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Accurate climate projections require an understanding of 
the effects of warming on ecological communities and the 
underlying mechanisms that drive them1–3. However, little is 
known about the effects of climate warming on the succession 
of microbial communities4,5. Here we examined the temporal 
succession of soil microbes in a long-term climate change 
experiment at a tall-grass prairie ecosystem. Experimental 
warming was found to significantly alter the community struc-
ture of bacteria and fungi. By determining the time-decay 
relationships and the paired differences of microbial commu-
nities under warming and ambient conditions, experimental 
warming was shown to lead to increasingly divergent succes-
sion of the soil microbial communities, with possibly higher 
impacts on fungi than bacteria. Variation partition- and null 
model-based analyses indicate that stochastic processes 
played larger roles than deterministic ones in explaining 
microbial community taxonomic and phylogenetic composi-
tions. However, in warmed soils, the relative importance of 
stochastic processes decreased over time, indicating a poten-
tial deterministic environmental filtering elicited by warming. 
Although successional trajectories of microbial communities 
are difficult to predict under future climate change scenarios, 
their composition and structure are projected to be less vari-
able due to warming-driven selection.

The acceleration of global climate warming, a consequence of 
the build-up of atmospheric CO2 and other greenhouse gases due 
to fossil fuel combustion and land use change, represents one of the 
greatest scientific and policy concerns in the twenty-first century1. 
As climate, especially temperature, is a primary driver of biological 
processes6, climate warming has impacted terrestrial biodiversity at 
all system levels7,8, including shifting species’ geographical range7, 
phenology8, distribution and abundance7, all of which could poten-
tially increase the risk of extinction9, altering community structure10 
and disrupting ecological interactions and ecosystem functioning11. 
Consequently, it is anticipated that climate warming will alter pat-
terns in spatial and temporal distributions of organisms12. However, 
despite intensive studies examining the responses of ecological com-
munities to climate warming13, whether and how climate warming 

affects temporal succession of ecological communities, particularly 
microbial communities, remains elusive.

As knowledge of the temporal dynamics of ecological communi-
ties is critical for predicting the responses of biodiversity, ecosystem 
functions and services to environmental change (for example, cli-
mate warming), ecological succession has always been at the core 
of community ecology10,14. Stages, trajectories and mechanisms are 
central topics in successional studies14. The succession of ecological 
communities can be convergent, divergent, idiosyncratic or other 
complex forms in linear or nonlinear fashions14,15. Previous stud-
ies showed that plant successions were divergent16, convergent16–18 
or showed no significant change17, and sometimes all patterns 
appeared within the same study18. Moreover, successional direction 
could be dependent on both spatial and temporal scales16,19, ecosys-
tem characteristics19, types of perturbation19, and functional traits 
used20. However, only a few studies examined temporal succession 
in microbial communities, and those showed convergent21 or diver-
gent19,22,23 behaviours.

In the last decades, various manipulated, multifactorial, climate 
change, field experiments have been established10,13,18,24, and offer 
unique opportunities for examining the temporal succession of ter-
restrial ecosystems in response to climate change across multiple 
environmental conditions. Therefore, in this study, we examined 
the temporal succession of soil microbial communities in response 
to experimental warming in a native, tall-grass prairie ecosystem of 
the US Great Plains in Central Oklahoma (34° 59ʹ​ N, 97° 31ʹ​ W)24. 
This long-term multifactor climate change experiment was estab-
lished in 2009, and the warming treatment plots have been sub-
jected to continuous +​3 °C warming by infrared radiators24. In this 
report, we primarily focus on the warming effects on microbial 
community succession by determining: whether and how warming 
will alter temporal succession rates of the grassland soil microbial 
communities across different organismal groups (for example, bac-
teria and fungi); whether warming will lead to divergent or con-
vergent succession of soil microbial communities; and what the 
relative roles of deterministic and stochastic processes are in shap-
ing temporal succession of soil microbial communities in response 
to climate warming.
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Over the last six years, the average temperature in the surface 
soil was significantly (P <​ 0.01) increased by 2.8 °C and soil mois-
ture was decreased by 12.2% in the warmed plots (Supplementary  
Fig. 1a,b). Consistent with our previous study24–26, some key ecosys-
tem processes including gross primary productivity (GPP), ecosys-
tem respiration (ER), soil total respiration (TR) and heterotrophic 
respiration (HR) were significantly (P <​ 0.05) altered by experimen-
tal warming (Supplementary Fig. 1c,d). The concentrations of soil 
nitrate significantly (P <​ 0.05) increased, but soil total nitrogen, 
total organic carbon, ammonia and soil pH remained unchanged 
under warming (Supplementary Fig. 1e,f).

