model is parameterized with dif-
fusivity of soil C across soil layers due to diffusion11, the soil C
decomposition in each layer has the same representation as the
conventional model. Inclusion of the vertical dimension may not
alter the fundamental behaviors of the model in terms of both
steady-state estimation and long-term projection, as the soil C
dynamics are still jointly determined by soil C influx and decay
rate. In contrast to this hypothesis, adding soil layers to the
conventional model allowed for both positive and negative
feedbacks, due possibly to the smaller equilibrium soil C pre-
dicted by the model. The finding reveals that adding vertical
resolution to the C decomposition parameterization can generate
diverse responses of soil C to climate change. However, the large
spread in projection and lack of constraint on transfer coefficients
suggest more relevant data requirement to reduce model
uncertainty.

The microbial model also predicted wider range of future soil C
change and diverse trajectories with both negative and positive

feedbacks. This was somewhat expected due to the non-linearity
of the C uptake processes by microbes23,26,27. The large spread in
projections of the microbial model also suggests that reducing
projection uncertainty requires more observations than are
available at the present time in order to better constrain model
parameters. Additional datasets are especially needed to tease
apart multiple processes and further reduce the uncertainty.
Results from this study highlight that data constraints may limit
the ability of data assimilation to reduce uncertainty in more
complicated model structures.

The large uncertainty in the vertically resolved model and
MIMICS might be engendered by either high degrees of model
freedom or complex model structures, or both. Many uncon-
strained parameters due to data limitation, especially in
MIMICS, led to the large predicted uncertainty. We therefore
anticipate substantial uncertainty reduction in these models
once more global data are available to inform the models in the
future. On the other hand, the complex model structures may
also contribute to the large uncertainty. In a previous study,
Hararuk et al.14 reported small uncertainty in soil C prediction
by a conventional model with 20 free parameters. The number
of free parameters is comparable to that in MIMICS (22) and is
greater than that in the vertically resolved model (13). There-
fore, it is likely that the model structures of CLM4.5 and
MIMICS at least in part increased the projected uncertainty. In
addition, slightly larger uncertainty and fewer model para-
meters in the vertically resolved model than in the MIMICS
also support that the greater uncertainty is likely caused by
model structure, if not solely. In contrast to larger uncertainty
in CLM 4.5 and MIMICS, both models generated better spatial
comparison to soil C observations, which demonstrates model
flexibility and encourages further exploration of explicit soil
depth and microbial dynamics in soil C model
parameterization.

The lack of constraint on the transfer coefficients in the two
non-microbial models indicates that the two opposing mechan-
isms, transfer coefficient and turnover rate, require more infor-
mative data to be disentangled from one another. Substantial
uncertainty in predicted soil C dynamics in MIMICS also suggests
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that additional data are necessary to further constrain parameters.
In particular, our results suggest that observations related to the
modifiers of microbial maximum uptake rate and half saturation
constant are of the most importance to reduce uncertainty. We
acknowledge that besides transfer coefficients in the two non-
microbial models and the modifiers in the microbial model, data
related to other aspects of model processes may be also critical,
but not revealed in our study due to model simplification. For
example, data related to derivation of soil water scalar such as soil
water content and water potential may be needed given that we
simplified the calculation of water scalars by directly using the
default parameters in the two non-microbial models and that
there is under-representation of soil water impact in the microbial
model18.

Isotopic data in C processes show great potential to constrain
these processes11,28,29. Indeed, 14C soil profiles have been used to
constrain transfer coefficients and turnover rates at multiple
sites28,30; isotopic labeling to trace C pathways is another pow-
erful tool to provide additional constraints to relevant processes,
such as distinguishing root respiration from total soil respira-
tion31, sources of input32, or proportion of different soil C
pools33. Other additional data, such as soil respiration34 and soil
C incubation datasets35,36 are equally valuable constraints. We
therefore advocate using isotopic data and other datasets as
complementary sources to better constrain model parameters and
hence projections.

However, there are limitations with these additional datasets
for model-data integration, especially at global scale. Most of
these data are collected at small spatial scales, and hence may not
provide a good global parameter constraint. Linking data at the
micro-scale to the intermediate and large scales presents sig-
nificant challenges for primarily two reasons: (1) lack of effective
upscaling scheme may introduce additional uncertainty to the
data; (2) data assimilation using global C models is difficult due to
the fact that many parameters are global parameters with poorly
understood regional variations with climate, vegetation, and
edaphic properties. Leveraging these additional datasets as
benchmarks instead of systematically assimilating them to con-
strain global model parameters may be the best use of these
observations. Relaxing the global parameter assumption could be
another option15.

