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As atmospheric nitrogen (N) concentrations increase, it can wreak havoc on the entire planet, as well as the
fragile ecosystems, once it exceeds the demand of ecosystems. Chronically elevated N deposition affects litter
decomposition, which is a crucial process that controls nutrient cycling, soil fertility, and primary productivity.
Nevertheless, the responses of litter decomposition and nutrient release to N addition remain elusive. Here we
conduct a meta-analysis using 3434 paired observations from 55 publications to evaluate these responses. We
found that although litter decomposition rate did not change significantly under N addition when averaged
across all studies, it decreased with N application rate and experimental duration, showing that it was stimulated
at low levels but suppressed at high levels of N application and duration. Phosphorus released more slowly under
N enrichment, and this response became greater with longer duration. Moreover, the decomposition of lignin
was depressed under N addition, and this effect was more pronounced with the increase of N application rate and
experimental duration. Importantly, in terms of different ecosystems, the decomposition of litter was sig-
nificantly inhibited by N addition in plantations, but was promoted in secondary forests, and there were no
significant changes in primary forests, grasslands and wetlands. The responses of litter mass loss, along with the
release of nutrients to N fertilization, changed with mean annual temperature and mean annual precipitation of
the study sites. Our results provided a synthetic understanding of the effects of N addition on the decomposition
of litter and nutrient release under climate change scenarios.

1. Introduction

Anthropogenic activities, such as intensive agriculture, stock-
breeding and combustion of fossil fuels, have prominently altered the
global nitrogen (N) cycle over the last several decades (Ciais et al.,
2013; Kanakidou et al., 2016), which have resulted in increases in the
content of nitrogenous compounds in the ambient atmosphere, and
increases several fold in N deposition (Galloway et al., 2008; Galloway
et al., 2004). Increasing N deposition influences numerous ecosystem
processes, including litter decomposition (Frey et al., 2014; Lovett
et al., 2013; Zak et al., 2008) and nutrient cycling (Yuan and Chen,
2015). Litter comprises a top layer in soil profiles, and serves as the
energy and nutrient source of microbial metabolism (Magill and Aber,
2000). Litter decomposition, as a mechanism of nutrient release, is a
key process in the functioning of both managed and natural ecosystems
(Bonan et al., 2013; Jonczak, 2013). Thus, the stability of ecosystems is
contingent on the long-term balance between plant growth and litter
decomposition. However, how elevated N deposition influences litter
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decomposition and nutrient release, to the best of our knowledge, re-
mains formative and incomplete. A better understanding of litter and
nutrient responses to the addition of N is essential to forecasting the
impact of elevated N on terrestrial ecosystems.

Lignin and cellulose are both primary components of litter, where
their degradation is an essential process for maintaining carbon (C)
balance (Berg and Mcclaugherty, 2013). Further, the process and pace
of litter decomposition greatly impact how plants and microbes utilize
and absorb C, N, phosphorus (P), and other nutrients (Wardle, 2004).
Meanwhile, potassium (K), calcium (Ca) and magnesium (Mg) are
crucial macronutrients for energy metabolism, photosynthesis, and
membrane transport in plants (Hiittl and Schaaf, 1997; Yue et al.,
2016). Although Sodium (Na) is not a critical nutrient for all plants, it is
important for animals and litter decomposers (Geerling and Loewy,
2008). It is necessary to elucidate nutrient release patterns during de-
composition processes as affected by the addition of N, since the release
of P from litter may play a critical control of productivity and nutrient
release through litter decomposition could lead to improvement in soil
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fertility (Yang et al., 2004).

Exogenous N might have multiple effects on litter decomposition
and nutrient release. First, we expected that elevated N would have
negative effects on the decomposition of litter and lignin as well as the
release of nutrient, which maintain ionic balance. Nitrogen addition has
negative effects on microbial biomass and activities in soils (Compton
et al., 2004; Treseder, 2008; Zhang et al., 2018). Externally applied N
inhibits the growth of white rot fungi that produce lignin, and reduces
the activity of cellulolytic enzyme along with lignin-degrading enzyme
such as lignin phenol oxidase (Deforest et al., 2004; Edwards et al.,
2011; Sun et al., 2016). As N addition promotes the consumption of C,
the supply of C becomes unstable and lignin decomposition is reduced
(Magill and Aber, 1998), which leads to a reduction in the reserves of C
for other heterotrophic microbial metabolic activities. Elevated N may
also alter soil microbe community compositions, reduce microbial
biodiversity (Allison et al., 2007), and inhibit the activity of soil fauna,
which would suppress litter decomposition and nutrient release.