It is expected that the alterations in soil variables and plant pro-
ductivity in response to warming would lead to changes in micro-
bial communities over time. To test this hypothesis, a total of 48 
surface soil (0–15 cm) samples taken annually from 2009 to 2014 
from 4 replicate plots, under warming and control (ambient) con-
ditions, were analysed using amplicon-based sequencing of 16S 
ribosomal RNA genes for bacteria and archaea, and internal tran-
scribed spacers (ITSs), for fungi. An average of 53,000 ±​ 26,000 and 
23,000 ±​ 11,000 sequence reads per sample were obtained for the 
16S rRNA gene and ITS, respectively. The microbial community 
structures of bacteria and fungi were altered over time by warming, 
as visualized by the non-metric multidimensional scaling ordina-
tion based on the Bray–Curtis dissimilarity (Supplementary Fig. 2). 
Specifically, the close clustering of warmed and control samples in 
2009 indicated similar soil microbial composition and structures 
of bacteria and fungi before warming treatment. In the subsequent 
years, the warmed samples were generally separated from the con-
trol samples on a yearly basis (Supplementary Fig. 2). Moreover, 
three complementary non-parametric multivariate statistical tests 
(Adonis, ANOSIM and MRPP) further revealed that the overall 
microbial community structures of bacteria and fungi across all 
years were significantly different (P <​ 0.05) between the warmed 
and control plots (Table 1 and Supplementary Table 1). These results 
indicated that experimental warming significantly altered soil bac-
terial and fungal community composition and structure.

To understand the impacts of warming on the temporal turn-
overs of microbial community structure, the time-decay relation-
ships (TDRs) of soil bacteria and fungi were measured based on 
taxonomic diversity by a linear regression between log-transformed 
community similarity and log-transformed temporal distance27. 
Since different facets of diversity could behave quite differently28, we 
also examined the TDRs based on phylogenetic diversity, wherein 
the genetic relatedness of organisms in an environment is taken into 
account along with species richness and relative abundance28. The 
slopes of the linear regression, TDR value (v), can reflect the tem-
poral turnover rates of soil microbes. Our results first revealed that 
under ambient temperature there were no significant TDRs based 
on either taxonomic or phylogenetic diversity for bacteria (Fig. 1a,c),  

but there were significant TDRs with relatively small temporal turn-
over rates (v =​ 0.058–0.106, P <​ 0.014) for fungi (Fig. 1b,d). In con-
trast, both bacteria and fungi exhibited significant (P < 0.011) TDRs 
under warming based on both taxonomic and phylogenetic diversity 
(Fig. 1). Permutation tests indicated that the slopes of TDRs based 
on all diversity metrics were significantly steeper under warming 
than control for bacteria (v =​ 0.091–0.101, P <​ 0.001) and fungi 
(v =​ 0.134–0.248, P <​ 0.006) (Fig. 1). Considerably steeper slopes of 
TDRs under warming were observed for bacteria with abundance-
based metrics (Bray–Curtis and/or weighted UniFrac) and for fungi 
with Bray–Curtis (Supplementary Fig. 3a–c). However, such a trend 
was less obvious for fungi with weighted UniFrac (Supplementary 
Fig. 3d). Second, TDRs of different lineages of bacteria and fungi 
were also estimated at the phylum level based on taxonomic and 
phylogenetic diversity (Supplementary Tables 2 and 3). Different 
lineages in bacteria and fungi showed substantial variations of 
TDRs (up to tenfold) (Fig. 2 and Supplementary Fig. 4), particu-
larly in control plots, which had fewer significant TDRs (10%) with 
relatively small or negative v; for example, Chloroflexi in bacteria  
(Fig. 2 and Supplementary Fig. 4). In contrast, significant positive v 
was observed under warming for most of these phyla based on both 
taxonomic and phylogenetic diversity metrics. For instance, the 
phyla Actinobacteria and Proteobacteria in bacteria showed no sig-
nificant v under control conditions, but significant v was observed 
in these phyla under warming (Supplementary Tables 2 and 3). More 
importantly, the rates of time decay of community structure for most 
of these phyla (75%) under warming were significantly (P <​ 0.10) 
larger than those under control (Fig. 2 and Supplementary Fig. 4). 
Third, fungi exhibited a significantly (P <​ 0.001) larger slope of TDRs 
(1.5–4 times) than bacteria and archaea under warming (Fig. 1 and 
Supplementary Fig. 3), suggesting that experimental warming may 
have differential effects on the temporal succession of bacteria and 
fungi. In addition, the temporal turnovers of microbial community 
composition and structure based on phylogenetic diversity metrics 
were significantly (P <​ 0.001) lower than those based on taxonomic 
diversity metrics for most bacterial and fungal lineages (Figs. 1  
and 2), which could be because the experimental period (six 
years) was not sufficient to allow rapid phylogenetic divergences. 
Collectively, all of these results indicated that six years of experimen-
tal warming significantly accelerated the temporal turnover rates of 
soil bacteria and fungi, and these effects are also lineage dependent.

