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Abstract

The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of
atmospheric CO, at northern lands (>50° N) since 1960s. However, the correlation between vegetation
growth, temperature and seasonal amplitude of atmospheric CO, concentration have become elusive with
the slowed increasing trend of vegetation growth and weakened temperature control on CO, uptake since
late 1990s. Here, based on i situ atmospheric CO, concentration records from the Barrow observatory
site, we found a slowdown in the increasing trend of the atmospheric CO, amplitude from 1990s to mid-
2000s. This phenomenon was associated with the paused decrease in the minimum CO, concentration
([CO3]min)> which was significantly correlated with the slowdown of vegetation greening and growing-
season length extension. We then showed that both the vegetation greenness and growing-season length
were positively correlated with spring but not autumn temperature over the northern lands. Furthermore,
such asymmetric dependences of vegetation growth upon spring and autumn temperature cannot be
captured by the state-of-art terrestrial biosphere models. These findings indicate that the responses of
vegetation growth to spring and autumn warming are asymmetric, and highlight the need of improving
autumn phenology in the models for predicting seasonal cycle of atmospheric CO, concentration.
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1. Introduction

Temporal dynamics of atmospheric CO, concentra-
tion, climate and terrestrial carbon (C) cycle are
strongly linked in the present (Schneising et al 2014)
and past (Montafiez et al 2016) Earth systems. For
example, the recent inter-annual variability of atmo-
spheric CO, growth rate is largely caused by fluctua-
tions in terrestrial CO, uptake (Myneni et al 1997,
Keenan et al 2016), which is mainly driven by
variations in climate (Poulter et al 2014, Ahlstrom et al
2015, Jung et al 2017). On the decadal scale, an
increasing amplitude of the atmospheric CO, seasonal
cycle at northern high latitudes has been observed
since 1960s (Bacastow et al 1985, Keeling et al 1996,
Randerson et al 1997, Graven et al 2013), e.g. about
0.53% yr ' at the Point Barrow (BRW) during
1971-2011 (Forkel et al 2016). Although the major
contributors to such trend of seasonal atmospheric
CO, amplitude are still in debate (Gray et al 2014, Zeng
et al 2014, Ito et al 2016, Wenzel et al 2016, Piao et al
2017a), the associated increases in mean annual
temperature (MAT) and vegetation growth has been
recognized as one important driver (Forkel et al 2016,
Gonsamo et al 2017, Piao et al 2017a, Yuan et al 2018).
Recently, non-uniform warming trends among sea-
sons have been detected over the northern lands (Xu
et al 2013, Xia et al 2014). Given that climate warming
in different seasons would influence vegetation growth
differently (Xu et al 2013, Xia et al 2014, Cai et al 2016),
the role of seasonal non-uniform warming in affecting
the vegetation growth as well as the recent changes
of the atmospheric CO, amplitude remains unclear.

Some recent evidence has implied weakening cor-
relations of MAT with vegetation growth and atmo-
spheric CO, concentration in the past three decades.
First, the MAT across the northern high latitudes has
kept rising whereas vegetation greenness has begun to
decline since late 1990s (Bhatt et al 2013, Jeong et al
2013). Second, the advanced spring phenology in
response to climate warming has been reported to
diminish at northern high latitudes over the last two
decades (Fu et al 2015, Wang et al 2015). Third, a
weakening inter-annual correlation of temperature
with vegetation greenness (Piao et al 2014) or spring
ecosystem CO, uptake (Piao et al 2017b) has been
detected at northern latitudes during recent years. In
northern temperate ecosystems, a negative correlation
between the atmospheric CO, amplitude and temper-
ature anomalies during 2000s has been found through
the analysis of space-borne atmospheric CO, mea-
surements (Schneising et al 2014). Thus, it is impor-
tant to examine how the temperature changes in
different seasons have contributed to such weakening
correlations of MAT with vegetation growth and sea-
sonal CO, amplitude in recent years.

