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Abstract

It is critical to accurately estimate carbon (C) turnover time as it dominates the

uncertainty in ecosystem C sinks and their response to future climate change. In the

absence of direct observations of ecosystem C losses, C turnover times are com-

monly estimated under the steady state assumption (SSA), which has been applied

across a large range of temporal and spatial scales including many at which the

validity of the assumption is likely to be violated. However, the errors associated

with improperly applying SSA to estimate C turnover time and its covariance with

climate as well as ecosystem C sequestrations have yet to be fully quantified. Here,

we developed a novel model‐data fusion framework and systematically analyzed the

SSA‐induced biases using time‐series data collected from 10 permanent forest plots

in the eastern China monsoon region. The results showed that (a) the SSA signifi-

cantly underestimated mean turnover times (MTTs) by 29%, thereby leading to a

4.83‐fold underestimation of the net ecosystem productivity (NEP) in these forest

ecosystems, a major C sink globally; (b) the SSA‐induced bias in MTT and NEP cor-

relates negatively with forest age, which provides a significant caveat for applying

the SSA to young‐aged ecosystems; and (c) the sensitivity of MTT to temperature
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and precipitation was 22% and 42% lower, respectively, under the SSA. Thus, under

the expected climate change, spatiotemporal changes in MTT are likely to be under-

estimated, thereby resulting in large errors in the variability of predicted global NEP.

With the development of observation technology and the accumulation of spa-

tiotemporal data, we suggest estimating MTTs at the disequilibrium state via long‐
term data assimilation, thereby effectively reducing the uncertainty in ecosystem C

sequestration estimations and providing a better understanding of regional or global

C cycle dynamics and C‐climate feedback.
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1 | INTRODUCTION

The terrestrial carbon (C) cycle is among the largest uncertainties

affecting global C‐climate feedback (Le Quéré et al., 2018). Ecosys-

tem C input (gross primary productivity, GPP) and C mean turnover

time (MTT) are two key factors in determining the C sequestration

capacity of terrestrial ecosystems (Luo et al., 2017; Xia, Luo, Wang,

& Hararuk, 2013). Terrestrial GPP has been well studied and exhibits

a relatively strong convergence in global modeling studies (Anav et

al., 2013), whereas the C turnover time has become the dominant

uncertainty in terrestrial ecosystem C sequestration and its response

to climate change (Carvalhais et al., 2014; Friend et al., 2014; He et

al., 2016). Therefore, accurately quantifying the ecosystem MTT and

its relationship with climate is crucial for understanding the present

and future C budget dynamics in terrestrial ecosystems.

Ecosystem MTT refers to the average time required for atmo-

spheric CO2 to enter the ecosystem via plant photosynthesis and

return to the atmosphere via C loss pathways, such as ecosystem

respiration (RE) and fire (Barrett, 2002). As the current understand-

ing of these C cycle processes is mainly based on first‐order kinetics
(Manzoni & Porporato, 2009), MTT is commonly defined as the ratio

of the C pool to the flux (Bolin & Rodhe, 1973; Friedlingstein et al.,

2006; Koven et al., 2015). Therefore, the flux used for MTT estima-

tion (i.e., influx or efflux), the state of C pools, as well as the C allo-

cation and turnover rates that control the C flow in various pools,

are all key states and processes that collectively determine for the

overall ecosystem turnover time (Sitch et al., 2003; Trumbore, 2006).

Currently, MTT estimations are mainly based on two assumptions,

the steady state assumption (SSA) and the non‐SSA (NSSA), with each

corresponding to specific ecological principles and applicable condi-

tions. Without changes in external driving forces, such as disturbances

and climate change, the internal processes of an ecosystem will gradu-

ally drive the ecosystem C cycle toward equilibrium (Luo & Weng,

2011), at which C influx equals efflux, C pools are stabilized, and the

long‐term net ecosystem C exchange becomes zero (i.e., ΔC ¼ 0);

therefore, the MTT under the SSA can be defined as “stock/influx”

(Rodhe, 1978). When ecosystems are subject to natural (e.g., insect

outbreaks and fire) and anthropogenic (e.g., land‐use change)

disturbances as well as global changes (e.g., increasing atmospheric

CO2, climate warming, and nitrogen deposition), ecosystem C cycling

processes become destabilized (Bellassen et al., 2011; Luo & Weng,

2011). Therefore, C pools in ecosystems vary dynamically over time

(i.e., dC/dt ≠ 0), the C influx is not equal to the C efflux, and the MTT

under the NSSA should be defined as “stock/efflux” (Schwartz, 1979).

An exact equilibrium is almost impossible to observe in reality;

but when the relative difference between input and output is negli-

gible, it is justified and valid to apply SSA (Odum, 1966), usually

occurring at large or coarse spatial scales where sufficient variation

in the sink/source distribution could balance the gross influx and

efflux, or occurring at long‐time scales where the effects of transient

changes in climate or atmospheric CO2 could be ignored. Specifically,

at the global or continental scale near steady state, the more readily

obtained influx can be used to estimate MTT instead of the efflux

(Carvalhais et al., 2014; Yan, Luo, Zhou, & Chen, 2014). In addition,

key process parameters, such as the allocation and turnover rates,

can be optimized and then incorporated into an analytical expression

under the SSA to quantify the spatial patterns of ecosystem MTT

(e.g., Barrett, 2002; Xia et al., 2013). Furthermore, the state of C

pools in global models can be initialized via the spin‐up process by

iterating from hundred to thousand years in preindustrial period until

equilibrium (Taylor, Stouffer, & Meehl, 2012), which determines the

C pool size used in the analysis of MTT (Exbrayat, Pitman, &

Abramowitz, 2014; Koven et al., 2015; Todd‐Brown et al., 2013).

In addition to these aforementioned applications, the SSA has

also been widely invoked in MTT research over a considerable range

of temporal and spatial scales (e.g., Galbraith et al., 2013; Thurner et

al., 2016; Wang et al., 2018; Zhou & Luo, 2008), over which non‐
steady behavior may exist. This appears to be an imperative choice

in the absence of direct measurement of C effluxes, such as hetero-

trophic respiration, or current or past‐historical ecosystem states for

constraining the dynamic ecosystem C cycle processes. Specifically,

at the regional scale with considerable C sinks, (a) the MTTs are still

obtained based on influx, which is much higher than efflux, for

example, in the forest ecosystems in eastern China (Wang et al.,

2018) and the tropics (Galbraith et al., 2013) that have been shown
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to be major C sinks globally (Pan et al., 2011; Piao et al., 2009; Yu et

al., 2014); (b) C turnover rates and allocation coefficients are still

retrieved under the SSA but further used in a transient simulation of

the regional MTT and net ecosystem productivity (NEP) (Zhou &

Luo, 2008; Zhou, Shi, Jia, Li, & Luo, 2010; Zhou, Shi, Jia, & Luo,

2013); (c) as global C models have been developed to fine spatial

scales, the SSA is also widely used for C pool state initialization at

local scales with dynamic C sources or sinks (e.g., young‐aged for-

ests) (Carvalhais et al., 2008, 2010; Huang et al., 2011; Law, Thorn-

ton, Irvine, Anthoni, & Van, 2001; Morales et al., 2005). Previous

studies have reported the uncertainty in C pool states and C cycle

parameters induced by the SSA (e.g., Carvalhais et al., 2008, 2010),

which may further affect the validity of MTT estimation via the

“stock/flux” approach. Therefore, a better understanding of the mis-

match between the ideal SSA and realistic disequilibrium state in C

turnover time estimation is needed and the effect of such inconsis-

tencies on C sequestration should be determined.