We caution the reader on several assumptions and simplifi-
cations in this study when interpreting our results.

First, we assumed the observed soil C dataset is at steady state
due to its heterogeneity in time; second, we also assume the
steady state in observed microbial biomass data used in the
microbial model (MIMICS) due to the fast turnover rate of
microbial processes. The steady-state assumption is convenient
when the datasets are highly heterogeneous in time and space, but
may introduce uncertainty in projection. Furthermore, these
static estimates of soil C and microbial biomass C provide limited
insights into the fate of soil C pools and potential microbial
activity under climate change. However, it is a common practice
so far to make best use of these datasets10,12,14.

Another possible limitation relates to the two functional
microbial groups in MIMICS. We did not estimate proportion
of the microbial functional groups in each grid cell. Instead, we
applied a global parameter (fr: proportion of r-selection
microbial biomass) to calculate the r-selection microbial bio-
mass, and the remainder is k-selection microbial biomass. We
made this assumption due to the uncertainty in the spatial
pattern of the relationship between the two microbial func-
tional groups and climate, edaphic properties, and/or vegeta-
tion characteristics. Future research may focus on developing
relationships between this parameter and climate, soil, and
vegetation.

Lastly, we simplified the two non-microbial models in terms of
their environmental modifiers, soil water scalar in particular,
given data limitation and potential equifinality by the complex
calculation of soil water scalar37. This simplification may
underestimate the uncertainty in predictions by the two models;
however, it is less likely for the conventional Century-type model
to reach the similar magnitude of uncertainty in MIMICS even
with the full representation of soil water scalar due to the large
difference.

In summary, our results demonstrate the importance of model
structure and parameterization in determining the predicted soil
C response to climate change. CLM4.5 and MIMICS showed
much greater uncertainty in projected soil C under RCP 8.5 and
the conventional model consistently predicted strong positive C-
climate feedback. The close correlations between initial condi-
tions and projected soil C confirm that the projection of soil C is
sensitive to initial conditions in the two non-microbial models,
whereas the microbial model did not show any linear relationship
between initial conditions and projected soil C.

To increase confidence in soil C projection, diverse model
structures are necessary16, given that CLM 4.5 and MIMICS out-
performed the conventional model in terms of estimation in the
spatial distribution of soil C. However, the larger uncertainty in the
projection of soil C by the two models also suggests that we need to
strike a balance between model complexity and the need to include
diverse model structures in order to forecast soil C dynamics with
high confidence and low uncertainty. In addition, reducing the
uncertainties of the two models require more observations than are
available at the present time. Overall, whether vertically resolved
models and microbial models are better representations of
mechanisms for soil C dynamics remain debatable. However, they
represent updated knowledge and important alternate model
structures to enhance confidence in prediction. Our findings suggest
that the scientific community should include alternative model
structures in future ensemble model predictions and comparisons
to increase projection confidence.

Methods
Models. We performed parameter estimation on three soil C decomposition
models with different but representative structures (Fig. 1). The conventional
Century-type model (Fig. 1a) has the same structure as soil C cascade embedded in
the Community Land Model version 4.5 (CLM 4.5) without activating the depth-
resolved parameterization; to incorporate the effects of depth-resolved dynamics,
we used the model in the CLM 4.511,17 (CLM 4.5bgc; Fig. 1b); we used the MIMICS
model20 to explicitly simulate microbial soil decay processes (Fig. 1c). We briefly
introduced the model parameterization in each model as follows.

The conventional model (Fig. 1a) represents soil C decomposition using three C
pools and can be written in a matrix form as:

X′ tð Þ¼ Rþ F ´ ξ tð Þ ´ K ´X tð Þ: ð1Þ

R= [R1, R2, R3] is the litter input to the three soil carbon pools (labile, slow, and
passive soil C).

