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Abstract. Soil organic carbon (SOC) has a significant effect
on carbon emissions and climate change. However, the cur-
rent SOC prediction accuracy of most models is very low.
Most evaluation studies indicate that the prediction error
mainly comes from parameter uncertainties, which can be
improved by parameter calibration. Data assimilation tech-
niques have been successfully employed for the parame-
ter calibration of SOC models. However, data assimilation
algorithms, such as the sampling-based Bayesian Markov
chain Monte Carlo (MCMC), generally have high computa-
tion costs and are not appropriate for complex global land
models. This study proposes a new parameter calibration
method based on surrogate optimization techniques to im-
prove the prediction accuracy of SOC. Experiments on three
types of soil carbon cycle models, including the Commu-
nity Land Model with the Carnegie—Ames—Stanford Ap-
proach biogeochemistry submodel (CLM-CASA’) and two
microbial models show that the surrogate-based optimization
method is effective and efficient in terms of both accuracy
and cost. Compared to predictions using the tuned parame-
ter values through Bayesian MCMC, the root mean squared
errors (RMSEs) between the predictions using the calibrated
parameter values with surrogate-base optimization and the
observations could be reduced by up to 12 % for different
SOC models. Meanwhile, the corresponding computational
cost is lower than other global optimization algorithms.

1 Introduction

Soil organic carbon (SOC) is the largest pool of global land
carbon (Todd-Brown et al., 2013; Luo et al., 2015). The emis-
sion of CO;,, the most important greenhouse gas, from land
ecosystems greatly depends on the amount of carbon stored
in soils. Moreover, anthropogenic CO, emission leads to cli-
mate warming (Houghton et al., 2001), which further stim-
ulates soil carbon release, forming a positive feedback be-
tween the carbon cycle and climate warming (Melillo et al.,
2002; Friedingstein et al., 2006; Luo, 2007). In the fifth phase
of the Coupled Model Intercomparison Project (CMIPS5), the
outputs of 11 Earth system models (ESMs) show great uncer-
tainty in the SOC predictions. Despite the similarity in model
structures (Huang et al., 2017), simulated soil carbon con-
tent varies six-fold, ranging from 510 to 3040 Pg of carbon,
among the models (Todd-Brown et al., 2013). Only half of
the 11 models have a predicted global total SOC which falls
within the estimated range of the (HWSD). Modeled SOC is
hardly agrees with the observation (Luo et al., 2015).
Considering the high similarity in the structures of the 11
ESMs, the difference in the SOC simulations mainly results
from parameterizations (Todd-Brown et al., 2013). Thus, pa-
rameter calibration is among the top priorities regarding the
improvement of the prediction of global land carbon cycle
dynamics (Luo et al., 2016). However, parameter calibration
with global observations has not been widely applied, owing
to the high computational cost. A matrix approach has re-
cently been developed to reorganize the carbon balance equa-
tions in the original ESMs into one matrix equation with-
out changing any modeled C (carbon) cycle processes and
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mechanisms (Luo et al., 2003, 2017; Huang et al., 2018).
The matrix land carbon cycle model can be semi-analytically
saved to obtain steady-state solutions and save more than
90 % computational time compared to original models (Xia
et al., 2012). As a consequence, the matrix approach makes
parameter estimation and calibration possible. The matrix
approach has been successfully used for parameter calibra-
tion to constrain SOC turnover and microbial process using
the Bayesian Markov chain Monte Carlo MCMC) algorithm
(Harauk et al., 2014, 2015; Shi et al., 2018).

Bayesian MCMC is a sampling-based approach and usu-
ally requires a large number of simulations for building
an acceptable parameter chain. For instance, over 500 000
simulations are required during the parameter calibration
of soil carbon models (Xu et al., 2006). Even using high-
performance computers, complex land models, like the lat-
est version of Community Land Model (CLMS5.0), require
a very long spin-up time for carbon cycle simulation, lead-
ing to several hours or days for one simulation. Although the
matrix approach has been developed to enable data assimila-
tion of global land carbon cycle models (Harauk et al., 2014,
2015; Shi et al., 2018), Bayesian MCMC is still very compu-
tationally expensive for calibrating global land models. More
effective and efficient parameter calibration algorithms are
urgently needed.

The parameter calibration of SOC models can be for-
mulated as an optimization problem that aims to minimize
the output of a cost function. This cost function evaluates
the difference between the outputs of model simulation and
the corresponding observations and returns a single value
(e.g., RMSE) to represent the model error. Global optimiza-
tion algorithms are introduced to find the minimum value
of the nonlinear, non-convex, and black-box problems (Ha-
puarachchi et al., 2001; Ma et al., 2006; Rocha, 2008). Unfor-
tunately, the number of required simulations for most global
optimizations is very large.

