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A keystone microbial enzyme for nitrogen control of
soil carbon storage
Ji Chen1,2,3, Yiqi Luo4,5*, Kees Jan van Groenigen6, Bruce A. Hungate5, Junji Cao2,7,
Xuhui Zhou8,9, Rui-wu Wang1

Agricultural and industrial activities have increased atmospheric nitrogen (N) deposition to ecosystems worldwide.
N deposition can stimulate plant growth and soil carbon (C) input, enhancing soil C storage. Changes in microbial
decomposition could also influence soil C storage, yet this influence has been difficult to discern, partly because of
the variable effects of added N on the microbial enzymes involved. We show, using meta-analysis, that added N
reduced the activity of lignin-modifying enzymes (LMEs), and that this N-induced enzyme suppression was asso-
ciated with increases in soil C. In contrast, N-induced changes in cellulase activity were unrelated to changes in soil
C. Moreover, the effects of added soil N on LME activity accounted for more of the variation in responses of soil C
than awide range of other environmental and experimental factors. Our results suggest that, through responses of a
single enzyme system to added N, soil microorganisms drive long-term changes in soil C accumulation. In-
corporating this microbial influence on ecosystem biogeochemistry into Earth system models could improve pre-
dictions of ecosystem C dynamics.
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INTRODUCTION
Terrestrial ecosystems worldwide have experienced unprecedented re-
active nitrogen (N) deposition during the past decades, and future
global N deposition is expected to increase by 2.5 times or more over
this century (1–3). Enhanced N deposition has been suggested to in-
crease soil carbon (C) storage (2–7) as N fertilization generally stimu-
lates plant growth and thus C input to soil. However, N-stimulated C
input may ormay not lead to increased soil C storage depending on the
responses of decomposition to N addition (8–11). In some cases, N ad-
dition has been shown to reduce soil C storage by enhancing decom-
position, a response that can override the stimulating effect of N
addition on plant growth (8, 10, 12). On the other hand, N fertilization
can significantly increase soil C storage atN-rich sites, whereN addition
hasminor effects on plant growth but suppresses decomposition (4, 13).

Decomposition is catalyzed by microbially produced extracellular
enzymes, which break down dead plant andmicrobial biomass, and de-
polymerize macromolecules (14–16). N addition can alter extracellular
enzyme activity, suppressing the activity of lignin-modifying enzymes
(LMEs; enzymes that catalyze the breakdown of chemically recalcitrant
substrates) and enhancing cellulase activity (table S1) (9, 17–20). These
responses are apparent in short-term assays of enzyme activity and
consistent across ecosystems (19, 21, 22), but how they translate to
long-term changes in soil C in response to N input is unknown. Here,
we tested the hypothesis that N-induced shifts in C-degrading extra-
cellular enzyme activities control changes in soil C storage. We
assembled a database of C-degrading enzyme activity and soil C storage
from 40 N addition studies across four continents (fig. S1 and data S1).
Throughmeta-analysis, we then investigated the role of enzyme activity
and a wide range of environmental and experimental factors in
determining changes in soil C storage with N addition.
RESULTS
Averaged across all studies, N addition significantly increased soil C
storage by 11.0%. N addition significantly increased cellulase activity
by 15.2% and repressed LME activity by 12.8% (Fig. 1A). Changes in
soil C storage with N addition were negatively correlated with N sup-
pression of LME activity, such that N-induced suppression of LME ac-
tivity was associated with increases in soil C content (Fig. 1B). This
negative relationship held over a range of ecosystems and N addition
methods (figs. S2 and S3), although itwas not significant for studieswith
high soil C/N ratios (>21.4; fig. S4). The response of LME activity ex-
plained 40.4% of the variation in soil C storage to N addition. In con-
trast, the effects of N addition on soil C storage were unrelated to the
responses of cellulase activity (Fig. 1C). A model selection analysis (see
Materials andMethods) confirmed that responses of soil C storage were
best predicted byN-induced changes in LMEactivity over a broad range
of climate factors, vegetation and soil types, and N application methods
(Fig. 2). The response of LME activity also explained more variation in
the response of soil C compared to a wide range of additional factors
considered in the analysis (table S2; these factors were reported for only
subsets of studies and so were analyzed individually).