To further determine how warming affects the succession of 
bacterial and fungal communities over time, differences of micro-
bial communities between paired warmed and control plots were 
determined on a yearly basis. Our results first showed that the 
differences of bacterial and fungal community structure between 
warming and control all increased linearly with time based on 
Sorensen and unweighted UniFrac for bacteria (slope =​ 0.013–
0.014, P <​ 0.001) and fungi (slope =​ 0.021–0.029, P <​ 0.001) (Fig. 3).  
Similarly, the differences between warming and control based 
on Bray–Curtis and weighted UniFrac also exhibited an increase 
with time for bacteria and fungi, although the increases were not 
significant (Supplementary Fig. 5). The paired differences of dif-
ferent lineages between warmed and control plots were also evalu-
ated (Supplementary Tables 4 and 5). Our results showed that over 
half of the bacterial and fungal phyla exhibited significantly or 
marginally significantly positive slopes of community difference 
between warming and control based on Sorensen and unweighted 
UniFrac dissimilarity metrics (Supplementary Fig. 6). Positive 
slopes of community difference between warming and control 
were observed in most of the lineages based on Bray–Curtis and 
weighted UniFrac dissimilarity metrics (Supplementary Fig. 7). In 
addition, the paired differences of microbial communities between 
warmed and control plots were significantly (P <​ 0.05) larger in 
fungi than bacteria based on various metrics (Fig. 3), suggesting 
that warming could have bigger impacts on the temporal turnovers 

Table 1 | Significance tests of the effects of experimental 
warming on the microbial community structure across six years 
with three different statistical approaches

Data sets Adonis ANOSIM MRPP

F P R P δ P

Bacteria (16S) 2.611 0.004 0.097 0.004 0.489 0.004

Fungi (ITS) 2.005 0.001 0.129 0.001 0.861 0.001

All three tests are non-parametric multivariate analyses based on Bray–Curtis dissimilarities 
among samples, including the permutational multivariate analysis of variance (Adonis), analysis 
of similarity (ANOSIM) and multiple response permutation procedure (MRPP). For Adonis, only 
the warming effect is shown above, and the other terms are shown in Supplementary Table 1. For 
ANOSIM and MRPP, the permutation was constrained within each block in each year by setting 
‘strata’ in the functions ANOSIM and MRPP in the R package vegan. Significant P values (<​0.05) 
are shown in bold.
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in fungi than bacteria. Significant correlations (r =​ 0.507–0.803, 
P <​ 0.011) of community difference were detected between bacte-
rial and fungal communities under warming and control based 
on various metrics, except weighted UniFrac (Supplementary  
Fig. 8). Together, these results suggested that experimental warm-
ing significantly enhanced the divergent succession of soil bacte-
rial and fungal communities.

The altered microbial successional dynamics could be caused by 
a variety of environmental factors other than warming. Canonical 
correspondence analysis (CCA) showed that composition and 
structure of bacteria and fungi were significantly (F =​ 1.066–1.208, 
P <​ 0.05) shaped by several common environmental variables, 
including GPP, ER, soil temperature, nutrients, moisture, pH and 
time (Supplementary Figs. 9 and 10). The variation of bacterial 
community was explained more by soil temperature (r2 =​ 0.425, 
P <​ 0.001) than moisture (r2 =​ 0.159, P =​ 0.019), but soil moisture 
(r2 =​ 0.153, P =​ 0.028) explained higher variation of the fungal com-
munity than temperature (r2 =​ 0.100, P =​ 0.049) (Supplementary 
Figs. 9 and 10). A partial Mantel test also indicated that tempera-
ture was a more important factor for bacterial community and most 
bacterial lineages, whereas soil moisture was more vital for fungal 
community and most fungal lineages (Supplementary Table 6). 
Furthermore, the CCA and Mantel test showed that the variations 
of microbial communities and their lineages significantly (P <​ 0.05) 
correlated with GPP, ER, TR and/or HR, suggesting that diver-
gent succession of microbial communities under warming could 
affect certain ecosystem functions (Supplementary Tables 7 and 8). 
However, a partial CCA-based variation partitioning analysis indi-
cated that relatively small portions (29.0–31.6%) of the variations 

in bacterial and fungal community composition and structure were 
explained by the environmental variables examined (Supplementary 
Figs. 9 and 10). Substantial portions of the community variations 
(68.4–71.0%) could not be explained by measured environmental 
variables, suggesting that stochastic processes19,29 and/or unmea-
sured environmental variables could play more important roles 
than deterministic processes in the assembly of the soil bacterial 
and fungal communities.