In this study, we investigated the relationships
between changes in the seasonal CO, amplitude, vege-
tation greenness and seasonal air temperature in
northern lands (>50° N) during the last three decades.
The analyses were based on long-term monitoring
records of atmospheric CO,, global gridded climate
datasets, and satellite-derived Normalized Difference
Vegetation Index (NDVI). We also examined the rela-
tionships between temperature and gross primary
productivity (GPP) in five terrestrial biosphere models
(TBMs), which have been commonly incorporated
into Earth system models for future projections of cli-
mate and atmospheric changes.

2.Data and methods

2.1. Atmospheric CO, measurements

There are 19 CO, measurement sites in the NOAA’s
Global Greenhouse Gas Reference Network (https://
esrl.noaa.gov/gmd/ccgg/ggrn.php) and 3 sites in
Scripps CO, program (http://scrippsco2.ucsd.edu/
data/atmospheric_co2/sampling_stations) located at
lands over 50° N. Among these sites, only the Barrow
(BRW) observatory site recorded the atmospheric CO,
concentration (i.e. [CO,]) continuously during
1982-2010. Thus, in this study, the in situ long-term
CO, measurements from BRW were regarded as the
homogeneous CO, concentration in northern lands
(>50° N). The seasonal curve of this [CO,] record was
shown in figure S1 (available online at stacks.iop.org/
ERL/13/124008 /mmedia).

The in situ [CO,] observations at the BRW site
were collected hourly. The daily and monthly data
provided by NOAA were averaged from the hourly
observations. This study used the monthly data to
derive the CO, amplitude. The anomalies of monthly
[CO,] (i.e. monthly [CO,] — yearly mean [CO,]) were
first calculated and then were used to derive the max-
imum (i.e. [CO3]max) and minimum (i.e. [CO3]min)
monthly [CO,] in each year. The difference between
[CO3]imax and [CO, ] min was defined as the CO, ampl-
itude ([COz Jamplitude)-

To avoid the biases of various processing algo-
rithms, we collected the estimates of [CO;]amplitude
from Forkel et al (2016) and the GLOBALVIEW pro-
ducts (figure S2). In Forkel et al (2016), the time series
of daily [CO,] records were first fitted with polynomial
and harmonics functions and then de-trended with
the Fast Fourier Transformation method (Thoning
et al 1989, Thoning et al 2015). In each calendar year,
the [CO, ]amplitude Was calculated as the peak-to-trough
difference of the de-trended seasonal cycle. The data in
the GLOBALVIEW-CO, product has already been
smoothed, interpolated and extrapolated (Masane and
Tans 1955). GLOBALVIEW-CO, provides observa-
tions at 7 d intervals. We obtained its [CO,]amplitude a5
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the difference between the maximum and minimum
weekly CO, data in each calendar year. According to
the Theil-Sen analysis, the long-term trends of
[COz]amplitude Were consistent among these processing
methods (figure S2).

2.2. Temperature analysis

The temperature trends were analyzed based on the latest
version of the CRU temperature data (CRU TS4.0). It is
gridded with a spatial resolution of 0.5° x 0.5° at a
monthly time step. This product is gridded using the
Angular-distance weighting interpolation (Harris and
Jones 2017) based on the observations collected from
2600 stations worldwide (Harris et al 2014). The CRU
climate products have been widely used for phenology
analysis and for driving different types of ecosystem
models (Koven etal 2011, Fuetal 2014, Xia etal 2017). In
this study, seasonal temperature was averaged from
monthly temperature following the definition of four
seasons: Spring, March-May; Summer, June—August;
Autumn, September—November; Winter, December—
February. Besides, MAT of a given year was defined as
the average of the monthly temperature from January to
December. The Theil-Sen estimator and Mann-Kendall
trend test were applied in detecting the temporal trends
of the seasonal temperature (see more details in
section 2.6).