With the development of observational technology and the accu-

mulation of multiple and time‐series C cycle datasets over the past

decade, our understanding of terrestrial C dynamics has improved;

accordingly, C effluxes can be better constrained to return to the

definition of MTT at the realistic disequilibrium state (e.g., Bloom,

Exbrayat, Ir, Feng, & Williams, 2016). On this basis, researchers have

attempted to develop the model‐data fusion (MDF) method to esti-

mate ecosystem MTT under the NSSA, which integrates the process‐
based model and observational data to estimate these C cycle

dynamics in better agreement with the actual disequilibrium state

(Bloom et al., 2016; Luo et al., 2003; Xu, White, Hui, & Luo, 2006;

Zhang, Luo, Yu, & Zhang, 2010; Zhou, Shi, et al., 2013). Moreover,

the uncertainty in allocation and turnover parameters as well as C

pool states have largely been reduced based on the time‐series
observations under the NSSA, thereby significantly enhancing the

model's ability to predict MTT and NEP (Safta et al., 2015; Smallman,

Exbrayat, Mencuccini, Bloom, & Williams, 2017).

Regardless, a detailed comparative analysis of ecosystem MTT

estimations under the NSSA and SSA has not been conducted

based on multi‐source and long‐term continuous observational data.

In this study, we systematically examined differences in ecosystem

C cycle states and processes estimated under the two assumptions

as well as the underlying mechanisms within a robust analytical

framework, using large amounts of long‐term continuous observa-

tional soil, biology, and climate data for 10 typical forest ecosys-

tems from the Chinese Ecosystem Research Network (CERN) that

represent the East Asian monsoon region, a large C sink accounting

for 8% of the global forest NEP (Yu et al., 2014). Our analysis

mainly focuses on the mismatch between the two assumptions

with regard to (a) the magnitude and spatial pattern of the ecosys-

tem MTT, (b) the relationship between the ecosystem MTT and cli-

mate, and (c) the ecosystem C sink in these forest ecosystems.

These quantitative comparisons using the proposed framework

could provide a reference for future MTT research in terms of

SSA/NSSA method selection and facilitate an awareness of the

corresponding uncertainty.

2 | MATERIALS AND METHODS

2.1 | Site description

The eastern China monsoon region covers tropical, subtropical, warm

temperate, and temperate climate zones from south to north, and sub-

humid and humid areas from north‐west to south‐east. The large pre-

cipitation and temperature gradients support diverse forest ecosystems

ranging from evergreen broad‐leaved and coniferous forests to decidu-

ous coniferous and broad‐leaved forests. Here, we selected 10 perma-

nent plots with long‐term observational data from CERN to cover the

typical forest types with various ages in this region (Figure 1; Table S1).

All 10 sites are well protected and subject to minimal disturbance.

2.2 | Data

The collected data are divided into four meteorological driving data,

five stock‐related constraint datasets of soil, foliage, fine root, wood,

and leaf area index (LAI), and three flux‐related constraint datasets

of litterfall, net ecosystem exchange (NEE), and soil respiration (Rs).

The time‐series observations at most of the sites cover the period

from 2005 to 2015, but those of SNF, which was incorporated into

CERN later, are from 2010 to 2015 (Table S2).

2.2.1 | Biometric data

At each site, the biomass of leaves, branches, stems, and roots were

estimated from the measured diameters at breast height and tree

heights using the allometric method. The biomass inventory was per-

formed at least once every 5 years. To split fine and coarse root bio-

mass, the ratio of the fine root biomass to the entire root biomass in

typical Chinese forests was obtained from Zhang and Wu (2001),

and the coarse root biomass was then combined with the branch

and stem biomasses to constitute the woody biomass. Estimates of

leaf, fine root, and woody biomass were used to constrain the corre-

sponding C pools in the inverse analysis.

The aboveground litterfall biomass was measured by 10 repli-

cates of 100 cm × 100 cm baskets monthly during the growing sea-

son or once during the non‐growing season. All collected litter was

dried at 70°C for 24 hr and weighed. We used annual litterfall bio-

mass data for the inverse analysis to avoid the effect of wind on the

measurement of litterfall biomass within an individual month.

The LAI at each site was measured optically with a LAI‐2000 plant

canopy analyzer (LI‐COR, Lincoln, NE, USA) at least quarterly every

year and corrected by the foliage clumping index, which was set for

plant functional type (PFT)‐specific empirical values as reported in Zhu

et al. (2012). The seasonal variation in the LAI combined with the leaf

C mass per leaf area (LCMA) parameter constrained the dynamic tra-

jectory of the leaf C pool in the MDF analysis.

2.2.2 | Soil data

Soil C content was calculated from soil organic matter (SOM) mea-

sured by the potassium dichromate oxidation titrimetric method and
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soil bulk density measured by the cutting ring method in each field

campaign at 10 forest sites. At least three samples were collected

from each of five soil layers (0–10, 10–20, 20–40, 40–60, and 60–
100 cm) once every 5 years. We calculated the soil organic C (SOC)

as follows (Post, Pastor, Zinke, & Stangenberger, 1985; Equation 1).

SOC ¼ ∑n
i¼10:58� Hi � Bi �Oi � 100 (1)

where SOC is soil organic C density (g C/m2) of all n layers, Hi is soil

thickness (cm), Bi is soil bulk density (g/cm3), and Oi is SOM content

of the ith layer (%).

2.2.3 | Flux data

Net ecosystem exchange data were obtained from ChinaFLUX, cov-

ering CBF, QYF, ALF, and BNF. The data were aggregated to the

daily time step from half‐hourly CO2 flux data measured by the eddy

covariance technique and processed by quality control and gap filling

(Li et al., 2008). To reduce the impact of gap‐filled data on parameter

estimations, we only aggregated NEE data for the days with at least

50% observed half‐hourly fluxes, which were relatively evenly dis-

tributed in the daytime and nighttime.