Across the data set, N addition significantly decreased soil pH by
0.10 U (95% confidence interval, 0.02 to 0.17). Low soil pH can reduce
decomposition rates and promote soil C storage (21, 23, 24). Thus, for
the subset of studies reporting soil pH, we repeated our model selec-
tion procedure, including soil pH and treatment effects on soil pH as
predictors. Responses of LME activity remained the most essential
predictor of the effects of N addition on soil C storage (fig. S5). In ad-
dition, N addition also significantly increased the soil recalcitrant C
pool by 22.7% and the proportion of recalcitrant C to total soil C stor-
age by 9.2% (Fig. 3).
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DISCUSSION
Why do cellulase activity and LME activity respond differently to N ad-
dition? First, microbes are more likely to produce LMEs when they are
suffering from N limitation because N-containing molecules are often
physically and chemically shielded by recalcitrant substrates such as lig-
nin (25, 26). Thus, by alleviatingmicrobial N limitation and reinforcing
microbial C limitation (20, 27), N additions may stimulate cellulase ac-
tivity and suppress LME activity (18, 25). This explanation is consistent
with our finding that the relationship between LME activity and soil C
storage is absent in ecosystems with high soil C/N ratios; under these
conditions, N additions are less likely to alleviate N limitation (14). Sec-
ond, the difference in response could be related to changes in microbial
community structure. Cellulase is produced by a large number of mi-
Chen et al., Sci. Adv. 2018;4 : eaaq1689 22 August 2018
croorganisms, but only a small number of microorganisms secrete
LMEs (for example, white-rot basidiomycetes and xylacarious ascomy-
cetes) (14). N addition often reduces the abundance of microorganisms
that secrete LMEs (28, 29), although the mechanism underlying this re-
sponse is still unclear. Third, N additionmay also affect enzyme activity
through its effect on soil pH. Soil pH can affect microbial physiology,
binding of substrates to enzymes, and the formation of the enzyme pro-
tein (21). Because the optimal pH for cellulase activity is much lower
than the optimal pH for LME activity (20), N-induced decreases in soil
pH (23) may contribute to repressed LME activity (6). However, treat-
ment effects on soil pH were small and could not predict soil C storage
with N addition within this data set.

LMEs are predominantly associated with the decomposition of
chemically recalcitrant substrates (30). Thus, our finding of N-induced
increases in recalcitrant soil C is consistent with our interpretation that
N addition stimulates soil C accumulation by reducing LME activity
(31, 32); it also corroborates a recent comprehensive meta-analysis on
N-induced changes in recalcitrant soil C (33). Because these recalcitrant
substrates protect the degradation of more labile material (30) and the
degradation of these substrates constitute the rate-limiting step in soil
organic matter (SOM) decomposition (34, 35), our results strongly sug-
gest that reducedmicrobial decomposition is a key process contributing
to soil C sequestration with N addition (2). Our findings could also help
to improve the predictive power of land C cycle models. Current model
formulations of soil C dynamics are based onC input regulated by plant
productivity and on SOM decomposition modulated by the Arrhenius
equation (30); thus, these models lack the critical process of enzyme-
mediated decomposition (30, 36). However, a new generation ofmodels
that explicitly represent microbial activity may result in more accurate
soil C predictions (37). Our results further highlight the necessity of tak-
ing the microbial enzyme–mediated decomposition process into con-
sideration to improve model predictions of soil C dynamics under
global environmental change.

Our study shows that N-induced suppression of LME activity exerts
more control over soil C storage than a broad suite of climatic and
edaphic factors, and this control occurs across experimental N
application methods and ecosystem types. The negative response of
Fig. 1. Effects of N addition on LME activity, cellulase activity, and soil C storage (A). Relationship between the responses (ln R) of soil C storage to N addition and the
response of LME activity (B) and cellulase activity (C). Error bars represent 95% confidence intervals; n = 146 in each panel. A negative relationship was found between the
response of LME activity and the response of soil C storage [coefficient of determination (r2) = 0.404, P < 0.001]. The light gray area indicates the confidence interval
around the regression line. No significant relationship was found between the response of cellulase activity and the response of soil C storage (r2 = 0.008, P = 0.295).
Fig. 2. Model-averaged importance of the predictors of the effects of N ad-
dition on soil C storage. The importance value is based on the sum of Akaike
weights derived from model selection using corrected Akaike’s information criteria.
Cutoff is set at 0.8 to differentiate between essential and nonessential predictors. ln R,
log-transformed response ratio; BND, background N deposition; MAP, mean annual
precipitation; MAT, mean annual temperature; duration, rate, frequency, and form
refer to difference in N addition methods (see Materials and Methods).
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LME activity to N addition appears to override effects of N addition on
various processes that could promote soil C loss, such as N-induced
changes in substrate quality, microbial biomass, and priming through
enhanced C input (4, 11, 34). Future research needs to identify the mi-
crobial and molecular mechanisms underlying the suppression of LME
activity and their controlling factors. The strong role of LMEs in mod-
ulating changes in soil C storage suggests that understanding this
enzyme system will reveal an independent and microbially mediated
control of soil C sink in terrestrial ecosystems.
 on January 25, 2019
advances.sciencem

ag.org/
MATERIALS AND METHODS
Data collection
We used Web of Science (http://apps.webofknowledge.com/), Google
Scholar (http://scholar.google.com/), and China National Knowledge
Infrastructure (www.cnki.net/) for an exhaustive search of articles pub-
lished beforeMarch 2018. The keywords and phrases used for literature
research were as follows: (i) “nitrogen addition,” “nitrogen amend-
ment,” “nitrogen enrichment,” “nitrogen fertilizer,” “nitrogen elevated,”
or “nitrogen deposition”; (ii) “glucosidase,” “cellobiosidase,” “xylosi-
dase,” “peroxidase,” “phenol oxidase,” “polyphenol oxidase,” “lignin
modifying enzymes,” or “cellulase”; (iii) “soil carbon”; and (iv) “terres-
trial,” “soil,” or “land”.