2.3. Satellite derived NDVI

The normalized difference vegetation index (NDVT) is
widely used as an indicator for vegetation productivity
(Myneni et al 1997, Zhou et al 2001). It is calculated as
the normalized ratio between near infrared and red
reflectance bands (Tucker 1979, Tucker et al 2005).
The NDVI used in this study is from the Advanced
Very High Resolution Radiometer sensors, which has
the longest record of continuous satellite data since
1981. Here, we used the newest version of GIMMS
NDVI dataset (NDVI3g) (Tucker et al 2005, Pinzon
and Tucker 2014). It is a global product at spatial
resolution of ~8 x 8 km and temporal resolution of
15 d. The NDVI3g has been widely used for analyzing
vegetation changes in recent years (Tucker et al 2005,
Pengetal 2013, Wang et al 2014). The maximum value
composites method (Holben 1986) was applied to
merge segmented data strips to half-monthly values.
To lessen the impacts of sparse soils and snows on
vegetation, following Zhang et al (2013), the areas with
multiyear average NDVI less than 0.1 in the northern
lands (>50°N) were removed from the analysis.
Moreover, only the half-monthly NDVI from January
to September were used to derive the phenology
indices (i.e. start and end of growing season length
(GSL), see section 2.4).

The sum of monthly NDVI from January to Decem-
ber in a certain year was regard as the yearly NDVI
(Gonsamo et al 2016, 2017). Note that the illegitimate
signals of the half-monthly NDVI data (i.e. NDVI < 0.1)
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were filtered. Regional NDVI used in the trend analysis
were averaged from the grids of the northern lands
(>50° N). Before calculating the sensitivity of NDVI to
MAT and the partial correlation between NDVI and sea-
sonal temperature (see section 2.6), yearly NDVI data
were resampled to raster of 0.5° x 0.5°, to couple with
the CRU temperature data.

2.4. Method of determining GSL

GSL was calculated as the difference between the start
(SOS) and end (EOS) of growing season. The SOS and
EOS were retrieved from the seasonal NDVI curve in
each year based on the NDVI green-up thresholds,
which were determined from the rate of seasonal
changes in the multiyear mean NDVI (Piao et al
2006, 2011, Zhang et al 2013). More specifically, there
were six steps in the determination of GSL. First, we
calculated the seasonal curve of multiyear mean NDVI
from 1982 to 2010 for each land grid cell and obtained
the changing rate of NDVI (NDVI,,;,) as:

NDVl,i0(t) = [NDVI(£ 4+ 1) — NDVI(¢)]
/INDVI(1)],

where t is time throughout the year with an interval of
15 d. Then, after removing evident noise in the multi-
year mean time-series curve of NDVI for each land
grid cell, we performed a least-square regression
analysis on the curves from January to September and
from July to December for determining the NDVI
thresholds of SOS and EOS, respectively, with an
inverted parabola equation:

NDVI = a + ajx + ax? + ... + a,x",

where x is the Julian days and # is 6. The corresponding
NDVI(¢) with the maximum or minimum NDVI, .
was used as the NDVI threshold for determining SOS
or EOS, respectively. Next, we performed a least-
square regression analysis on the NDVI time-series
curve in each year for each pixel after removing noise
in the two different periods. After that, the SOS and
EOS were identified from the fitted NDVI seasonal
curves and their NDVI thresholds, by selecting the day
when the fitted NDVI curve first reached the NDVI
threshold. Finally, the GSL in each year for each land
cell was calculated from the difference between EOS
and SOS. The method in this study had been validated
by ground-based phenological data in Tibetan Plateau
(Zhang et al 2013) and has been widely used for
detecting phenological changes in various regions
(Piao et al 2006, Piao etal 2011, Zhang et al 2013).