Soil respiration data were measured using static chamber‐gas
chromatography techniques at CBF, QYF, DHF, HSF, and BNF

(Zheng et al., 2010). A total of four to six replicates were measured

two to three times per month with sampling times between 9:00

a.m. and 11:00 a.m. In this study, the monthly averaged hetero-

trophic respiration (Rh) was obtained according to the ratio of root

respiration to Rs in the typical Chinese forest ecosystem to constrain

the seasonal variation of C efflux from litter and soil in the inverse

analysis (Chen, Yang, Ping‐Ping, & Zhang, 2008).

2.2.4 | Meteorological data

In situ observations of daily air temperature (T), photosynthetically

active radiation (PAR), relative humidity (RH), and saturated vapor

pressure difference (VPD) at the 10 sites from 2005 to 2015 were

obtained from the CERN scientific and technological resources ser-

vice system (http://www.cnern.org.cn/) and processed by standard-

ized quality control and gap filling (Li et al., 2008; Liu, Tang, et al.,

2017).

2.3 | Model

Data Assimilation Linked Ecosystem Carbon (DALEC) has been

applied extensively in the MDF framework (Bloom et al., 2016;

Richardson et al., 2010). It is a box model of C pools connected via

fluxes running at a daily time step, and its main structure (i.e., C

cycle, C allocation, and turnover process) is generally consistent with

the state‐of‐the‐art process‐based models (Figure 2). Here, we used

two versions of DALEC, an evergreen forest‐specific version

(DALEC‐E; Williams, Schwarz, Law, Irvine, & Kurpius, 2005) with five

pools (i.e., foliage, fine root, woody [including branch, stem, and

coarse root], litter, and SOM) and a deciduous forest‐specific version

(DALEC‐D; Fox et al., 2009) with an additional labile pool of stored

C that supports leaf flushing.

The detailed C cycle of forest ecosystems can be characterized

by several properties (Xia et al., 2013): (a) the C cycle is usually initi-

ated with the canopy C influx GPP. Specifically, GPP is estimated

herein using a canopy photosynthesis model (Ji, 1995; Appendix S1),

which is a function of LAI, PAR, T, and RH. Note that the daily LAI

is estimated as the ratio of the simulated foliar C pool and optimized

F IGURE 1 Map showing the distribution of 10 forest ecosystems in the Chinese Ecosystem Research Network (CERN). BNF:
Xishuangbanna tropical seasonal rainforest; HSF: Heshan subtropical evergreen broad‐leaved forest; DHF: Dinghu Mountain subtropical
evergreen coniferous and broad‐leaved mixed forest; ALF: Ailao subtropical evergreen broad‐leaved forest; QYF: Qianyanzhou subtropical
evergreen artificial coniferous mixed forest; HTF: Huitong subtropical evergreen broad‐leaved forest; SNF: Shennongjia subtropical evergreen
deciduous broad‐leaved mixed forest; MXF: Maoxian warm temperate deciduous coniferous mixed forest; BJF: Beijing warm temperate
deciduous broad‐leaved mixed forest; CBF: Changbai Mountain temperate deciduous coniferous and broad‐leaved mixed forest [Colour figure
can be viewed at wileyonlinelibrary.com]
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LCMA parameter. (b) GPP is consumed in a certain fraction (fauto) as

autotrophic respiration (Ra) and partitioned into various plant pools

(i.e., foliar, labile, wood, and fine roots); then, the degraded C from

biomass pools goes to two dead organic matter pools with tempera-

ture‐dependent losses (Rh). (c) C transfers are dominated by the

donor pools (e.g., the litter decomposing into soil). (d) C exiting from

C reservoirs is based on the first order differential equation. These

properties of the forest C cycle in DALEC can be mathematically

described by a matrix model as Equation 2 and determined as a

function of key C cycle parameters (Table S3). All these parameters

will be optimized based on the stock‐ and flux‐related observations.

dC
dt

¼ BIðtÞ � AξkCðtÞ (2)

where C(t) is a vector of C pool sizes at time t; B ¼ ð ffol; froo;

fwoo; 0; 0ÞT represents the partitioning fractions from photosyntheti-

cally fixed C input to the foliage (ffol), root (froo), woody (fwoo), litter, and

soil pools; I(t) is the input flux of fixed C via plant photosynthesis;

k ¼ diagð θfol; θroo; θwoo; θmin þ θlit; θsom Þ, a diagonal matrix of

exit rates to quantify the fraction of C left from the foliage (θfol), root

(θroo), woody (θwoo), soil (θsom), litter (θlit) pool, and the litter mineraliza-

tion rate into soil (θmin); and ξ ¼ diagð1; 1; ; fðTÞ; fðTÞ Þ, a diagonal

matrix of temperature scalar f(T) to quantify response of C decay rate to

changes in temperature. The response to soil moisture was not consid-

ered in DALEC given the overall good moisture condition in these forest

ecosystems (MAP = 1,160.18 ± 413.79 mm). A is a square matrix of

transfer coefficients to quantify C movement among pools as follows:

A ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
�1 �1 0 1 0
0 0 �1 � θmin

θminþθlit
1

0
BBBB@

1
CCCCA ()

2.4 | Estimation of ecosystem MTT and NEP based
on the MDF framework

The analytical framework developed here systematically considered

the C pool initial state, cost function, observational and forcing data

involved in the inverse analysis, and formula for estimating MTT to

diagnose the SSA‐induced bias in contrast to the NSSA, which affected

parameter retrieval and the estimation of MTT and NEP (Figure 3).

Note that models were the same in the NSSA and SSA setups. The

temporal domains for model simulation were from 2005 to 2015.

2.4.1 | Parameter estimation under the SSA and
NSSA

Under the NSSA, C pools are time‐variant, that is, C influx is not

equal to the C efflux, thus not restricted to NEP ~0; the dynamic

long‐term observations of C stocks and fluxes were used to con-

strain the DALEC model. As an important factor that may affect the

estimated MTT and NEP, the initial state of the C pools was deter-

mined by the initial observation of C stocks or optimized (i.e., the

labile pool, which cannot be directly observed) to avoid the uncer-

tainty arising from the spin‐up process. Then, the turnover and allo-

cation parameters were inverted under the disequilibrium state

(Equation 3) with dynamic environmental forcing.

dC
dt ≠0
Ciðtþ 1Þ ¼ CðiÞðtÞ þ IiðtÞ � kiCiðtÞ; i ¼ 1;2 . . . n
Ciðt ¼ 0Þ ¼ Ci0

8<
: (3)

where Ci, Ii, ki represent the size, input, and turnover rate of the ith

C reservoir, respectively; Ci0 represent the initial state of the ith C

reservoir; and t represent the daily step. According to the Bayesian

theory, the posterior distributions of parameters are calculated by

maximizing the likelihood function (Equation 4).