F¼
�1 f12 f13
f21 �1 0

f31 f32 �1

2
64

3
75

is a transfer matrix among soil C pools, where f21 is derived using the equation
f21= 1–t–f31 where t= t1–t2 × (1–sand%). The respiration coefficients can be
derived by 1–fi,j for each carbon pool. K= [K1, K2, K3] is baseline turnover rate of
soil C pools. ξ is the environmental modifier, and is a product of temperature
scalar, soil moisture scalar, soil nitrogen scalar, and oxygen scalar. X= [X1, X2, X3]
is the soil C content in each of the three pools. To be consistent with the other two
models, we only calculate temperature scalar using the equation QððTsoil�25Þ=10Þ

10 ,
where Q10 is temperature sensitivity of decomposition and Tsoil is soil temperature.
The rest of the environmental scalars are average across the 10 soil layers from
CLM 4.5. There are in total 10 global parameters in the conventional model. See
Table 1 for detailed description of each parameter and its range and default value in
the conventional model (i.e., CLM 4.5 without activating soil depth module).
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For the vertically resolved model in CLM 4.5bgc, a matrix equation can be used
to represent soil C dynamics among three pools within each soil layer over a
vertical profile of 10 soil layers (totaling 30 pools, Fig. 1b). The three pools within
one soil layer are labile, slow, and passive soil C. There are in total 10 soil layers
with diffusivity among the layers. The matrix equation is:

X′ tð Þ¼ Rþ F ´ ξ tð Þ ´K ´X tð ÞþTr ´X tð Þ; ð2Þ

where R is litter inputs to soil C pools R= [R1,1, R2,1…Rm,n… R3,10]T, m is the soil C
pool, ranging from 1–3, n is the soil layer ranging from 1–10.

F ¼

F1
¼

FL
¼

F10

2
6666664

3
7777775

is a block diagonal transfer matrix with dimension 30 by 30 (3 carbon pools per soil
layer for 10 layers),

FL¼
�1 f12 f13
f21 �1 0

f31 f32 �1

2
64

3
75

is a block matrix with L being the soil layers taking value from 1 to 10. The
dimension of FL is 3 by 3 with element fi,j, in which i is a receiving pool, j is a
donating pool, and the blank in the matrix F are zeros. ξ is environmental modifier,
a product of temperature scalar, water scalar, depth scalar, and oxygen scalar as in
Koven et al.11; K is the baseline turnover rates for the soil C pools; X is C
concentration for the 30 pools, X= [X1,1, X2,1…Xm,n… X3,10], m is the soil C pools,
ranging from 1–3, n is the soil layer ranging from 1–10;

Tr30 ´ 30 ¼

Tr1;1 Tr1;2
Tr2;1 Tr2;2 ¼

Tr3;2 ¼ Trm�1;m

¼ Trm;m ¼
Trmþ1;m ¼ Tr8;9

¼ Tr9;9 Tr9;10
Tr10;9 Tr10;10

2
666666666664

3
777777777775

is a block tridiagonal matrix to represent C diffusivity between soil layers.

Trm;m ¼
0

tr2;2
tr3;3

2
64

3
75

is the fraction of a given C pool at a given soil layer being transferred into upper
and lower soil layers,

Trm�1;m ¼

0

trm�1;m

trm�1;m

trm�1;m

trm�1;m

trm�1;m

trm�1;m

2
666666666664

3
777777777775

is the received fraction of carbon transferred from lower soil layer m to layer m−1
and

Trmþ1;m ¼

0

trmþ1;m

trmþ1;m

trmþ1;m

trmþ1;m

trmþ1;m

trmþ1;m

2
666666666664

3
777777777775

is the received fraction of carbon transferred from upper soil layer, m to layer
m+1. Also, trm,m= trm−1,m+ trm+1,m for a given m. Tr can be approximated using
the model parameter diffusivity (D1 for non-permafrost diffusivity and D2 for the
permafrost diffusivity). Please see Patankar38 Chapter 5.2 for details of the
tridiagonal matrix calculation. Note that compared to the environmental modifier
in the conventional model, there is an additional scalar, the depth scalar (rz) which
is computed with rz ¼ expð� z

zτ
Þ, where zτ is the e-folding depth. To be consistent

with the other two models, we only calculate temperature scalar using the equation
QððTsoil�25Þ=10Þ

10 , where Q10 is temperature sensitivity of decomposition and Tsoil is
soil temperature. The rest of the environmental scalars are direct outputs from
running CLM 4.5. Therefore, there are 13 global parameters in the vertically
resolved model. See Table 2 for detailed description of each parameter and its range
and default value in CLM 4.5.