2.5.Simulated GPP by TBMs

Outputs of annual GPP from five TBMs which
provided all the land cells above the 50° N in the model
integration group of the Permafrost Carbon Network
(http://permafrostcarbon.org/) were analyzed in this
study. The five TBMs are UVic (Peter 2001, Matthews
et al 2004), CoLM (Dai et al 2003, Ji et al 2014),
CLM4.5 (Oleson et al 2003), TEM604 (Hayes et al
2011) and ORCHIDEE (Krinner et al 2005). Details
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about these TBMs were listed in table S1. The
simulation protocol and model’s driving data have
been described in previous studies (Rawlins et al 2015,
McGuire et al 2016, Peng et al 2016). A flux-tower-
based GPP database was also used in this study. It was
up-scaled from FLUXNET observations (44 sites
locating in the lands northern 50° N) of carbon
dioxide, energy and water fluxes with the machine
learning technique of model tree ensembles (MTE,
Jung et al 2011). The MTE GPP is a global gridded
product with a resolution 0f 0.5° x 0.5°. This product
has been widely used as benchmarks to evaluate model
performance in recent years (Anav et al 2013, Tjiputra
etal2013, Pengetal 2015, Xiaetal 2017).

2.6. Statistical analyses

We estimated the linear trends of the CO, indices (i.e.
[COxzlamplitudes [CO2lmax and [COzlimin), Vegetation
and temperature using a non-parametric Theil-Sen
estimator over each time period. The significance of
the trend was computed by the Mann-Kendall trend
test. Comparing with the ordinary least squares
estimation, the Theil-Sen estimator and Mann-Ken-
dall trend test is less sensitive to outliers (Fernandes
and Leblanc 2005, Wang et al 2018). The temporal
anomalies were used for the linear-trend analyses. This
analysis can provide both trend and its level of
significance (i.e. the P value that quantifies the prob-
ability of whether the trend is statistically significant
from zero) for each period.

The moving-window method was used to detect
whether the increasing trends of CO, indices are per-
sistent. Comparing with the piecewise linear fitting
method, it less depends on the results of single linear
segment and the interval-length (Schleip et al 2008).
This method has been used in detecting the changes of
growing-season length and its response to climate
change on various time scales (Rutishauser et al 2007,
Schleip et al 2008, Jeong et al 2011, Fu et al 2015).
Because the results based the moving-window analysis
may be affected by the window-length (Fu et al 2015),
we repeated the moving-window analyses with ten-,
15- and 20-year lengths.

The temporal trends of MAT (Apat), the sensitivity
of NDVI to temperature (yypy)> and the sensitivity of
CO, amplitude to temperature (’Y[COZ]ampli(ude) in the peri-
ods of 1982-2010 and 1993-2007 were calculated in each
grid cell. The v, and VO mpiase WETE derived from
the slope of linear regressions, representing the changes
of NDVI and [CO;]umplitude With per degree change of
MAT. One-way ANOVA was used to estimate their dif-
ferences between 1982-2010 and 1993-2007. All the
analyses were applied in R (http://r-project.org/).

Partial correlation analyses were applied to
exclude the impacts of the co-varying factors. For
example, in calculating the impact of spring temper-
ature on SOS, spring precipitation, spring solar radia-
tion and last-year’s autumn temperature were set as
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the controlling variables. Autumn precipitation,
autumn solar radiation and spring temperature were
set as the controlling variables to quantify the impact
of autumn temperature on EOS. Similar method was
used to detect the impact of spring and autumn temp-
erature on annual NDVI and modeled GPP by repla-
cing the seasonal precipitation and solar radiation
with annual values. All the data were aggregated to the
0.5°x 0.5° resolution. The precipitation data were
derived from the CRU TS4.0 dataset (Harris et al 2014)
and the radiation data was from the Terrestrial
Hydrology Research Group at Princeton University
(Sheffield et al 2006).