LNSSA ¼
Ym

j¼1

Ynj

i¼1

1ffiffiffiffiffiffiffiffiffi
2πσj

p e�ðxj;i�μj;iðPNSSAÞÞ2=2σ2j ; m ¼ 1;2; . . .8 (4)

where LNSSA is the integrated likelihood function under the NSSA; m

is the number of multiple data types; n is the number of data points

in the jth data type; xj,i is the measured value composed of eight

dynamic C stock and flux observations; μj,i(pNSSA) represents the

modeled fluxes and stocks based on parameters under the NSSA

(PNSSA); and σj is the standard deviation of each data point in the jth

data type.

Under the SSA, C pools are stabilized such that an additional

constraint of long‐term NEP ~0 was used to constrain the initial

state of C pools at steady state, in addition to the observed C stock

and flux constraints. As the meteorological forcing spans 2005–
2015, we averaged total ecosystem C pools (CTOT) over each 10‐
year segment to obtain CTOT, and determined steady state criterion

by which changes in ΔCTOT (Equation 5) between two neighboring

segments are within a threshold of 0.5 g C m−2 year−1 (as one crite-

rion in Thornton & Rosenbloom, 2005; Xia et al., 2012).

ΔCTOT ¼ jCTOTðtþ 1Þ � CTOTðtÞj � 0:5 (5)

where t represents the period for parameter optimization during

2005–2015.
The C turnover and allocation parameters were retrieved under

the repeated 10 year (2005–2015) cycle of meteorological forcing

until the initial state of C pools were stationary at the annual time

F IGURE 2 Structures of the Data Assimilation Linked Ecosystem
Carbon (DALEC)‐evergreen model (gray) and the DALEC‐deciduous
model (gray and black). Dotted arrows show the inputs into the
photosynthesis model
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scales (i.e., long‐term NEP ~0, Equation 5), and the likelihood

function was maximized compared to the observations

(Equation 6).

LSSA ¼
Ym

j¼1

Ynj

i¼1

1ffiffiffiffiffiffiffiffiffi
2πσj

p e�ðxj;i�μj;iðPSSAÞÞ2=2σ2j ; m ¼ 1;2; . . .8 (6)

where μj,i(PSSA) represents the modeled values based on parameters

under the SSA (PSSA), and LSSA is the integrated likelihood under the

SSA and consists of five stock‐related observations, two efflux

observations (litterfall and Rs), and the tolerance of long‐term NEE

described in Equation 5.

Specifically, we applied the Metropolis simulated annealing algo-

rithm, a variation of the Markov Chain Monte Carlo technique, for

parameter estimation (Zobitz, Desai, Moore, & Chadwick, 2011).

Besides, ecological and dynamic constraints were imposed on the

DALEC parameters and pool dynamics (Appendix S2) which can sig-

nificantly reduce uncertainty in model parameters and simulations

(Bloom & Williams, 2015).

2.4.2 | Estimation of ecosystem MTT under the
SSA and NSSA

Here, we use the MTT_(MDF scheme, i.e., SSA/NSSA)_(flux term used,

i.e., Input (I) /Output (O)) to consistently define the C turnover times in

different analyses. Under the SSA, long‐term NEP = 0; that is, the C

influx equalizes the efflux, such that the ecosystemMTT can be defined

as the ratio of retrieved total ecosystem C stocks to the ecosystem

influx (Sanderman, Amundson, & Baldocchi, 2003, Equation 7):

MTT SSA I ¼ Cpool SSA

I SSA� ΔCpool

¼ CpoolSSA

ISSA
(7)

where MTT_SSA_I is the ecosystem MTT under the SSA as esti-

mated from C influx, Cpool SSA is the mean annual ecosystem C pool,

ISSA is the mean annual ecosystem C input (GPP), and ΔCpool is the

change in the ecosystem C pool.

We have further derived an analytical expression for MTT_SSA_I

(Equation 8):

MTT SSA I ¼ ∑n
i Cpooli SSA

ISSA
¼ Ii SSA

ISSA
�∑n

i Cpooli SSA

Ii SSA

¼ ffol
θfol

þ froo
θroo

þ fwoo

θwoo
þ ffol þ froo
ðθmin þ θlitÞ � ξ

þ fwoo þ ðffol þ frooÞ � θmin
θminþθlit

θsom � ξ

 !

� ð1� fautoÞ ¼ ð1 1 . . . 1 ÞðAξkÞ�1Bð1� fautoÞ
(8)

where Cpooli SSA
and Ii SSA represent the mean annual size and influx

of the ith C pool, respectively, which are simulated based on the

site‐specific SSA‐optimized parameters at each site.

F IGURE 3 Flow chart of the model‐
data fusion framework under the steady
state assumption (SSA) and non‐steady
state assumption (NSSA)

GE ET AL. | 943



This form is compatible with the inverse matrix composed of the

optimized allocation, turnover, and transit parameters (Luo et al.,

2017; Xia et al., 2013), which consider the ecosystem MTT to be

aggregated from the sum of turnover times for pools in series and

the influx‐weighted turnover time of pools in parallel (Barrett, 2002).

The inherent consistency is theoretically supported by Sierra, Müller,

Metzler, Manzoni, and Trumbore (2017), because both forms are

based on the hypothesis that the size of the C pool is equivalent to

the product of C input flux and C turnover time in the equilibrium

state (Bolin & Rodhe, 1973).

Under the NSSA, each C pool is an instantaneous state variable;

thus, the efflux‐weighted turnover time of pools is also time‐variable
and cannot be parameterized. Therefore, constructing an inverse

matrix explicitly composed of the turnover and allocation parameters

to represent the MTT is difficult. In this case, the ratio of the total

ecosystem C stock to the efflux simulated based on these optimized

parameters under NSSA is used to estimate ecosystem MTT

(Schwartz, 1979; Bloom et al., 2016; Equation 9).

MTT NSSA O ¼ Cpool NSSA

INSSA � ΔCpool
¼ Cpool NSSA

ONSSA

¼ ∑n
i Cpooli NSSA

ONSSA

¼ Oi NSSA

ONSSA

�∑n
i Cpooli NSSA

Oi NSSA

¼ ð1 1 . . . 1 ÞðξkÞ�1w

(9)

where w ¼ Ofol NSSA

ONSSA

;
Owoo NSSA

ONSSA

;
Oroo NSSA

ONSSA

;
Olit NSSA

ONSSA

;
Osom NSSA

ONSSA

� �
;

MTT_NSSA_O is the ecosystem MTT under the NSSA based on C

output; Cpool NSSA
is the mean annual ecosystem C pool; INSSA is the

mean annual ecosystem C input (GPP); ONSSA is the mean annual

ecosystem C output (RE); Cpooli NSSA
and Oi NSSA represent the mean

annual size and output of the ith C pool, respectively; w represents

the output‐dependent weight of C pools; and Ofol NSSA
, Owoo NSSA ,

Oroo NSSA , Olit NSSA
, and Osom NSSA represent the mean annual output of

the foliage, wood, root, litter, and soil pools, respectively. All C

stocks and fluxes were simulated based on the site‐specific NSSA‐
optimized parameters at each site. Because the C reservoirs, fluxes,

and turnover times are instantaneous values, we used the average of

the fluxes and reservoirs for multiple years to reflect the average

turnover time during a specific period (i.e., 2005–2015). Note that

with few natural and anthropogenic disturbances at these well‐pro-
tected CERN sites (Zhang et al., 2010; Zhou et al., 2006), the total

ecosystem output was approximately equivalent to the RE.