To further discern the importance of stochastic processes in 
shaping the soil community structure, stochastic ratios19 were 
calculated on the basis of taxonomic and phylogenetic metrics. 
After 6 years of warming, the stochastic processes contributed to 
considerable portions of the community variations under warm-
ing and control in taxonomic (50.6–68.1%) and phylogenetic  
(54.1–86.5%) diversity (Fig. 4). These results suggested that sto-
chastic processes could play more important roles in shaping 
microbial community structure, which is consistent with results 
from the variation partitioning analysis as described above. 
Interestingly, warming significantly (P <​ 0.05) decreased the rela-
tive importance of stochastic processes by 4.6–17.6% in shaping 
bacterial and fungal community structure (Fig. 4). Furthermore, 
the relative importance of stochastic processes in governing com-
munity structure decreased substantially over time under climate 
warming, particularly for bacteria (Supplementary Fig. 11). These 
results indicated that warming could act as a deterministic filter-
ing factor to impose significant selection on microorganisms (for 
example, selecting microorganisms processing carbon faster for 
their growth) so that the overall community-level stochasticity 
decreased over time.

–0.3a b

c d

–0.3

–0.6

–0.9

–1.2

–1.5

–1.8

Bacteria

Bacteria

Fungi

Fungi

v = 0.015 ± 0.006, r 2 = 0.365, P = 0.269

v = 0.009 ± 0.009, r 2 = 0.381, P = 0.344 v = 0.058 ± 0.007, r 2 = 0.257, P = 0.014

v = 0.106 ± 0.011, r 2 = 0.452, P = 0.003

v = 0.101 ± 0.011, r 2 = 0.405, P = 0.008

v = 0.091 ± 0.009, r 2 = 0.461, P = 0.011 v = 0.134 ± 0.013, r 2 = 0.667, P = 0.003

v = 0.248 ± 0.028, r 2 = 0.770, P = 0.003 
Warming

Control

–0.6

–0.9

–1.2

–0.3 –0.3

–0.6

–0.9

–1.2

–1.5

–1.8

–0.6

ln
[C

om
m

un
ity

 s
im

ila
rit

y]
 

ln
[C

om
m

un
ity

 s
im

ila
rit

y]
 

ln
[C

om
m

un
ity

 s
im

ila
rit

y]
 

ln
[C

om
m

un
ity

 s
im

ila
rit

y]
 

–0.9

–1.2

–0.4 0.0 0.4 0.8 1.2 1.6 2.0 –0.4 0.0 0.4 0.8 1.2 1.6 2.0

–0.4 0.0 0.4 0.8 1.2 1.6 2.0 –0.4

ln[Time (yr)]ln[Time (yr)]

ln[Time (yr)]ln[Time (yr)]

0.0 0.4 0.8 1.2 1.6 2.0
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Our study demonstrates that warming played an important role 
in accelerating temporal turnover rates of soil bacterial and fungal  
communities. These results are consistent with a recent study show-
ing that temperature plays a primary role in shaping microbial 
community diversity30. Our findings have important implications 
for predicting ecological consequences of climate warming. On one 
hand, since climate warming leads to microbial community diver-
gence, microbial communities would be much more different from 
the contemporary community states under future climate change 
scenarios, and there is a higher likelihood that microbial commu-
nities will diverge towards multiple alternative community states. 
Consequently, the future successional trajectories in a warmed 
world will be less predictable based on the knowledge of contempo-
rary communities. On the other hand, since warming reduced sto-
chasticity over time, the communities could converge more quickly 
to a community state with less stochasticity under warming. Thus, 
if there is sufficient knowledge on the successional trajectories of 
the contemporary microbial communities, the microbial commu-
nity composition and structure could be less variable under future 
climate warming. However, further research is needed to examine 
whether the warming-induced divergent succession and declining 
importance of stochastic processes identified in this study are appli-
cable to other ecosystems.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41558-018-0254-2.
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Methods
Site description. This study was conducted at the Kessler Atmospheric and 
Ecological Field Station (KAEFS) in the US Great Plains in McClain County, 
Oklahoma (34 ̊ 59ʹ​ N, 97 ̊ 31ʹ​ W)24. KAEFS is an old-field tall-grass prairie 
abandoned from field cropping 40 years ago with light grazing until 2008. The 
grassland is dominated by C3 forbs (Ambrosia trifida, Solanum carolinense and 
Euphorbia dentate) and C4 grasses (Tridens flavus, Sporobolus compositus and 
Sorghum halapense)24. Based on Oklahoma Climatological Survey data from 1948 
to 1999, the temperature ranges from 3.3 °C in January to 28.1 °C in July (mean 
annual temperature, 16.3 °C) and the precipitation ranges from 82 mm in January 
and February to 240 mm in May and June (mean annual precipitation, 914 mm)2. 
The soil type of this site is Port–Pulaski–Keokuk complex, which is a well-drained 
soil that is formed in loamy sediment on flood plains25. The soil texture class is 
loam with 51% of sand, 35% of silt and 13% of clay25. The concentrations of soil 
organic matter and total nitrogen (N) are 1.9% and 0.1%, respectively, and the 
soil bulk density is 1.2 g cm−3. The soil has a high available water holding capacity 
(37%), neutral pH and a deep (about 70 cm), moderately penetrable root zone24.