Second, we expected that environmental and experimental factors
would interact with N deposition to influence litter decomposition and
nutrient release. To be specific, we expected that litter and nutrient
responses would scale proportionally with experimental duration and N
addition rate, as a previous meta-analysis revealed that the amount of N
fertilizer applied at a site was one of the important predictors influen-
cing decomposition rates (Knorr et al., 2005). Climatic factors such as
mean annual temperature (MAT) and mean annual precipitation (MAP)
would also influence these responses, since litter decomposition is
regulated by both biotic and abiotic factors including climatic condi-
tions (Ngao et al., 2009; Zhou et al., 2008).

Third, we expected that responses of litter decomposition and nu-
trient release to N addition would differ in different terrestrial ecosys-
tems. Primary forests are natural forests without apparent and reported
human impacts, whereas secondary forests are naturally developed
stands with native species (Don et al., 2011; Guo and Gifford, 2002).
They differed from plantations mainly regarding to human activity in-
volved in the stand establishment. Furthermore, secondary and primary
forests are highly diverse in vegetation structure and species composi-
tion, which is up to their age, topographical location and disturbance
history (Barlow et al., 2007; Chazdon, 2003). Wetlands are areas sa-
turated with water whereas grasslands are dominated by herbaceous
vegetation. Such differences in land-use types might induce inconsistent
litter and nutrient responses to elevated N deposition.

Over the last few decades, numerous experiments have been con-
ducted to investigate the responses of litter decomposition and nutrient
release to N deposition. In this study, we aimed to: (1) assess the re-
sponses to N addition of 11 variables, including percentage of re-
maining litter, C, N, P, K, Ca, Mg, Na, lignin and cellulose, and de-
composition rate; (2) test how these responses change with N addition
rate, experimental duration, and variations in MAT and MAP; (3) ex-
amine how these responses differ among ecosystems. We collected 3434
paired observations from 55 publications encompassing wetlands,
grasslands, plantations, primary forests, and secondary forests (Fig. 1,
Supplementary information, Appendix S1). Our meta-data included
studies that were conducted with a mean N application rate of
122.8kgha~'y ™!, ranging from 2.4 to 640kgha'y~! a mean ex-
perimental period of 12.5months (0.5-108 months), and a mean
background N deposition rate of 40.6kgha~ly~!
(0.5-97.5kgha~!y~!). The mean annual temperature ranged from — 3
to 26.6 °C, and mean annual precipitation, from 150 to 5100 mm. For
each variable, our model simultaneously estimated the average effect of
N addition and the responses to N addition rate and experimental
duration.
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2. Materials and methods
2.1. Data collection

We investigated published peer-reviewed journal articles that
evaluated the response of litter decomposition and nutrient release to N
addition in terrestrial ecosystems, using the Web of Science and Google
Scholar. The search terms were “(nitrogen addition OR nitrogen en-
richment OR nitrogen deposition OR nitrogen fertilization OR nitrogen
input OR nitrogen application OR elevated nitrogen) AND (litter de-
composition OR litter decay OR nutrient release)”. To minimize pub-
lication bias, only primary studies that satisfied the following criteria
were included in this meta-analysis. (1) Nitrogen fertilizers were di-
rectly added to terrestrial ecosystems and at least one of the considered
variables was measured. (2) The N addition and control plots were
established under the same abiotic and biotic conditions. (3) Only the
control and N addition treatment data were selected if the experiment
included a treatment other than N addition. (4) The N application rate
and experimental duration were clearly recorded. (5) The means,
standard deviations and sample sizes of the selected variables were
available, or could be calculated, from related publications.

All original data were extracted from the text, tables, figures, and
appendices of the publications. When data were graphically presented,
Engauge software 4.1 was employed to obtain numeric data (http://
digitizer.sourceforge.net). Measurements from different ecosystem
types, species, and treatment levels within a single study were con-
sidered as independent observations. Meanwhile, environmental vari-
ables: mean annual temperature (MAT), and mean annual precipitation
(MAP) were recorded directly from cited papers, or in the cases where
these were not reported, they were extracted from the Global Climate
database at http://www.worldclim.org/ using coordinates (e.g., lati-
tude and longitude). Our final dataset included 3434 paired observa-
tions from 261 individual studies in 55 published papers with a total of
11 variables related to litter mass loss, nutrient release, and the de-
composition rate.