2.4.3 | Estimation of ecosystem NEP based on the
SSA‐ and NSSA‐inverted parameters

The optimized parameter values under the NSSA and SSA along with

the initial observations of corresponding C pool sizes were used in

forward modeling driven by the dynamic environmental variables

from 2005 to 2015 (Zhou & Luo, 2008). NEP was further derived

from the difference between the ecosystem C influx and RE to

examine the effects of retrieved parameters on C sequestration

under different hypotheses.

2.5 | Estimation of ecosystem MTT based on
observation

To test the robustness of MTT_SSA_I based on SSA‐inversion at the

10 sites, the MTT under the SSA based on observed influx

(MTT_OBS_I) was calculated from the ratio of mean annual total

ecosystem stock measurements in CERN and the mean annual GPP

observed from moderate resolution imaging spectroradiometer

(MODIS) (Carvalhais et al., 2014). MODIS products of GPP

(MOD17A2H, 500m) at each site were downloaded from the Univer-

sity of Oklahoma Data Center (http://www.eomf.ou.edu/visual

ization/manual/) and then accumulated to the annual time step from

the 8‐day observational data. Because the annual MODIS GPP val-

ues are consistent with the tower‐based GPP at the flux sites (Fig-

ure S1, R2 = 0.90, p < 0.01, mean absolute error [MAE] = 37.39 g

C m−2 year−1), it is reasonable to use this high‐resolution product as

a reliable observation at the site scale.

3 | RESULTS

3.1 | Key parameters retrieved under the SSA and
NSSA

Under the NSSA, the ratio of Ra to GPP (fauto) varied from 0.3 to

0.7, with a mean value of 0.53, showing a trend of first decreasing

and then increasing with decreasing latitude (Figure 4a and Fig-

ure S2). The proportion of NPP allocated to wood (fwoo) ranged from

0.5 to 0.9, with a mean value of 0.67, showing an increasing trend

with decreasing latitude (Figure 4d and Figure S2). The MTTs (i.e.,

the inverse of the turnover rate) of wood, soil, foliage, fine root, and

litter at the 10 sites were 48.54, 86.55, 3.12, 2.40, and 1.13 years,

respectively. Specifically, the turnover rate of wood and soil (θwoo

and θsom), the two largest C pools in living vegetation and dead

organic matter, respectively, showed obvious increasing trends with

decreasing latitude (Figure 4g,i and Figure S2). The temperature sen-

sitivity of soil decomposition (Rhtemp) exhibited a spatial pattern of

tropical forest > temperate forest > subtropical forest (Figure 4k

and Figure S2). However, compared to the key C cycle parameters

under the NSSA, the allocation to faster‐turnover C pools under the

SSA was mostly overestimated (fauto, ffol), but to slow‐turnover pools
(fwoo) was underestimated; turnover rate of major pools (θwoo and

θsom) were overestimated; furthermore, the sensitivity to climate

(Rhtemp) was underestimated; and these parameters lacked obvious

spatial patterns (Figure 4a,c,d,g,i,k).

We compared the modeled and observed datasets to validate

the inverted parameters based on multi‐source data. Under the

NSSA, the simulated and observed vegetation and soil C stocks and

C fluxes agreed well, with the scatter points falling along the 1:1 line

(Figure 5). Specifically, the determination coefficients (R2) for C

stocks varied between 0.94 and 0.99, and the root‐mean‐square
errors (RMSEs) were small relative to their magnitudes (Figure 5a–e).
In contrast, R2 for C fluxes (NEE and Rs) were slightly lower (0.45–
0.50), but the RMSEs were only 1.37 and 0.67 g C m−2 day−1,
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respectively (Figure 5g,h). Under the SSA, the model performance

regarding the C stocks was comparable with that under the NSSA

(Figure 5a–e), but due to the overestimation of C turnover rates (Fig-

ure 4e–j), simulated C effluxes, such as litterfall and Rs, were mark-

edly overestimated, which in turn overestimated NEE (Figure 5f–h).

3.2 | Magnitude of MTT and its relationship with
forest age under the SSA and NSSA

At the 10 sites, the MDF‐based ecosystem MTT under NSSA

(MTT_NSSA_O) and SSA (MTT_SSA_I) and the observation‐based
ecosystem MTT under SSA (MTT_OBS_I) ranged from 9.64 to 38.23,

7.29 to 33.59, and 8.73 to 36.31 years, with averages of 24.44,

17.27, and 17.20 years, respectively. As MTT_SSA_I and MTT_OBS_I

were nearly identical (Figure 6b, MAE = 0.25, R2 = 0.86, p < 0.001),

MTT_SSA_I was selected to represent the estimated MTT under SSA

in the ensuing analyses.

The ecosystem MTT_SSA_I was significantly lower (with an aver-

age of 29%) than the MTT_NSSA_O (Figure 6a, p < 0.05). Because

wood and soil are the two largest C pools in forest ecosystems, the

differences in their turnover rates estimated under the SSA and

NSSA and the relative contributions to the difference between the

whole‐ecosystem MTT_SSA_I and MTT_NSSA_O (ΔMTT) deserved

further analysis. Both the θwoo and θsom were significantly overesti-

mated under the SSA (Figure 4g,i) with the magnitude of the overes-

timation for θwoo being greater than that for θsom (1.24E‐04 vs.

5.02E‐05), which largely accounted for the ecosystem ΔMTT. Mean-

while, less C was allocated to slow‐turnover structural C pools under

the SSA (Figure 4d, fwoo_SSA = 0.46 vs. fwoo_NSSA = 0.68), thus leading

to underestimations of the vegetation MTT and ecosystem MTT.

The ecosystem ΔMTT varied among different ecosystems (Fig-

ure 6a), and these differences should be closely associated with how

far the ecosystems deviate from the equilibrium state, as most likely

reflected by the age‐related growth. Thus, forest age was used as a

F IGURE 4 Optimized key parameters involved in the allocation and turnover processes under the non‐steady state assumption (NSSA) and
steady state assumption (SSA) at 10 sites along a decreasing latitudinal gradient. The black and gray boxes denote NSSA and SSA, respectively
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proxy of the gap between the actual and equilibrium state. We

found that the forest age accounted for more than 50% of the varia-

tion in ecosystem ΔMTT with a significantly negative correlation

(Figure 7a, p < 0.005). Further analysis revealed that rather than the

overestimation of θsom, the overestimation of θwoo under the SSA

(Δθwoo), which exhibited a significant power function relationship

with forest age, dominated the age‐dependent ΔMTT in the entire

ecosystem (Figure 7b and Figure S3).