3. Results and discussion

3.1. The temporal changes of atmospheric CO,
seasonal cycle and vegetation greenness

We first examined the trends of the measured
annual CO, amplitude ([CO;]amplitude) at Point
BRW, Alaska (71°N). The non-parametric Theil-
Sen estimator showed that the increasing trends of
the [CO;lamplitude at the BRW (0.075 ppm yrfl,
P < 0.05; figure 1(a)) were associated with the
decreasing [CO,] i, (—0.058 ppm yrfl, P < 0.05)
rather than the enhancing [CO;].« (0.016 ppm
yr—!', P = 0.17) from 1982 to 2010. The ten-year
moving windows show that the increasing rates of
the CO, amplitude was slower around 2000
(figure 1(a) and table S2). To avoid the biases from
different time-intervals for trend estimation, we also
detected the trends with 15-year (figure S3) and
20-year (figure S4) moving windows. The results
also showed that the trends of [CO;]ampiitude from
mid-1990 to mid-2000 (e.g. 0.03 ppm yr ',
P = 0.55, 1993-2007) (figure S4(a) and table S4)
were significantly slower than those during other
periods. A recent study which integrated the CO,
records from multiple sites also has showed a stalled
trend in the seasonality of atmospheric CO, during
the same period (Yuan et al 2018).

A slowdown of vegetation greening since mid-1990s
was also observed by our analysis on the dynamics of
NDVI (figures 1(b) and S5(d)). This finding is consistent
with the results from recent analyses on vegetation
dynamics over the pan-Arctic tundra (Bhatt et al 2013,
Jeong et al 2013). Both the MTE GPP (figure S5(e)) and
the ground-based measurements of growing-season net
ecosystem CO, exchange (figure S5(f)), the net ecosys-
tem exchange data were derived from Belshe et al (2013)
showed similar trends since 1990s. These lines of evi-
dences together suggest that the increasing trend of the
growing-season CO, uptake has weakened from 1990s to
mid-2000s in northern ecosystems.

Meanwhile, a weak but significant linear relation-
ship between average NDVI over the northern lands
(>50° N) and [CO;]min at the BRW site was observed
during 1982-2010 (r = —0.47, P < 0.05; figure 1(b)).
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Figure 1. Changes in temporal trends of CO, amplitude and plant growth (NDVI). The ten-year moving window from 1982 to 2010
shows the changing trends of (a), the peak-to-trough amplitude ([CO,]umplitude) and yearly maximum CO, concentration ([CO,]max)
as well as the minimum CO, concentration ([CO,];,) at Point Barrow (BRW); (b) NDVI and growing season length (GSL). The
insert in panel (a) shows the long-term trends of [CO; Jamplitude (ted column, 0.075 ppm yr 1P < 0.01), [COs)min (green column,
—0.058 ppm yrfl, P < 0.01) and [CO,] ax (blue column, 0.016 ppm yr'l, P = 0.17) across 1982 to 2010. The insert in panel (b) shows
the correlation between the yearly anomalies of the [CO,] i, and NDVI during 1982-2010 (with r = —0.47, P < 0.05).

The synchronous changes of [COslimplitude With
[COL)min (figures S5(a)—(c)) and NDVI (figure 1)
imply that the long-term positive trend of
[COzamplitude 18, at least in part, driven by photo-
synthetic CO, uptake or vegetation growth (Forkel
etal2016, Wenzel etal 2016).

3.2. The asymmetric responses of vegetation growth
to spring and autumn warming

An increasing body of research has shown a non-linear
response or reduced sensitivity of vegetation growth to
rising MAT over high latitudes in recent years (Bhatt et al
2013, Jeong et al 2013, Piao et al 2014). As shown by
figure 2, although the MAT increased even faster from
mid-1990s to mid-2000s (e.g. 1993—2007) than the whole
period of 1982-2010, the sensitivities of [CO,]amplitude
and NDVI to MAT were lower during that period than
1982-2010. Given the fact that temperature in different
seasons has non-uniform impacts on vegetation growth
(Xia et al 2014), we further analyzed the changes of
seasonal temperatures based on the CRU temperature
datasets (see methods). As shown by figure 3(b), the
fastest warming season was spring during 1985-1999
(40.12 °C year ") but then changed to autumn during
mid-1990s to mid-2000s (e.g. +0.11 °C year ' in

1993-2007, table S4). It indicates that a better under-
standing of the relationship between the seasonal temp-
erature changes and vegetation growth is needed to
explain the slowdown of [CO,]ampiitude from 1990s to
mid-2000s.