The MIMICS model was developed in Wieder et al20. There are two soil
microbial C pools (MICr and MICk) and three soil C pools available soil C (SOMa),
physically protect C (SOMp), and chemically recalcitrant C (SOMc) (Fig. 1c).
Michaelis–Menten equations are adopted to describe soil C uptake by soil
microbes. The dynamics of the soil C can be represented by the following
equations:

SOM′p¼ Rl�pþRmic�p�SOMp ´D ð3Þ

SOM′c¼ Rl�cþRmic�c�Uc�k�Uc�r ð4Þ

SOM′a¼ Rmic�aþUc�kþUc�rþSOMp ´D� Ua�k�Ua�r; ð5Þ

where Rl is the input to soil C from litter (Rl-p= fm × total_input and Rl-c= fs ×
total_input) and Rmic is the input to soil C from microbial decay, D is the turnover
rate for SOMp, Uc-k is the uptake of SOMc by k-selection microbes, Uc-r is the
uptake of SOMc by r-selection microbes, Ua-k is the uptake of SOMa by k-selection
microbes and Ua-r is the uptake of SOMa by r-selection microbes. The uptake
process takes the form of Michaelis–Menten equation, MIC × Vmax × SOM/(KO ×
Km+ SOM) where MIC is the microbial biomass, Vmax is the maximum reaction
rate, SOM is the soil C content, KO is the modifier for oxidation of SOM, Km is the
half saturation constant. For more model details, please see Wieder et al20. Slight
modifications were made with MIMICS. Instead of using equations to estimate
microbial turnover rates, we directly treat turnover rates as parameters as done by
Hararuk et al.,12. In total, there are 22 global parameters (Supplementary Table 1).
Since the range for most of the parameters is not well characterized in the
literature, we prescribed the minimum of each parameter as the default values
divided by three and the maximum as the default values multiplied by three. In
addition to the soil C dynamics, the two microbial C pools are represented by the
two equations in projection:

MIC′r¼ Rl�r þ Ua�r ´MGE1�MICr ´ τr ð6Þ

MIC′k¼ Rl�kþUa�k ´MGE1�MICk ´ τk ; ð7Þ

where Rl-r and Rl-k are the input to r-selection and k-selection soil microbes.

Rl�r¼ Um�rþU s�rð Þ= Um�rþUm�kþU s�rþU s�kð Þ ´ ðTotal input�Rl�p�Rl�cÞ
ð8Þ

Rl�r¼ Um�kþU s�kð Þ= Um�rþUm�kþU s�rþU s�kð Þ´ ðTotal input� Rl�p�Rl�cÞ:
ð9Þ

Um-r and Um-k are the uptakes of metabolic litter by r-selection and k-selection
microbes, respectively; and Us-r and Us-k are the uptakes of structural litter by r-
selection and k-selection microbes, respectively; all the U’s are calculated with
default parameters in MIMICS and litter from CLM 4.5 with the sole purpose of
normalizing the input to r-selection and k-selection microbes. Ua-r and Ua-k are the
uptakes of available soil C by r-selection and k-selection microbes, respectively.
MGE1 is the microbial growth efficiency (MGE) for uptaking SOMa. τr and τk are
the turnover rates of r-selection and k-selection microbes.

Carbon use efficiency or MGE is a key parameter in microbial models23,39.
However, we did not consider it as a parameter in our study due to that we used
microbial biomass data40 as an input to the MIMICS model. As a result, MGE is
not involved in calculating soil C in MIMICS.

Solutions for steady-state estimation. To calculate the steady state in soil C
content for each of the models, we made Eqs. (1), (2), (3), (4), and (5) equal zero
and solved the equations for the state variables.

We derived the steady state (Xss) for the conventional model in the following
form:

Xss ¼ �ðF ´ ξ tð Þ ´KÞ�1 ´R: ð10Þ

The solution for the vertically resolved model is

Xss ¼ �ðF ´ ξ tð Þ ´K þ TrÞ�1 ´R: ð11Þ
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The solution for MIMICS is

SOMp;ss ¼ Rl�p þ Rmic�p

� �
=D ð12Þ

SOMc;ss ¼ �coeff f þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coeff f 2 � 4 ´ coeff e ´ coeff g

p� �
= 2 ´ coeff eð Þ ð13Þ

SOMa;ss ¼ �coeff m þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coeff m2 � 4 ´ coeff l ´ coeff n

p� �
= 2 ´ coeff lð Þ; ð14Þ

where Rl-p and Rmic-p are the input to physically protected soil C from litter and
microbial C, respectively; D is the turnover rate of SOMp.