3.3 | Latitudinal pattern of MTT and its covariance
with climate under the SSA and NSSA

The ecosystem MTT_NSSA_O and MTT_SSA_I exhibited similar lati-

tudinal patterns, both of which decreased with decreasing latitude

(Figure 8a), showing a pattern of temperate MTT > subtropical

MTT > tropical MTT (Figure 6a). ALF appears to be an outlier,

mainly due to its high elevation (2,488 m) and special vertical

zonality. We further analyzed the relationship between MTT and cli-

mate, which is recognized as an important factor regulating the lati-

tudinal MTT gradient (Carvalhais et al., 2014). Both the ecosystem

MTT_SSA_I and MTT_NSSA_O were negatively correlated with tem-

perature and precipitation (Figure 8b,c), but the sensitivity of the

MTT_SSA_I to these two climatic variables was significantly lower

than that of the MTT_NSSA_O, which decreased from 1.02 to

0.80 year/°C (by 22%) for temperature and from 1.34 to 0.78 year/

100 mm (by 42%) for precipitation.

3.4 | Ecosystem C sequestration based on the SSA‐
and NSSA‐inverted parameters

Under the dynamic environmental conditions, all 10 forests were net

C sinks based on both the SSA‐ and NSSA‐inverted parameters (Fig-

ure 9). However, with respect to actual eddy covariance observa-

tions, the NEP was obviously underestimated with the SSA‐inverted

F IGURE 5 Comparisons between the observed and modeled values at all sites under the non‐steady state (NSSA: black dots) and steady
state (SSA: red dots) assumptions [Colour figure can be viewed at wileyonlinelibrary.com]
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parameters, whereas the NEP based on NSSA parameters was highly

consistent (Figure 5g); for example, the mean annual NSSA‐estimated

and observed NEP were 347.4 and 306.6 g C m−2 year−1 at CBF,

respectively, and 465.9 and 469.3 g C m−2 year−1 at QYF. Overall,

the mean annual NEP for 10 typical forest ecosystems in eastern

China monsoon region reached 325.2 g C m−2 year−1 based on

NSSA‐inverted parameters, which was 4.83 times that estimated

with SSA‐inverted parameters (67.3 g C m−2 year−1). Furthermore,

the SSA‐induced bias in NEP was significantly greater (p < 0.05) in

young and middle‐aged forests (7.3‐fold) than that in mature forests

(3.8‐fold). The underestimation of NEP in SSA analysis was largely

due to the overestimation of RE, which is closely associated with

the overestimation of C turnover rates and allocations to fast‐turn-
over pools (Figure 4); whereas GPP was comparable to that under

the NSSA (Figure S4).

4 | DISCUSSION

4.1 | Robustness of MTT estimations under SSA
and NSSA

The robustness of MTT_SSA_I estimations in the 10 ecosystems has

been assessed with respect to MTT_OBS_I, which is generally recog-

nized as a benchmark in current research (e.g., Thurner et al., 2017).

Although eddy covariance measurements for MTT_OBS_I estimation

are lacking for some of the sites, the MOD17A2H product per-

formed as a suitable alternative for GPP observations because its

spatial resolution is finer than the footprint of the flux towers (Mi,

Yu, Wang, Wen, & Sun, 2006; Zhao et al., 2005). Furthermore, we

found the magnitude and spatial pattern of ecosystem MTT_SSA_I in

eastern China monsoon forests were consistent with various

MTT_SSA estimations by observation or inversion approach in regio-

nal or global forest ecosystems (Table S4). A negative correlation of

MTT_SSA_I with both temperature and precipitation was observed

in this study, which was supported by research on MTT_SSA_I based

on forest inventory and remote sensing observations (Carvalhais et

al., 2014; Gill & Jackson, 2000; Sanderman et al., 2003). The high

consistency and robustness of MTT_SSA calculated by various meth-

ods indicated that the deviation in MTT_SSA identified in this study

has broad implications for various SSA applications in C cycle

research.

Due to the complexity of ecosystem C emission processes and

the scarcity of ecosystem efflux data, it remains challenging to vali-

date the inverted MTT_NSSA_O of whole‐ecosystem with respect to

observation‐based estimates at disequilibrium state. However, the

magnitude of the key process parameters regulating the ecosystem

MTT under the NSSA as inferred in this study was broadly consis-

tent with a number of empirical studies on C allocations, vegetation

F IGURE 6 Magnitude of ecosystem C turnover times under the equilibrium and disequilibrium hypotheses. The black, light‐gray, and dark
gray boxes denote the inversion‐based MTT under non‐steady state (MTT_NSSA_O), inversion‐based MTT under steady state (MTT_SSA_I),
and observation‐based MTT under steady state (MTT_OBS_I), respectively

F IGURE 7 Relationships between
forest age and differences of the entire
ecosystem MTT (ΔMTT) as well as wood
turnover rates (Δθwoo) estimated under the
steady state assumption (SSA) and non‐
steady state assumption (NSSA)
hypotheses
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turnover rates and mortality, and soil decomposition rates (Table S5).

The turnover times of fine roots measured from δ13C signals tend to

be systematically overestimated due to sampling biases, with the fin-

est and most ephemeral roots being missed (Strand, Pritchard,

McCormack, Davis, & Oren, 2008). Regarding the pattern of these

key processes, fauto first decreased and then increased as tempera-

ture increased at the turning point of approximately 11°C, which

was highly congruent with the synthetic analysis based on the global

forest database and could be ascribed to the asymmetric response

of RE and GPP to rising temperature (Piao et al., 2010). The

decrease in fwoo with increasing latitude and decreasing temperature

was supported by the inventory‐based synthesis in Chinese forests

(Li, Zhou, & He, 2009), and this pattern may be explained by the

adaptive strategies of forest trees to temperature (Reich et al., 2014)

as well as the age‐structure‐related strategy (Zhou, Shi, et al., 2013),

which tends to allocate less C to the structural pool in old forests

mainly distributed in cold, high‐latitude regions in China (Zhang et al.,

2014). θwoo and θsom both increased with rising temperature, which

agrees well with the variation in the plant mortality rate based on

forest inventory (Mantgem et al., 2009; Zhou, Peng, et al., 2013) and

the variation in soil C decomposition based on Rs observations from

the chamber or isotope method (Chen, Huang, Zou, & Shi, 2013;

Frank, Pontes, & McFarlane, 2012; Karhu et al., 2010). In addition,

Rhtemp was higher in tropical and temperate forests than subtropical

forests, which is consistent with the regional variation in tempera-

ture sensitivity in Chinese forests based on field sampling and incu-

bation experiments (Liu, He, et al., 2017; Zhou et al., 2009).