The variation of NVDI during 19822010 in north-
ern ecosystems depends substantially on the GSL on
both grid and regional scales (figures 1(b) and S6). Fur-
ther partial correlation analysis showed that the SOS
(partial r = —0.36) was more dependent on temperature
change than the EOS (partial r = 0.018, figures 3(c) and
S7). During 1982-2010, the SOS was advanced by 2.15 d
°C~" with spring warming, whereas warming in autumn
only delayed EOS by 0.80d °C™" in northern ecosys-
tems. As a result, the advancing rate of SOS over the
moving 15 years has decreased but the extending rate of
EOS was not significantly increased during 1982-2010
(figure S8 and table S5). Meanwhile, the increasieng rate
of NDVI until it stalled in mid-1990s is driven by warm-
ing-induced increase in spring and early summer NDVI
along with the advancement of SOS (figure S8), for
which spring warming has stalled after mid-1990s. It has
contributed to the decline in the rate of [CO;lumplitude
increase since the mid-1990s. These results together sug-
gest that the non-uniform warming between spring and
autumn during mid-1990s and mid-2000s (figure 3(b))
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could be an important driving factor for the slowdown of
expanding GSL, greening vegetation and the decreasing
[CO,]min- This can qualitatively explain the pause in the
enhancement of [CO, |umpiitude (figure 1(a)).

3.3. The response of vegetation productivity to
spring and autumn warming in current TBMs

We examined whether TBMs that have been focusing
on simulation of C dynamics in northern latitudes can
adequately represent the differential impacts of spring
and autumn warming on vegetation productivity. The
ensemble output of GPP from five TBMs (CLM4.5,
CoLM, ORCHIDEE, TEM6 and UVig; table S1) and a
flux-based GPP dataset (MTE) were analyzed
(figure 4). The dependence of modeled GPP variations
on spring-temperature change (with the inter-model
mean partial r as 0.57 under the significant level of
P < 0.05) is comparable with that of the MTE GPP
(partial r = 0.53, P < 0.05) as well as that of NDVI
(partial r = 0.49, P < 0.05; figure 4(b) and figure S9).
However, the dependences of GPP variations on
autumn-temperature change is more positive in the
models (inter-model mean partial r = 0.31, P < 0.05)
than the MTE GPP (partial r = —0.04, P < 0.05) and
NDVI (partial r = —0.16, P < 0.05; figures 4(b) and
S10). This mismatch between modeling and data-
oriented results indicates that the current TBMs over-
estimate the positive impact of rising MAT on
ecosystem CO, uptake in the autumn.

As the land biogeochemical component in most
Earth system models is similar to the TBMs in this
study, it is still challenging to accurately simulate the
seasonal cycle of atmospheric CO,. The findings of
this study suggest that a better representation of the

warming impacts on autumn phenology could par-
tially improve the models’ performance. However, the
autumn phenology is diversely represented in differ-
ent models. For example, leaf senescence in the
ORCHIDEE model is simulated as the timing when
monthly temperature falls below a given number,
which varies with plant function type (Krinner et al
2005). In the TEM, growing season ended when the
soil temperature is lower than the frozen point. How-
ever, leaf-senescence events are collectively affected by
not only temperature but also day length (Ballantyne
et al 2017), radiation (Bauerle et al 2012) and even
spring phenology (Keenan and Richardson 2015, Liu
et al 2016). In fact, the poor representation of autumn
phenology by the models has been raised in some pre-
vious studies (Richardson et al 2010, 2012, Keenan and
Richardson 2015). Thus, combining the different
types of phenological data (e.g. Richardson et al 2018)
with better phenology models could be helpful to
improve the simulation of the seasonal cycle of atmo-
spheric CO, at high latitudes in Earth system models.