coeff e ¼ MICr ´Vmax r þMICk ´Vmax k � R ð15Þ

coeff f ¼ MICr ´Vmax r ´Ko k ´Km k þ Ko r ´Km r ´MICk ´Vmax k

�ðKo r ´Km r þ Ko k ´Km kÞ ´R
ð16Þ

coeff g ¼ �ðKo r ´Km r þ Ko k ´Km kÞ ´R ð17Þ

coeff l ¼ MICr ´Vmax r þMICk ´Vmax k � R ð18Þ

coeff m ¼ MICr ´Vmax r ´Km k þ Km r ´MICk ´Vmax k

� Km r þ Km kð Þ ´R ð19Þ

coeff n ¼ �ðKm r ´Km kÞ ´R; ð20Þ

where R is the total input to respective soil carbon. For more details about these
parameters, refer to Supplementary Table 1 and Wieder et al.,20.

The steady state of total microbial biomass (sum of the r-selection and k-
selection microbial biomass) was from a published database in microbial biomass40

(https://daac.ornl.gov/SOILS/guides/Global_Microbial_Biomass_C_N_P.html).
Some details are also provided in the data section below.

Note that all the litter inputs to soils in the three models are the same at grid
level to avoid introducing bias into the results among models. The inputs were
derived from running CLM 4.5 within 1850–2004. Mean annual input within
1850–2004 were used for steady-state calculation. Specifically, we used the Qian
bias-corrected reanalysis dataset41 to force the CLM 4.5 historical runs. Basically,
for the model years 1850–1947, we cycle atmospheric forcing from the period
1948–1972, and use the corresponding atmospheric data for the years 1948–2004.

Datasets. The observations we used were re-gridded top soil organic carbon (0–30
cm, upper panel) and subsoil organic carbon (30–100 cm, lower panel) from
HWSD [Food Agriculture Organization, 2012]. The native resolution (30 arc sec)
in HWSD was re-gridded to the CLM grid (i.e., 1.25 × 0.94°) by Wieder et al.10

(data source: https://daac.ornl.gov/SOILS/guides/HWSD.html).
Due to the possible underestimation of permafrost soil C in HWSD, we

replaced it with the NCSCD (http://bolin.su.se/data/ncscd/netcdf.php). The
NCSCD was developed to quantify the Northern Circumpolar permafrost soil C
stocks down to 3 m21. There are four soil layers in this database, 0–30, 0–100,
100–200, and 200–300 cm. We regridded the NCSCD at 1° resolution to the CLM
4.5 grid, the same resolution as the HWSD and microbial biomass database.

We use NCAR Command Language (NCL) with Earth System Modeling
Framework (ESMF) software. This software generated weights for data regridding
between different resolutions. The conserve method was selected to insure the total
amount of regional soil C to be conserved after regridding.

The microbial biomass C was used as the steady state in the MIMICS model due
to the fast turnover of microbes, which is typically less than 1 year. A global
parameter, fr (fraction of r-selection microbial biomass) was multiplied by the
microbial biomass database to calculate the r-selection microbial biomass. The
remainder is the k-selection microbial biomass. The gridded soil microbial biomass
C was in 0.5° resolution and available here https://daac.ornl.gov/SOILS/guides/
Global_Microbial_Biomass_C_N_P.html. The database was re-gridded to the CLM
grid. The soil depth is down to 1 m40.

Soil microbial biomass C data were re-gridded into 0.94o × 1.25o resolution
from 0.5o × 0.5o resolution. We use NCL with ESMF software. This software
generated weights for data regridding between different resolutions. The conserve
method was selected to insure the total amount of regional soil C to be conserved
after regridding.