Overall, the robustness of estimations under the NSSA compared

to the empirical research indicates that the C cycle dynamics esti-

mated by NSSA method match the realistic observations well. Thus,

the SSA‐induced bias in MTT estimation and the underlying mecha-

nism can be reliably quantified in contrast to our estimations under

NSSA.

4.2 | Identification of the uncertainty in MTT under
SSA

Under the background of global environmental changes, extensively

distributed disturbances drive the ecosystems far from a steady state

at local scales (Luo & Weng, 2011), which makes the spatially speci-

fic research a great challenge. Although the spatial aggregation of

regional/global may approximately estimate the MTT under the SSA

(Odum, 1966), identifying the explanatory mechanism is difficult

because the aggregation also merges some spatially heterogeneous

influencing factors, such as temperature and terrain, that nonlinearly

impact the MTT. In addition, previous studies have challenged the

inherent concept behind SSA for the ecosystem C cycle (Cannell &

Thornley, 2003; Lugo & Brown, 1986), for example, whether SSA‐ap-
plicable old‐growth forests are quasi‐neutral or large C sinks (Luys-

saert et al., 2008; Zhou et al., 2006). Moreover, some uncertainties

from the SSA have been revealed in C cycle studies; for example,

model initialization until equilibrium systematically overestimated the

C pools (Pietsch & Hasenauer, 2006), exhibiting a sixfold range

among various global C models (Exbrayat et al., 2014). This further

F IGURE 8 Associations of mean carbon turnover times with temperature and precipitation under the steady state assumption (SSA, gray
triangles) and non‐steady state assumption (NSSA, black dots)

F IGURE 9 Comparison of net ecosystem productivity (NEP)
estimated with the parameters inverted under the steady state
assumption (SSA) and non‐steady state assumption (NSSA) in 10
forest ecosystems of different ages
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led to compensatory biases in NEP simulation, whereas relaxing the

SSA in initialization made a 92% decrease in NEP errors (Carvalhais

et al., 2008, 2010). Besides, key turnover parameters determined

under the SSA were overestimated, for example, the decay rate of

recalcitrant pools (Wutzler & Reichstein, 2007); this further resulted

in underestimation of NEP in transient simulation, which may be up

to 30% even when C sinks only account for 10% of the C input in

disequilibrium ecosystems (Zhou, Shi, et al., 2013). It is noteworthy

that these biases in pool initialization and parameter inversion will

propagate into the MTT estimation via the “pool/flux” method and

need to be determined.

Our study provides a new MDF framework to trace the uncer-

tainty in turnover time induced by traditional SSA through direct

comparison with the realistic disequilibrium state rather than con-

ducting sensitivity experiments as reported in Carvalhais et al. (2008)

or Zhou, Shi, et al. (2013). Additionally, we collectively consider the

factors resulting in the mismatch between MTT_SSA_I and

MTT_NSSA_O, that is, the pool initialization, the turnover, and allo-

cation parameter inversions as well as the formulas for estimating

MTT used under two assumptions (Figure 3). Via this framework, a

significant underestimation in MTT_SSA_I was observed in these

sites, which may be partly explained by the overestimated turnover

rates and underestimated allocation to structural pools under SSA

(Figure 4). Moreover, in ecosystems with substantial sinks where

GPP is much higher than RE, the input‐based MTT_SSA_I should be

smaller than the output‐based MTT_NSSA_O, which might be more

evident in younger forests due to the intrinsic relationship between

age and forest growth (Goulden et al., 2011; Zaehle et al., 2006).

To further distinguish the SSA‐induced biases arising from the

parameterization or the MTT estimation, we contrasted

MTT_NSSA_O versus MTT_SSA_O (R2 = 0.76, RMSE = 9.01 year)

and MTT_NSSA_I versus MTT_SSA_I (R2 = 0.74, RMSE = 4.41 year)

to obtain the biases that only stem from the improper use of SSA in

parameterization. We found that these biases were much higher

than those induced by only using SSA in MTT estimation, that is,

MTT_NSSA_I versus MTT_NSSA_O, or MTT_SSA_I versus

MTT_SSA_O (Table S6). This indicated that the effect of the impro-

per SSA on parameterization was deeper than that on MTT estima-

tion, which provides a significant caveat for SSA applied especially in

model optimization (e.g., Barret, 2002; Zhou & Luo, 2008; Zhou et

al., 2010; Zhou, Shi, et al., 2013). In the future, with the accumula-

tion of spatiotemporal observations (Le Toan et al., 2011), we sug-

gest evaluating the dynamic disequilibrium state of C cycle (e.g.,

Bloom et al., 2016), and further quantifying and reducing the SSA‐in-
duced uncertainty at large scales, especially with non‐steady‐state
behavior, using this proposed framework.

4.3 | Implications of SSA‐induced uncertainty in
MTT for C cycle research

As a key factor determining the ecosystem C sequestration capacity,

the uncertainty of MTT tends to dominate the uncertainty in terres-

trial ecosystem C sequestration (Friend et al., 2014; He et al., 2016).

Thus, identifying the relative contribution of this highly uncertain

ecosystem trait to C sequestration has become a hot topic in C cycle

research (Carvalhais et al., 2014; Todd‐Brown et al., 2013; Yan,

Zhou, Jiang, & Luo, 2017). We employed a systematic framework

and quantified that the deviation in MTT when improperly invoking

SSA directly results in a pronounced underestimation of ecosystem

NEP (4.83‐fold) in this large C uptake region. The substantial under-

estimation of NEP found is supported by Yu et al. (2014), who

revealed that state‐of‐the‐art process‐based models under the SSA

tended to underestimate NEP by fivefold to sevenfold relative to

eddy covariance observations in eastern Asia monsoon subtropical

forests. Moreover, process‐based models significantly underesti-

mated NEP compared to other approaches, for example, biomass

and soil inventory, and atmospheric inversion (Piao et al., 2009). This

is mainly because the models consistently assume that the ecosys-

tem has approached an equilibrium state, which obviously neglects

age‐structure‐related effects and underestimates the turnover times

at regional and global scales (Carvalhais et al., 2014; Thurner et al.,

2017; Yan et al., 2014).

Here, we firstly reveal that the deviation in ecosystem MTT

induced by SSA has a clearly decreasing relationship with increasing

forest age. Furthermore, the biases in vegetation allocation and turn-

over, rather than those in soil turnover, dominate the magnitude of

the deviation in MTT and its dependency on forest age. This finding

is most likely due to the significantly stronger relationship between

vegetation C turnover and stand age, whereas soil C turnover is

mostly affected by climatic factors (Wang et al., 2018). In addition,

the vegetation C partition scheme varies with stand age (Zhou, Shi,

et al., 2013). The decisive role of whole‐vegetation turnover time in

determining the uncertainty in ecosystem C storage capacity has

been supported by recent modeling and experimental research

(Friend et al., 2014; Medlyn et al., 2015; Xue et al., 2017). Therefore,

our results further highlight the need to focus on the deviation in

vegetation C turnover time under the SSA to avoid considerable bias

in ecosystem MTT and thus the C sequestration estimation.