To reduce the number of simulations and decrease the
computational cost, we, for the first time, present a surrogate-
based optimization method (SBO) for calibrating soil carbon
models. Surrogate models serve as computationally inexpen-
sive approximations of expensive simulation models (Booker
et al., 1999), such as complex geoscientific models. During
the optimization process, the surrogate model can be used to
determine a new promising point in the parameter space at
which the expensive simulation model originally has to be
evaluated. With the help of the surrogate model, many un-
necessary simulations with bad parameter values, which lead
to high prediction errors, are avoided. SBO has been shown
to find the near-optimal parameter values within only a few
hundred simulations for different problems (Aleman et al.,
2009; Giunta et al., 1997; Regis, 2011; Simpson et al., 2001).

Most studies on both global and surrogate optimiza-
tions focus on the mathematical function benchmarks like
“Comparing Continuous Optimizers”, abbreviated as COCO
(Hansen et al., 2010; Wang et al., 2014). However, the
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optimization of the mathematical functions may be ex-
tremely different from the parameter calibration of com-
plex real-world models. In this paper, we explore the
state-of-the-art surrogate optimization method for parame-
ter calibration of three SOC models: CLM coupled with
Carnegie—Ames—Stanford Approach biogeochemistry sub-
model (CLM-CASA’), and two microbial models such as
those used in studies by Hararuk et al. (2014, 2015). Al-
though the three models are computationally attainable
for parameter calibration, we compare the performance of
surrogate-based optimization to advanced global optimiza-
tion algorithms and the data assimilation method to examine
the potential of SBO. The SBO method may be extended to
other complex global land models.

In this paper, we present the structure and parameters of
three SOC models in Sect. 2. Section 3 introduces the algo-
rithm design of SBO. The parameter calibration results and
the analysis of different parameter calibration algorithms are
presented in Sect. 4. Section 5 discusses the calibrated results
using SBO. Finally, we draw conclusions in Sect. 6.

2 Global land carbon models, data and cost function

Earth system models (ESMs) are a fundamental tool for sim-
ulating climate impacts on the carbon cycle at the global
scale. There are many common properties among structures
of different global land carbon modules of ESMs (Luo et
al., 2016). Almost all models have multiple carbon pools
and carbon is transferred among these pools (Weng and Luo,
2011). In this study, we selected three SOC models, which
have previously been calibrated for their parameters with
the Bayesian MCMC algorithm (Hararuk et al., 2015). The
first model is the soil carbon component of CLM coupled
with the Carnegie—Ames—Stanford Approach biogeochem-
istry submodel (CLM-CASA’) (Oleson et al., 2004, 2008).
The CLM is the land model for the Community Earth Sys-
tem Model (CESM). The other two SOC models are micro-
bial models, which consider the nonlinear regulation of SOC
dynamics with microbial biomass.

2.1 CLM-CASA’ C-only version model

The CLM-CASA’ is embedded in CLM3.5. The latter
includes biogeophysics and biogeochemistry submodels.
CLM-CASA’ inputs carbon through net primary productiv-
ity (NPP), which is partitioned to three live biomass pools
(wood, leaves and fine roots) (Fig. 1a). Dead plant materi-
als become litter and are transferred separately to four litter
pools. Litter decomposition results in part of the carbon be-
ing released to the atmosphere as heterotrophic respiration
and part of the carbon being stabilized into soil carbon pools.
Organic carbon in the soil pools is partially decomposed to be
released as CO» via microbial respiration and partially incor-
porated into other soil carbon pools. One of the key model
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outputs to indicate SOC dynamics is the total soil organic
carbon content, which is the sum of carbon in soil microbial
(or active) pools, slow pools and passive pools (Fig. 1).

The CLM-CASA’ model simulates soil carbon decompo-
sition as a first-order decay process (Oleson et al., 2004,
2008). Based on theoretical analysis, the carbon cycle of
most ESMs can be summarized with one matrix equation
(Luo et al., 2001; Luo and Weng, 2011; Xia et al., 2013) as
follow:

dX ()
dr

=A&(HKX () + BU(¢). 1)

In the abovementioned equation X (¢) is the carbon content of
different pools; d)él(t) is the change of the carbon content; A
is a matrix of transfer coefficients among different pools; & (¢)
and K are both diagonal matrixes, representing environmen-
tal scaling factors and baseline carbon decomposition rates,
respectively; U (¢) is NPP, the carbon influx into the whole
system; and B represents the partitioning coefficients of the
carbon influx among plant pools. The steady-state solution of

equation is given by Xia et al. (2012) as follows:

Xy =—(A§K)"'BU, @)

where £B and U are the long-term averages of the environ-
mental scalars, C partitioning among the three live pools, and
NPP, respectively. The steady-state soil C generated by this
C-only version is in agreement with that simulated by the
original CLM-CASA’ model (Xia et al., 2012). The struc-
tural diagram of the CLM-CASA’ C-only model is presented
in Fig. 1a and the parameters are described in Table 1.