Model-data fusion. We applied Bayes’ theorem to estimate parameter values and
associated uncertainties25,42.

p θjZð Þ ¼ p Zjθð Þ ´ pðθÞ
pðZÞ ; ð21Þ

where p θjZð Þ is the posterior distribution of the parameters θ given the
observations Z. p Zjθð Þ is the likelihood function for a parameter set calculated with
the assumption that each parameter is independent from all other parameter and
has log-normal distribution5,43 (Supplementary Fig. 3) with a zero mean:

P Zjθð Þ / exp �
X Zi � ;i ´X½ �2

2σ2i

( )
: ð22Þ

Here Zi is the logarithm of ith soil C observation in the observational database,
X are the logarithms of the carbon pools from the model, and ; is the mapping
vector that maps the simulated carbon pools to observations. X is derived by
assuming the current soil status is at steady state. We were conservative in
assigning errors to the soil C with σ = 0.5 × Zi. For the conventional model, we
assimilated the data by aggregating all the soil layers together which is 0–100 cm in
non-permafrost regions and 0–300 cm permafrost regions; for CLM 4.5, we
assimilate data for 0–100 cm in HWSD for non-permafrost soils, 0–100, 100–200,
and 200–300 cm in NCSCD for permafrost soils, independently. In contrast to soils
elsewhere, permafrost regions contain a huge amount of carbon stock in deeper
soil, which validates the use of deeper soil carbon data. For MIMICS, however, we
assimilated the soil C data down to 100 cm only due to the explicit 1-m depth
parameterization20.

We assumed that the parameters are distributed uniformly within their prior
ranges. Since most of the parameter range in MIMICS are unknown, we assumed
the range of the distribution to be θo=3; 3θo½ �, where θo is the default value.
Posterior probability distributions of parameters were obtained using a
Metropolis–Hastings (M–H) algorithm, a MCMC technique44,45. The detailed
description of M–H algorithm can be found in Xu et al.42.

In brief, the M–H algorithm consists of iterations of two steps: a proposing step
and a moving step. In the proposing step, a new parameter set θnew is proposed
based on the previously accepted parameter set θold and a proposal distribution,
which was uniform in our study:

θnew ¼ θold þ r ´ θmax � θminð Þ=D; ð23Þ

where θmax and θmin are the maximum and minimum values of parameters, r is a
random variable between −0.5 and 0.5, and D is used to control the proposing step
size and was set to 5 as is Xu et al.42. In each moving step, θnew was tested against
the Metropolis criterion to examine if the new parameter set should be accepted or
rejected. The first 2500 accepted samples were discarded (burn-in period) and the
rest were used to generate posterior parameter distributions. In total, there are
50,000 accepted samples to construct the posterior distribution.

Projection in soil carbon under RCP 8.5. The soil C input and environmental
modifiers (except the temperature scalar) used to drive the models were derived
from running original CLM 4.5 under the worst-case greenhouse gas emission
scenario, representative concentration pathway 8.5 (RCP 8.5). The atmospheric
data were from Community Earth System Model output for the Representative
Concentration Pathway 8.5 experiment, which were used to force CLM 4.5 for
2005–2100. We output the soil C input from litter and then used the inputs to drive
our soil C models. The spatial and temporal changes in soil temperature, water
content, and litter input to soil C within 2005–2100 were presented (Supplemen-
tary Figs. 10, 11).

We randomly sampled 1000 parameter sets out of the accepted posterior values.
With each of the sampled parameter sets, we forced the vertically resolved model
with C input and environmental modifiers obtained from CLM 4.5 model under
RCP 8.5 from 2005–2100. For the conventional and microbial model, we derived
total inputs and mean environmental modifiers of all the 10 soil layer to force the
two models. For the two non-microbial models, we used a monthly time step. For
the microbial model, daily time step was used due to its non-linear nature causing
instability for longer time steps.

Convergence of MCMC. We used Gelman–Rubin (G–R) diagnostic method to
determine convergence of MCMC simulations46. The idea of G–R test is that if the
simulated Markov chain has reached convergence, the within-run variation within
each chain should be roughly equal to the between-run variation among chains.
Specifically, denoting each model parameter as ci, the parameter samples from K
(K= 5) parallel M–H runs of length N (N= 10,000), the between (Bi) and within-
run (Wi) variances are defined as:

Bi ¼
N

K � 1

XK
k¼1

�cki � �ci
� �2 ð24Þ

Wi ¼
1

KðN � 1Þ
XK
k¼1

XN
n¼1

�cn;ki � �cki

� �2

: ð25Þ
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The G–R scale reduction statistics is given by:

GRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WiðN � 1Þ=N þ Bi=N

Wi

s
: ð26Þ

Once convergence is reached, GRi should approximately equal one.

Data availability. Data assimilation algorithms and parameter ensembles are
available in the GitHub (https://github.com/zshi0609/Global-DA-Project). Large
input datasets are available upon request to the correspondence authors.
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