2.2. Meta-analysis

We used the natural log response ratio (InRR) to assess the responses
of litter decomposition and nutrient release to N addition to avoid
biased effect estimates because the natural logarithm of a ratio has
better statistical properties (Hedges et al., 1999). On the one hand,
logarithm linearizes the metric (Rodriguez-Barranco et al., 2017), co-
herently treating deviations in the numerator and those in the de-
nominator, i.e., when the ratio is influenced more by variations in de-
nominator, the log-transformed ratio is influenced equally by variations
in either numerator or denominator. On the other hand, the distribution
of response ratio (RR) is skewed, while the distribution of InRR is
symmetric (Koricheva et al., 2013). That is, if X, and X, are normally
distributed, then InRR is approximately normally distributed (Hedges
et al., 1999). Natural log response ratio was calculated as:

In RR = In(X,/X.) = In(X;)~In(X,) )

where X, and X, are mean values of the selected variable under N
treatment and in control, respectively.

We calculated the weight (w) of each InRR by the inverse of var-
iance (v;) as:

vi = (/00 X (St/X)* + (1/ne) X (Se/Xc)? (2

where n,, n., S;, S., X;, X, were sample sizes, standard deviations, and
mean response values in the treatment and control, respectively.

For each variable, we tested whether the overall InRR differed from
zero and whether the InRR was affected by N addition rate (N,
kgha 'yr™!) and experimental duration (D, months) using the fol-
lowing model:
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Fig. 1. Global distribution of study sites included in the meta-analysis.

In RR = B, + ;"N + 3,-D + Tgruay + € 3)
where B, 4,4, and ¢ are coefficient, the random effect factor of “study”
and sampling error, respectively. The random effect explicitly accounts
for autocorrelation among observations within each “study”. We con-
ducted the analysis using maximum likelihood estimation with the
lme4 package (Bates et al., 2017). When continuous predictors, i.e., N
and D in Eq. (3), are centered or scaled (minus mean and divided by one
standard deviation), f3y is the overall mean InRR at the mean N and D
(Cohen et al., 2013). To facilitate the comparison among litter de-
composition and nutrient release variables that had variable N and D,
we scaled these predictors in our analysis. We also used four other al-
terative models, and all alternative models resulted in similar or higher
Akaike information criterion values (Table A1l). For consistency, we
analyzed all variables with Eq. (3).

To examine whether InRR changed geographically, we tested the
effect of MAT or MAP or ecosystem type on InRR by adding the term of
MAT, MAP or ecosystem type to Eq. (3). For ease of interpretation, InRR
and its corresponding confidence intervals were transformed back to
the percentage change as (¢!"®*—1) x 100%. In all analyses, we used 1/v;
to weigh for individual observations and studies, as a random effect to
account for autocorrelation among observations within each study. If
the 95% confidence intervals (CI) of InRR for a variable did not cover
zero, the impact of N addition on the variable differed significantly (at
a = 0.05) between the control and N treated. All statistical analyses
were performed in R 3.4.3.

3. Results and discussion
3.1. Responses of litter decomposition and nutrient release to N addition

Across all studies, the litter mass remaining did not change sig-
nificantly (P = 0.708) under N fertilization than the control (Fig. 2).
The percentages of P and lignin remaining were 5.20% (95% con-
fidence interval, 0.10-10.31%, P = 0.055) and 9.86% (5.30-14.41%,
P < 0.001) higher under elevated N than control experiments respec-
tively (Fig. 2), showing that N enrichment decreased P release and the
decomposition of lignin. Moreover, there were no significant changes in
the decomposition rate and percentage remaining of C, N, K, Ca, Mg
and cellulose between the N addition treatment and the control on
average (Fig. 2).

Our first hypothesis is partially confirmed in that lignin decom-
position was depressed under N enrichment, which is not surprising as
the activity of oxidative enzymes involved in lignin degradation could
be suppressed by the addition of N (Carreiro et al., 2000; Zak et al.,
2008). In terms of litter decomposition, our result is consistent with
Knorr et al. (2005) who found that N addition had no statistically sig-
nificant effect on litter decay when averaged across all studies. Nitrogen
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Fig. 2. Natural-log-transformed response ratios (InRR) of studied litter de-
composition attributes. Values are mean = 95% confidence intervals of InRR
between the N addition and the control. The number of observations is beside
each variable without parentheses, and the number of studies is in parentheses.

addition delayed the release of P in litter, which may be due to chemical
immobilization and microbial assimilation (fungal hyphae can transfer
P from decomposing litter and soil) (Hobbie, 2008; Hobbie and
Vitousek, 2000). The insignificant responses of litter decomposition and
other nutrient release to elevated N could be attributed to various
factors including N application rate, experimental duration, substrate
litter quality, as well as environmental conditions such as MAT and
MAP, which may have an effect on these responses (Ngao et al., 2009;
Prescott et al., 2010).