The field site experiment was established in July of 2009 with a blocked split-
plot design, in which warming is a primary factor. Two levels of warming (ambient 
and +​3°C) were set for four pairs of 2.5 m ×​ 1.75 m plots by utilizing a ‘real’ or 
‘dummy’ infrared radiator (Kalglo Electronics). In warmed plots, a real infrared 
radiator was suspended 1.5 m above the ground, and the dummy infrared radiator 
was suspended to simulate a shading effect of the device in the control plots.

Field measurements. Constantan-copper thermocouples wired to a Campbell 
Scientific CR10x data logger (Campbell Scientific) were used to measure and 
record soil temperature every 15 min at 7.5, 20, 45 and 75 cm in the centre of each 
plot. To represent the microclimate of the soil where the microbial communities 
were sampled, the soil temperature data used in this study were the annual average 
values at 7.5 cm depth across the whole year. Unfortunately, probes and data lines 
for measuring soil water content were destroyed by rodents in the beginning of 
field experiment. Instead, volumetric soil water content (%V) from the soil surface 
to a 15-cm depth was measured once or twice a month using a portable time 
domain reflectometer (Soil Moisture Equipment Corp.). Three measurements of 
soil moisture were performed in every plot and the average values were used in 
analyses. The soil moisture data presented in this study were annually averaged 
across each year.

Ecosystem carbon (C) fluxes were measured once or twice a month between 
10:00 and 15:00 (local time) as described previously2,24. Net ecosystem exchange 
and ER were measured using an LI-6400 portable photosynthesis system (LI-COR) 
attached to a transparent chamber (0.5 m ×​ 0.5 m ×​ 0.7 m), which covered all of the 
vegetation within the aluminium frames31. GPP was estimated as the difference 
between net ecosystem exchange and ER. Meanwhile, soil TR and HR were 
measured using a LI-8100A soil flux system attached to a soil CO2 flux chamber 
(LI-COR) as described previously25. Autotrophic respiration was estimated as the 
difference between TR and HR. The annual average values of ecosystem C fluxes 
and respirations across each year were used to represent the responses of grassland 
ecosystem in this study.

Above-ground plant community investigations were annually conducted at 
peak biomass (usually September) as described previously24,32. Above-ground plant 
biomass, separated into C3 and C4 species, was indirectly estimated by a modified 
pin-touch method24,32. A detailed description of biomass estimation is provided by 
Sherry et al.33. All of the species within each plot were identified to estimate species 
richness. Since there was no carryover of living biomass from previous years due 
to a distinct dormant season, and negligible decomposition of biomass during the 
growing season in our ecosystem, the estimated above-ground plant biomass was 
considered to be above-ground net primary production.

Sampling and soil chemical measurements. In this study, 8 surface (0–15 cm) soil 
samples were collected annually in 4 control and 4 warmed plots at approximately 
the date of peak plant biomass (September or October) from 2009 to 2014. Three 
soil cores (2.5 cm diameter x 15 cm deep) were collected using a soil sampler tube 
and composited to have enough samples for soil chemistry, microbiology and 
molecular biology analyses. A total of 48 soil samples were analysed in this study.