The East Asian monsoon forest ecosystems represent one of the

highest C uptake regions worldwide, including mid‐ and high‐latitude
European and North American forests. Particularly, the young age

structure of forest stands in this region has been identified as a

major driver of the large NEP (Yu et al., 2014). Therefore, our result

offers a significant caveat for applying SSA in regions with a large

portion of young ecosystems. We expect that improved representa-

tions of forest age‐driven growth and mortality into calibrated pro-

cess‐based models will help reduce the aforementioned biases for

the C balance of ecosystems regionally and globally. Additionally, our

finding on the age‐dependent deviation of MTT could also offer an

opportunity to correct the MTT_OBS_I at regional or global scales

(e.g., Thurner et al., 2016) with spatially explicit forest age informa-

tion, thereby providing a better benchmark to inform or parameter-

ize C cycle models.

In addition to the uncertainty in the magnitude of C storage

capacity, previous studies have revealed that the major uncertainty

in the response of ecosystem C storage to climate arises from the
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uncertainty in the response of MTT to climate, which is 30% higher

than that caused by NPP (Friend et al., 2014). However, to our

knowledge, this is the first attempt to quantify the relationship

between climate and ecosystem MTT in the disequilibrium state and

to discuss the differences with that at the equilibrium state. Theoret-

ically, an ecosystem at equilibrium is stable for a long time under the

local climate (Luo & Weng, 2011); thus, a relatively strong correla-

tion can be expected between the ecosystem MTT and climate.

However, it is inappropriate to invoke the ideal SSA in ecosystems

at dynamic disequilibrium, with the MTTs underestimated to a

greater extent in young and middle‐aged forests (by more than 50%)

than mature forests (<20%). This age‐induced inconsistency in MTT

underestimations disturbs the actual spatial pattern of MTT and its

covariance with climate, thereby leading to a decreased sensitivity of

MTT to climate under the SSA. In contrast, the MTT_NSSA estima-

tion based on long‐term observational data in this study implicitly

incorporated the age‐structure‐related effect on C cycle dynamics,

thus providing a proper perspective on the actual correlation

between MTT and climate. Currently, the contributions of climate‐
driven changes in C turnover times to C storage are usually underes-

timated in modeling studies (Hararuk, Smith, & Luo, 2015; Koven et

al., 2015; Koven, Hugelius, Lawrence, & Wieder, 2017). Therefore,

the substantial underestimation we revealed of sensitivities of MTT

to temperature and precipitation induced by the SSA calls for more

attention in future C‐climate feedback research. Under global warm-

ing and changes in precipitation regimes (IPCC, 2013), the underesti-

mated response of MTT to climate will apparently underestimate the

spatial and temporal changes in MTT, thereby underestimating the

change in predicted global NEP. Here, the exchange of space for

time to interpret the sensitivity of MTT to climate could cause some

degree of bias, as such inference cannot include certain processes

like acclimation of microbial respiration to warming or shifts in plant

species over time (e.g., Koven et al., 2017; Yan et al., 2017).

Nonetheless, the present‐day spatial correlation between climate and

MTT approximated the temporal correlation between these variables

(Figure S5) and well supported this inference.

4.4 | Advantages and challenges of C cycle MDF
based on long‐term data

Carbon turnover times and C cycle dynamics are always model‐de-
pendent because of the difficulty obtaining them from observations

alone under the NSSA (Sierra et al., 2017). However, even the state‐
of‐the‐art models fail to accurately capture the observed C alloca-

tions and turnover processes, resulting in high uncertainties in C

dynamic simulations (De Kauwe et al., 2014; Negrón‐juárez, Koven,
Riley, Knox, & Chambers, 2015). Therefore, applying MDF technol-

ogy to constrain these C states and processes becomes important

for accurately estimating MTT and C sequestration in the disequilib-

rium state (Bloom et al., 2016).

The uncertainties in the current ecosystem MTT and C seques-

tration estimates mainly result from the lack of initial state of the C

pools and inaccurate model parameters (Bellassen et al., 2011; Wang

et al., 2011), because C cycle modeling typically relies on pre‐ar-
ranged parameters retrieved from literature, prescribed PFT or spin‐
up processes (Exbrayat et al., 2014; Zhou, Shi, et al., 2013). In this

study, the long‐term and multi‐source observations combined with a

series of experimental constraints directly provided the initial values

of the corresponding C pools and better constrained the NSSA

parameters and dynamic C pool trajectories (Bloom & Williams,

2015; Smallman et al., 2017), thus substantially reducing the uncer-

tainties arising from the SSA and limited data. Furthermore, insights

into the underlying mechanisms that regulate the ecosystem C cycle

can be provided based on the key process parameters, which are dif-

ficult to obtain from observations without SSA. For example, we

might explore how the C allocation and turnover in live and dead C

respond to climate, thereby regulating the response of the whole‐
ecosystem MTT to climate (Figure S6).

The uncertainty from the model structure and observational data

also induce errors in the estimations of ecosystem MTT and C

sequestration (Ahlström, Schurgers, Arneth, & Smith, 2012). How-

ever, as this study aimed to compare the differences in MTTs esti-

mated under different hypotheses with the same model and data,

these two factors would not undermine the main conclusions. When

applied at the regional scale, some external disturbances such as fire

and land‐use change (Erb, 2016); vegetation mortality dynamics

affected by drought, insect pests, and frost (Thurner et al., 2016); as

well as the dynamic scheme of C allocation limited by resources

availability (Xia, Chen, Liang, Liu, & Yuan, 2015) should be added to

the model. Although the model without moisture effect did not sig-

nificantly affect the results in these forests (Table S7), the explicit

representation of moisture effect may improve the model simulation

when applied at large scales. Besides, more underground process

observations should be added in future research to better constrain

the corresponding parameters, for example, θmin, reflecting the

decomposition of litter into soil.

In this study, we provided insights into the large biases associ-

ated with the improper application of the SSA, causing considerable

underestimation in the magnitudes of MTT and its sensitivities to cli-

mate, and spatiotemporal variations in ecosystem C sequestration.

Our findings on the age‐dependent uncertainty in MTT provide sig-

nificant implications for the implementation of mitigation policies for

regional to global ecosystems with substantial young plantations.

Moreover, the MDF framework we developed has the potential to

facilitate future model intercomparisons, benchmarking, and opti-

mization at large scales, as well as to effectively quantify and then

reduce the uncertainty in ecosystem C sequestration by estimating

MTT in the disequilibrium state with long‐term and multi‐source
observations.
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