3.2. Influences of N addition rate, experimental duration, MAT and MAP

With the increase of N addition rate and experimental duration, the
percentage mass remaining of litter and cellulose showed a decreasing
trend while the decomposition rate increased (Figs. 3 and 4), which
indicated that the decomposition of litter and cellulose were promoted
at low levels but were inhibited at high levels of N addition and
duration. The negative effect of N addition on lignin decomposition
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Fig. 3. Natural-log-transformed response ratios (InRR) as a function of N application rates on litter decomposition attributes. Fitted regressions and corresponding
levels of significance (P) are presented. The sizes of circles represent the natural logarithm of relative weights (Inw) for corresponding observations. G, P, PF, SF and
W represent grassland, plantation, primary forest, secondary forest and wetland, respectively.

increased significantly with both N application rate and experimental
duration (Figs. 3 and 4). Additionally, the percentage remaining of C, N
and P increased with longer duration (Fig. 4), showing that the release
of these nutrients were suppressed at higher levels of experimental
period.

This is partially consistent with Knorr et al. (2005) who found that
the mass loss of litter decomposing for less than 2 years was promoted,
while litters that had been decomposing for more than 2 years exhibited
suppression. The litter decomposition process is generally divided into
early and later stages, as the decomposition rate is dominated by dif-
ferent organic chemical components (De Santo et al., 2009). Soluble
components decay, or are rapidly leached away in the early stages of
decomposition (Berg, 2000). As decomposition proceeds, N addition
influences the chemical processes involved in litter decomposition;
excess N might be combined with lignin or polyphenol, which produces
recalcitrant compounds (Aerts et al., 2006) and increases lignin con-
centration (Manning et al., 2008), where their degradation dominates
litter decomposition (Berg et al., 1993). Furthermore, increasing N
addition rate might increase the concentration of N in the soil, which
would hamper lignin degradation due to repression of the formation of
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ligninase in lignin-degrading microbe populations (Berg and
Mcclaugherty, 2013), or by favoring the formation of new recalcitrant
compounds.

Variations in MAT and MAP of the study sites had certain impacts
on the responses of litter decomposition and nutrient release to N fer-
tilization (Table 1). On the one hand, the decomposition of litter and
cellulose, along with the release of N and Mg were increased under N
enrichment in cold climates but were inhibited in warm climates (Fig.
Al). On the other hand, litter and cellulose decomposition, and the
release of K and Mg were promoted in dry regions while depressed in
wet regions (Fig. A2). The Ca release showed a completely different
trend with increased MAT and MAP, which may indicate decreased
microbial activity and litter decomposition, since litter Ca is related to
increased microbial activity, fungal and earthworm abundance and
diversity (Aponte et al., 2010; Reich et al., 2005).

Our findings that N addition would inhibit litter decomposition in
warmer climates and wetter regions are inconsistent with Knorr et al.
(2005) who found that MAT and MAP did not appear to be significant
factors regulating the effect of N addition on litter decomposition.
However, it is plausible since increasing temperature and moisture
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Table 1

The effect (P values) of mean annual temperature (MAT), mean annual pre-
cipitation (MAP) and ecosystem type on natural log response ratios of studied
litter decomposition attributes.

Attribute MAT MAP Ecosystem

df P df P df P
Litter remaining 1,124 <0.001 1,289 0.005 4,137 < 0.001
C remaining 1,9 0.991 1,8 0.880 1,8 0.796
N remaining 1,95 0.012 1,92  0.667 3,92 0.003
P remaining 1,29 0.233 1,21 0.367 4,19 0.356
K remaining 1, 15 0.068 1, 16 0.022 1,8 0.181
Ca remaining 1,6 0.010 1,9 0.001 NA
Mg remaining 1,32 0.036 1,27  0.020 1,7 0.529
Na remaining 1,23 0.770 1,24 0.769 NA
Lignin remaining 1, 23 0.901 1, 84 0.756 3,42 0.008
Cellulose remaining 1, 43 <0.001 1,67 <0.001 2,21 < 0.001
Decomposition rate 1, 75 < 0.001 1,63 0.051 3,104 0.491

Linear mixed effect models used Satterthwaite approximation for degrees of
freedom (df). NA means not applicable as there was only one ecosystem type of
experiments.
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would cause the leaching of NO3 ~, which can take away a mass of base
cations like Ca2*, causing decreased soil pH (Tian and Niu, 2015).
Thus, greater soil acidification would inhibit the activity of microbes
involved in litter decomposition, which lowers the decomposition rate
(Mo et al., 2004). Given the global climate warming as well as in-
creasing N deposition rate and longer duration worldwide (Galloway
et al., 2008; IPCC, 2013; Ren et al., 2017), our findings indicate that
litter decomposition and nutrient release would suffer progressive in-
hibition and continue to decrease at a global scale.