Before microbial and chemical analyses, visible roots (>​0.25 cm) and stones 
were removed from the soil by metal forceps. All soil samples were analysed by 
the Soil, Water, and Forage Analytical Laboratory at Oklahoma State University 
(Stillwater, OK, USA). The organic C and total N contents in soil were determined 
using a dry combustion C and N analyser (LECO). Soil nitrate (NO3

−) and 
ammonia (NH4

+) were analysed using a Lachat 8000 flow-injection analyser 
(Lachat). Soil pH was measured at a water-to-soil mass ratio of 2.5:1 using a pH 
meter with a calibrated combined glass electrode34.

DNA extraction. Soil DNA was extracted from 1.5 g soil by freeze-grinding and 
SDS-based lysis as described previously35, and purified with a MoBio PowerSoil 
DNA isolation kit (MoBio Laboratories) according to the manufacturer’s protocol. 
DNA quality was assessed on the basis of 260/280 nm and 260/230 nm absorbance 
ratios using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies). 
The final DNA concentrations were quantified by PicoGreen using a FLUOstar 

Optima fluorescence plant reader (BMG Labtech). DNAs were stored at −​80 °C 
until sequencing analysis.

Amplicon sequencing. Library construction and sequencing were  
processed using methods similar to those described in previous reports36.  
Universal primer sets, 515F (5ʹ​-GTGCCAGCMGCCGCGGTAA-3ʹ​)  
and 806R (5ʹ​-GGACTACHVGGGTWTCTAAT-3ʹ​) targeting the  
V3–V4 hypervariable region of bacterial and archaeal 16S rRNA  
genes37, and gITS7F (5ʹ​-GTGARTCATCGARTCTTTG-3ʹ​) and ITS4R  
(5ʹ​-TCCTCCGCTTATTGATATGC-3ʹ​) for fungal ITSs between 5.8S and 28S 
rRNA genes30, were used in this study. Library preparation was performed 
using a two-step PCR to avoid extra PCR bias as previously documented10,36,38. 
Phasing primers, which contained different-length spacers (0–7 bases) between 
the sequencing primer and the target gene to randomize base position during 
sequencing36, were designed and used in the second step of the two-step PCR. The 
forward and reverse primers were used in a complementary manner to ensure 
that the total length of the amplified sequences remained constant. Both forward 
and reverse phasing primers have the Illumina adaptor, the Illumina sequencing 
primer, a spacer, and the target gene primer and a barcode of 12 bases in the 
reverse primer between the sequencing primer and the adaptor. In the two-step 
PCR, soil DNA was first diluted to 2.5 ng μ​l−1 with water to be used as a template 
in the PCR reaction. The 25 μ​l PCR reaction system and conditions were described 
previously30,36. Reactions of 16S rRNA gene and ITS amplification were performed 
in triplicates. After amplification, the triplicate products were combined together, 
visualized by 1% agarose gel electrophoresis and quantified by PicoGreen using a 
FLUOstar Optima fluorescence plant reader (BMG Labtech).

PCR products from different samples were pooled at equal molality (generally 
<​300 samples) to be sequenced in the same MiSeq run. The pooled mixture was 
purified with a QIAquick gel extraction kit (Qiagen Sciences) and re-quantified 
with PicoGreen. Sample libraries for sequencing were prepared according to the 
MiSeq Reagent Kit Preparation Guide (Illumina) as described previously36,38. The 
pooled sample library was diluted to 2 nM; 10 μ​l of 0.2 N fresh NaOH was then 
added into 10 μ​l of sample DNA for denaturation. The denatured DNA was diluted 
to 6 pM and mixed with an equal volume of 6 pM Phi X library. Finally, the mixture 
(600 μ​l) was loaded into a reagent cartridge and sequenced on a MiSeq (Illumina) 
using 2 ×​ 250 pair-end sequencing kit by following manufacturer’s instructions.

Sequence preprocessing. The raw reads of the 16S rRNA gene and ITS were 
collected by the MiSeq in fastq format, and then submitted to our data analysis 
website (http://zhoulab5.rccc.ou.edu:8080) to be further analysed using a sequence 
analysis pipeline built on the Galaxy platform39. After removing spiked PhiX reads, 
the reads were assigned into different sample libraries based on the barcodes. 
Primer sequences at the end of each read were trimmed and the Btrim program40 
with a threshold of QC >​ 20 over a 5-bp window size was used to filter the reads. 
For 16S and ITS, forward and reverse reads of the same sequence with at least 
20 bp overlap and <​5% mismatches were combined using FLASH41. Any joined 
sequences with an ambiguous base or a length of <​245 bp for the 16S rRNA 
gene or <​220 bp for the ITS were discarded. Thereafter, operational taxonomic 
units (OTUs) were clustered by UPARSE42 at 97% identity and singletons were 
removed from the remaining sequences for both the 16S rRNA gene and the ITS. 
In UPARSE, the green reference data set43 for 16S data and the UNITE/QIIME-
released ITS reference data set (https://unite.ut.ee/repository.php) for ITS data 
were used as reference databases to remove chimaeras. To normalize samples to the 
same total read abundance, 30,000 sequences for the 16S rRNA gene and 10,000 
sequences for the ITS were randomly selected (resampled) for each sample. OTU 
taxonomic classification of the ITS and 16S rRNA gene sequences was performed 
using representative sequences from each OTU through the Ribosomal Database 
Project Classifier with 50% confidence estimates44.