To be included in our data set, articles had to meet several require-
ments. First, we only considered experiments that lasted at least 1 year.
Second, control andNaddition treatments had to be applied at the same
experimental site; that is, the microclimate, vegetation, and soil types
were similar between treatments. Third, SDs and replicates had to be
reported or could be derived from the results. Fourth, details on N ad-
dition methods (rate, frequency, form, and duration) had to be pro-
vided. We identified 40 studies that met these criteria, and 9 of these
studies reported soil C data from thematching studies (see Supplemen-
tary Materials and Methods and data S1).

For each study, we recorded LME activity and cellulase activity (see
SupplementaryMaterials andMethods and table S1), site location (lon-
gitude and latitude) and climatic variables (MAP andMAT), elevation,
BND, vegetation and soil types, and N addition methods (rate, dura-
tion, frequency, and form of N addition). If these data were not re-
ported, we contacted the corresponding author for more information.
Otherwise, we obtainedMAT andMAP from theWorldClim database
(www.worldclim.org/), BND from the Global N deposition database
(http://webmap.ornl.gov/). We classified vegetation types according to
theWhittaker BiomeDiagram (38), and soil types according to the Food
Chen et al., Sci. Adv. 2018;4 : eaaq1689 22 August 2018
and Agriculture Organization taxonomy (www.fao.org/soils-portal/soil-
survey/soil-classification/usda-soil-taxonomy/en). Where available, we
also tabulated plant productivity, soil pH, soil C/N,microbial abundance,
soil texture, and the size of the recalcitrant C pool (see Supplementary
Materials andMethods anddata S2 and S3).When resultswere presented
graphically, we used Engauge Digitizer 4.1 (http://digitizer.sourceforge.
net) to digitize the data.

Data analysis
Weevaluated the effects ofN additions by the natural log of the response
ratio (ln R), a metric commonly used in meta-analysis (20, 39, 40)

ln R ¼ ln
XN

XC

� �
¼ lnðXNÞ � lnðXCÞ ð1Þ

with XC and XN as the arithmetic mean values of the variables in the
ambient and N addition treatments, respectively. The variances (v) of
ln R are calculated by

n ¼ S2N
nNX2

N

þ S2C
nCX2

C

ð2Þ

with nC and nN as the replicate numbers and SC and SN as the SDs for
ambient and N addition treatments, respectively.

Meta-analysis was conducted using the “rma.mv” function in the R
package “metafor” (http://cran.r-project.org/web/packages/metafor/
index.html). Because several papers contributed more than one re-
sponse ratio, we included the variable “publication” as a random factor
(39, 40). The effects of N addition were considered significant if the 95%
confidence interval did not overlap with zero. The results were reported
as percentage change with N addition [that is, 100 × (elnR − 1)] to ease
interpretation.

Themeta-analyticmodels were selected by using the same approach
as in vanGroenigen et al. (39) and Terrer et al. (40). Briefly, we analyzed
all possible combinations of the studied factors in amixed-effects meta-
regressionmodel using the “glmulti”package inR (www.metafor-project.
org/doku.php/tips:model_selection_with_glmulti). The importance of
each predictor was expressed as the sum of Akaike weights for models
that included this factor, which can be considered as the overall support
for each variable across all models. A cutoff of 0.8 was set to differentiate
between essential and nonessential predictors. We evaluated the impacts
of soil pH, soil C/N, soil texture (clay content), andN-induced changes in
plant productivity, soil pH, soil C/N, andmicrobial community on soil C
storage using linear regression analysis in R.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaaq1689/DC1
Supplementary Materials and Methods
Fig. S1. Global distribution of N addition experiments included in this meta-analysis.
Fig. S2. Relationships between the responses (ln R) of soil C storage and LME activity to N
addition for various vegetation and soil types.
Fig. S3. Relationships between the responses (ln R) of soil C storage and LME activity to N
addition for various N addition methods.
Fig. S4. Relationships between the responses (ln R) of soil C storage and LME activity to N
addition for studies categorized by soil C/N ratio.
Fig. S5. Model-averaged importance of the predictors of the effects of N addition on soil
C storage for studies that simultaneously reported soil pH in ambient and N addition treatments.
Fig. 3. Effects of N addition on the soil recalcitrant C pool. Error bars repre-
sent 95% confidence intervals (n = 31).
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Fig. S6. Effects of N addition on cellulase activity and LME activity for all studies in our data set
(that is, data S5).
Table S1. A detailed overview of the enzymes included in our meta-analysis.
Table S2. Evaluation of the model parameters used to explain soil C storage under N addition.
Data S1. Database of N addition studies reporting soil C storage and cellulase activity and LME
activity that were used in our analysis.
Data S2. Database of N addition studies reporting plant productivity, soil C storage, soil pH, soil
C/N, microbial community, and soil texture that were used in our analysis.
Data S3. Database of N addition studies reporting soil recalcitrant C pool that were used in our
analysis.
Data S4. Database of N addition studies reporting cellulase activity and LME activity, but not
soil C storage.
Data S5. Database of N addition studies reporting individual components of cellulase activity
and LME activity.
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