3.4. The role of the non-uniform warming in
regulating the seasonal atmospheric CO, cycle

This study highlights that the asymmetric responses of
vegetation growth to spring and autumn warming is
an important driver for the decadal changes in the
seasonality of atmospheric CO,. In spring, solar
radiation is not limiting as temperature (Tanja et al
2003). Thus, spring warming extends the GSL by
advancing the onset of plant photosynthesis (Piao et al
2008), leading to the increasing vegetation productiv-
ity and the decreasing [CO,] i, of the atmospheric
CO, seasonal cycle. In autumn, solar radiation can
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obstruct the accumulation of abscisic acid (Gepstein
and Thimann 1980) and substantially delay the timing
of leaf senescence. Photoperiod is a more proximal
factor than temperature in controlling senescence
(Bauerle et al 2012). Thus, autumn warming has a
neutral impact on vegetation productivity (figure 3(c))
over the northern lands.

Warming in autumn as well as in spring could
potentially enhance the peak of atmospheric CO, sea-
sonal cycle by stimulating the respiratory processes of
plants and soil microorganisms (Piao et al 2008,
2017a). As shown by the FLUXCOM database (Jung
et al 2017), the increasing trends of total ecosystem
respiration during both growing and non-growing
seasons were significantly larger in mid-1990s to
mid-2000s (e.g. 1993-2007) than 1982-2010 (figure
S11). This result is consistent with previous findings
that the warming induced increases in respiration
could partially cancel out the impact of enhanced pho-
tosynthesis on the atmospheric CO, seasonality in
North Hemisphere (Gonsamo et al 2017, Jeong et al
2018). However, further conclusions are limited by
quantifying the contributions of increased respiration
to the slowdown of CO, amplitude since mid-1990s.
Future studies could improve on the present analysis
through breaking the limitation.

Both spring and autumn are likely to keep warm-
ing in future scenarios (IPCC 2013), and further
warming could trigger some limitations on vegetation
productivity. For example, early spring warming may
slow the fulfillment of chilling requirement for spring
leaf phenology and thus delay the SOS (Yu et al 2010,
Fu et al 2015, Vitasse et al 2018). The spring warming
induced advancement of leaf unfolding date could
increase the risk of frost damage to buds (Inouye 2008)
and decrease soil water availability for subsequent
peak productivity (Buermann et al 2013). Autumn
warming may cause more cloudy days with less radia-
tion (Vesala et al 2010), which may accelerate the end-
ing of growing season (Bauerle et al 2012). Meanwhile,
warm autumns strengthen the evapotranspiration
during the late growing season and intensify the stres-
ses of drought on vegetation growth (Barichivich et al
2013).

4. Conclusions

This study detected a slowdown of the increase in
atmospheric CO, amplitude during mid-1990s to
mid-2000s. This phenomenon was correlated with the
pause of increasing NDVI and advancing SOS across
the lands at northern high latitudes during the same
period. The changes of vegetation greenness and
growing-season length were temporally correlated
with the stalled increase in spring temperature since
mid-1990s. Warming in autumn was persistent during
this period, suggesting that the non-growing season
respiration could be more important in governing the

P Letters

future increase in seasonal CO, amplitude (Jeong et al
2018). These findings emphasize that the asymmetric
responses of vegetation growth to spring and autumn
warming is important in influencing the change of
atmospheric CO, amplitude. This study also indicates
that global carbon-cycle models need to better repre-
sent the phenological response to temperature change
for accurately simulating the seasonal cycle of atmo-
spheric CO,. Overall, this study confirms that the
recent non-uniform climate warming among seasons
has played an important role in regulating the
temporal trends of vegetation growth and atmospheric
CO, amplification over the northern lands.
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