Sorensen and Bray–Curtis dissimilarity metrics were calculated to estimate 
taxonomic diversity based on the resampled OTU tables in R using the vegan 
package45. Weighted and unweighted UniFrac distances were calculated to estimate 
phylogenetic diversity of microbial communities in R using the phyloseq package46. 
These taxonomic and phylogenetic dissimilarity metrics were used to evaluate 
microbial TDR and succession rates in all subsequent analyses.

TDR and succession estimation. Similar to distance-decay relationships27,47, the 
TDRs of microbial communities are usually evaluated using the similar linear 
regression between logarithmic β​-similarities and logarithmic temporal distance in 
the following form (equation (1)).

ε= − +S c v Tln( ) ln( ) (1)s

where Ss is the pairwise similarity in community composition, T is the time 
interval, the slope v is the TDR value, a measure of the temporal turnover rate of 
the community across time, c is the intercept and ε is the residuals.

In this study, we used the same moving window approach to assess time decay 
in microbial communities as previously described27,47. This approach involves 
partitioning a time series into different subset windows given the number of 
observations and fitting the TDR model. In our annual survey data, subset window 
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1 included the pairwise similarity of samples that were one year apart; subset 
window 2 is the pairwise similarity of samples two years apart, and so on. In our 
six-year record, there are 5 one-year intervals, 4 two-year intervals, 3 three-year 
intervals, down to 1 five-year interval for each plot. This moving window approach 
is currently the dominant approach for TDRs47–50. Considering the repeated-
measures design, TDR analysis counted only pairwise comparisons among time 
points within each plot (that is, 15 pairwise comparisons for each plot and a total of 
60 pairwise comparisons for each treatment).

In general, the above TDR model is fitted as a linear model, where the 
slope v and the intercept c are both constant across a data set. However, our 
experimental design has repeated measures at different time points in the same 
plot, and different plots under the same treatment do not necessarily have the 
same slope and intercept. Thus, we fitted the data for each treatment to the TDR 
model by an LMM rather than common linear model. To make the slope v and 
intercept c variable at different plots, each of them is divided into two parts 
(equations (2) and (3)). One part (λv and λc) is constant and contributes to the 
‘fixed effect’ of the LMM (equation (4)), which represents the average slope and 
intercept estimated across different plots. The other part (δv and δc) can have 
different values in different plots with a mean expectation of zero, contributing 
to the plot-specific ‘random effect’ of the LMM (equation (4)). The model was 
calculated using the function lmer in the R package lme4 with model setting as 
ln(Ss) ~ ln(dT) +​ [1 +​ ln(dT)]|plot.

λ δ= +v (2)v v

λ δ= +c (3)c c

� ������ ������ � ������ ������

λ δ λ δ ε
λ λ δ δ ε

= + − + +
= − + − +
n S n T

n T n T
l ( ) ( ) ( )l ( )

[ l ( )] [ l ( )] (4)
c c v v

c v c v

s

Fixed effect Random effect

To evaluate how the data can be explained by the TDR model, the coefficient 
of determination (r2) was calculated for each LMM as described previously 
(named conditional R2 in Nakagawa and Schielzeth’s method)26. The significance 
of each LMM was calculated by a permutation test rather than a parametric test 
considering the dependence among the pairwise comparisons. The permutation 
test for the LMM randomized the 6 time points (years) for 720 times (complete 
enumeration), and the P value was calculated by comparing the Akaike 
information criterion of the observed LMM with the permuted ones. We also 
performed a permutation test to calculate the significance of the TDR value 
difference between warming and control51. The observed TDR value difference 
between warming and control was compared with the TDR value difference in 
permuted data sets to obtain the P value. For TDR analysis in each phylum, the 
relative abundance in each phylum was recalculated to reduce the dependence 
between phyla. Then, TDR values (v) and significance for each phylum were 
calculated as described above. To control the false discovery rate in multiple 
testing, the P values of different phyla were corrected by the method ‘fdr’ using the 
function ‘p.adjust’ in the R package ‘stats’52,53.