3.3. Different responses among ecosystem types

Most importantly, when categorized by ecosystem types, we found
that N treatment increased the percentage remaining of litter, lignin
and cellulose by 3.45% (1.59-5.31%, P < 0.001), 14.88%
(11.86-17.91%, P < 0.001) and 15.25% (7.09-23.42%, P < 0.001) in
plantations, respectively (Fig. 5). Nevertheless, N addition reduced the
percentage remaining of litter and lignin by 2.00% (1.29-2.72%,
P < 0.001) and 31.62% (20.84-42.40%, P < 0.001) in secondary
forests, respectively (Fig. 5). Percentage of N remaining was 10.29%
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spectively.

(0.55-20.03%, P = 0.050) higher under N addition in grasslands, but
was decreased by 5.22% marginally (P = 0.068) in secondary forests.
Results in secondary forests showed a dramatic opposite response
(Figs. 3, 4, Al and A2), so we compared the mean value of environ-
mental and experimental parameters of the observations for each eco-
system type to see whether this pattern was mainly affected by geo-
graphical variation or experimental factors (Table A2). On average, the
latitude, longitude, MAT, MAP, ambient N deposition, N application
rate and experimental duration of observations in secondary forests
were neither the highest nor the lowest. Thus, these factors would not
be the dominating factor concerning the various responses of different
ecosystem types.

It is one of our most crucial findings that N addition decreased the
decomposition of litter, lignin and cellulose in plantations, but in-
creased litter and lignin decomposition in secondary forests. Scientists
have suggested that litter decomposition rates are mainly controlled by
initial litter quality (Loranger et al., 2002; Wieder et al., 2009; Zhang
et al., 2008). In general, high-quality litter with low lignin:N and low
C:N ratios is decomposed with almost all decomposers and can improve
nutrient availability in the soil (Mukhopadhyay and Joy, 2010). Litter
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decomposition rate is positively related to its N concentration, which
has been regarded as a rate-accelerating factor for decomposition (Berg,
2000; Hobbie et al., 2012). The negative effect of lignin content on
decomposition has been found in different ecosystems (Fioretto et al.,
2005; Ngao et al., 2009). The C:N ratio is also one of the best prediction
indexes for decomposition rates, in that it reflects the ratio of carbo-
hydrates to proteins in litter, which is an essential property of the litter
substrate (Talbot and Treseder, 2012). As is recognized, the higher the
C:N ratio, the lower the decomposition rate is, as soil microbes require
external N to meet growth demands (Cornwell et al., 2008; Hobbie,
2005).

Substrate quality of litter are reported to depend on plant diversity
and successional stage at the stand level (Berg and Laskowski, 2006;
Deng and Janssens, 2006). Plant richness and diversity have been
suggested to primarily explain the variations in litter decomposition in
that decomposition rate in less diverse forests was lower than that in
diverse forests (Pérez et al., 1998). Therefore, the increased decom-
position rate in secondary forests under N addition is likely explained
by its plant diversity and high litter quality (low C:N ratio and high N
content) (Li et al.,, 2005; Yu et al., 2014), while the decreased
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decomposition rate in plantations can be attributed to the high lignin
content and high C:N ratio in litter (Cizungu et al., 2014). Litter quality
in wetlands differed from site to site, and the site effect is stronger than
the effect of litter quality (Rejméankova and Houdkova, 2006). The
overall insignificant effects for wetlands could be attributed to water-
logging, as Song et al. (2011) found that the accelerated litter decom-
position under N addition was suppressed in waterlogging condition.
However, factors influencing decomposition rate are complex and there
exist few paired data to validate this relationship.

4. Conclusions

The direction and degree of responses to N deposition of litter de-
composition and nutrient release are regulated by increasing rate and
duration of N application. Climatic warming and precipitation have
interactive effects on these responses. Importantly, litter decomposition
is inhibited in plantations but promoted in secondary forests, which is
likely attributed to the difference in litter quality and plant diversity.
This meta-analysis provides a synthetic understanding of the effects of
N addition on litter decomposition and nutrient release, which will
deepen our understanding of the mechanisms underlying the effects of
N deposition on biogeochemical cycles under climate change scenarios.
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