We evaluated the impacts of warming on the succession of soil bacterial 
and fungal communities using the distances of microbial communities between 
warming and control at each block in each year27. Such comparisons will 
potentially minimize, if not eliminate, the effects of experimental noise, due to 
annual sampling time differences, environmental fluctuations, molecular marker 
resolution and/or technical variation, on community temporal turnovers. At each 
time point, microbial communities in each warming plot were compared with the 
control plot in the same block, generating a total of four pairwise comparisons in 
each year. The difference between each pair of plots (D) was measured each year 
and the intercepts and slopes of temporal change between different pairs of plots 
are not necessarily the same; therefore, we fitted the temporal change to LMM with 
a random intercept and slope effect among different pairs of plots (blocks).

� ���� ���� � ���� ����

ε λ δ λ δ ε
λ λ δ δ ε

= + + = + + + +
= + + + +
D b at t

t t
( ) ( )

( ) ( ) (5)
b b a a

b a b a

Fixed effect Random effect

where D is the dissimilarity between warming and control plots, t is the time (year), 
and both the slope a and intercept b have fixed (λa, λb) and variable (δa, δb) parts 
contributing to the fixed effect and block-specific random effect of the LMM.

The model was set as D ~ t +​ (1 +​ t)|Block, where D represents dissimilarity 
and t represents year. LMM, r2

m, r2
c and significance were calculated as described 

above. For succession analysis in each phylum, the relative abundance in each 
phylum was recalculated to reduce the dependence between phyla. Then, the slope 
of community difference and the significance for each phylum were obtained as 
described above. The P values of different phyla were corrected as described above.

Stochastic community assembly. Beta-diversity indices can provide insights into 
community assembly mechanisms54. To disentangle the importance of deterministic 

mechanisms from stochastic mechanisms underlying community assembly, a 
null model analysis reported by Chase et al.54 was used based on both taxonomic 
(Sorensen) and phylogenetic (beta-mean-nearest-taxon-distance55) metrics. To 
evaluate the relative importance of stochastic processes in shaping community 
structure, the stochastic ratio was calculated using the modified method as 
previously described19. Since the taxonomic and phylogenetic metrics were 
originally derived from every pairwise comparison, they may not be independent. 
Therefore, we performed permutational multivariate analysis of variance with 
some modification considering our hypothesis and the repeated-measures design. 
We hypothesized that the stochasticity in community turnover among warming 
plots could be significantly different from that among control plots. Thus, the 
treatment (warming versus control) was permuted within each block in each 
year rather than freely randomized across years. In all randomized and observed 
data sets, we counted the pairwise stochasticity values within each treatment in 
each year and compared the within-warming stochasticity to the within-control 
stochasticity. The F value was calculated with ‘block’ and ‘year’ as constraints; that 
is, stochasticity ~ warming +​ Error(block ×​ year). The P value was calculated by 
comparing the observed F value with those from 1,000 randomized data sets.

Statistical analysis. Various statistical analyses were carried out using R software 
3.1.1 with the package vegan (v.2.3-5) unless otherwise indicated. Difference of 
soil variables, plant characteristics and ecosystem functions between warming and 
control was compared by repeated-measures analysis of variance (ANOVA). The 
microbial temporal patterns under warmed and control plots were determined 
by non-metric multidimensional scaling ordination based on the Bray–Curtis 
dissimilarity56. Three different non-parametric multivariate statistical tests (non-
parametric multivariate analysis of variance (Adonis), analysis of similarity 
(ANOSIM) and multi-response permutation procedure (MRPP)) were used to 
test the differences in soil microbial communities under warming and control 
treatments2. For Adonis, the one-way repeated-measures ANOVA model was set 
as ‘dissimilarity ~ warming +​ block ×​ year’ when using the function Adonis in the R 
package vegan. For ANOSIM and MRPP, the permutation was constrained within 
each block in each year by setting ‘strata’ in the functions ANOSIM and MRPP in the 
R package vegan. CCA was performed to determine the linkage between ecosystem 
functional parameters and microbial community structures. The function envfit in 
the R package vegan was used to evaluate the association of microbial community 
variation and each environmental variable in CCA. The significance of the CCA 
model was tested using ANOVA. Based on CCA results, variation partitioning 
analysis was performed to determine the contributions of each individual variable or 
groups of variables to total variations in the soil microbial community composition. 
Mantel and partial Mantel tests were also performed to calculate the correlations 
between environmental factors and soil microbial communities.

Data availability. DNA sequences of 16S rRNA gene and ITS amplicons are 
available in the NCBI Sequence Read Archive under project no. PRJNA331185.
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