2.2 The microbial models

Microorganisms catalyze various processes of the land car-
bon cycle, such as the decomposition and stabilization of
SOC (Kuzyakov et al., 2000; Luo et al.,, 2001; Peng et
al., 2009). However, most conventional SOC models, such
as CLM-CASA’, do not explicitly represent microbial pro-
cesses. Microbially explicit models usually represent SOC
decomposition by considering extracellular enzyme activi-
ties rather than simple decay constants as in the CLM-CASA’
and other traditional SOC models (Schimel and Weintraub,
2003). In this study, we focus on two enzyme-driven decom-
position models; one has two pools (Fig. 1b) introduced by
German et al. (2012) and the other has four pools (Fig. 1c)
introduced by Allison et al. (2010). We call these two mod-
els the two-pool microbial model and the four-pool microbial
model, respectively. C inputs for the two models are NPP and
the outputs are the carbon content of each pool at a steady
state.

The two-pool microbial model is described using the fol-
lowing equations: (Hararuk et al., 2015).

dMIC SOC
= CUE x Vipax x MIC

_ > L xMIC (3
dt K, +soC 4% )
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Where
CUE = CUEjjope x Ts — CUE( )
|% Vinaxg X Eq
= expl ——
max = Fmaxo X EXP\ TR (Ty + 273)
X exp(—parj,y X clay) (6)
Km = Kmgjope X Ts + Kmg x exp(parhg x lignin). 7

In the abovementioned, MIC represents the microbial
biomass; Vmax is the temperature adjusted rate of SOC
decomposition; K,, is the half-saturation constant for the
substrate-limited SOC decomposition rate; rq is the micro-
bial death rate; CUE is the microbial carbon use efficiency;
Input,; is the carbon influx to soil, a 30-year averages of soil
C input produced by CLM-CASA’ (Hararuk et al., 2015); T
is soil temperature; R is the gas constant (8.31J K-! mol_l);
CUEq and CUEggpe are the baseline microbial carbon use
efficiency and its dependency on temperature, respectively;
Vmaxo 18 the maximum rate of microbial carbon uptake; E,
is the activation energy of SOC decomposition; Kmg and
Kmygope are the baseline half-saturation constant and its de-
pendency on temperature, respectively; lignin is lignin con-
tent; and pary;g is a parameter to regulate the lignin-dependent
correction factor. See Table 2 for a more comprehensive de-
scription of those parameters.

The four-pool microbial model from Allison et al. (2010)
is described as follows:

dMIC DOC
—— = Vinaxup X MIC—————
dr Kmup + DOC
X CUE — rqg x MIC — rgnzprod X MIC (8)
dDOC
3~ @it-to-DOC X Inputy,;; +rq
x MIC x (1 — amic—to—soc) + Vimax
ENZ SOC +
X —_— 13
Km + SOC EnzLoss
ENZ —V, MIC DoC )
X — X —_———
axup Kmup + DOC
dSOC
§ = Giit—to-s0C X Inputy,; +rq
x MIC x amic—to—soC — Vimax
SOC
X XENZ——— (10)
Km + SOC
dENZ
a =7EnzProd X MIC — rgpzL0ss X ENZ, (11)

where ENZ and DOC are enzyme and dissolved organic car-
bon pools, respectively; Vinaxup is the temperature-adjusted
rate of DOC uptake by microbes; Kmup is a half-saturation
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Figure 1. Schematic representations of (a) a CLM-CASA’ model, (b) a two-pool microbial model and (c) a four-pool microbial model. Surf.:

surface; str.: structural; met.: metabolic; micr.: microbial.

constant limiting the microbial uptake of DOC; rgpzproa 1S
a rate of enzyme production; Inputse; is C transferred from
litter to soil; ajit—t—poc is the fraction of Inputyy that is
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transferred to DOC; amic—to—soc is the fraction of dead mi-
crobes transferred to soil; and rgpz1ogs 1S the rate of enzyme
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Table 1. Parameter description of CLM-CASA’ C-only model.

3031

Parameter description Symbol  Default value Calibrated value
(x0.001) by SBO (x0.001)
Decomposition rate from slow pool. c(11,11) 200 495.6
Decomposition rate from passive pool. c(12,12) 4.5 1.01
Temperature sensitivity of C decomposition. Q1o 2000 1737
Labile C fraction effect on C partitioning from leaves to surface metabolic litter. ~ wy 1000 589.04
Labile C fraction effect on C partitioning from roots to soil metabolic litter. wy 200 4.52
Partitioning from surface structural to surface microbial pool if no lignin is /; 400 384.5
present in surface structural litter.
Lignin effect of partitioning from surface structural litter to surface microbial [ 400 689
litter.
Lignin effect on partitioning from surface structural litter to soil slow pool. I3 700 7.499
Partitioning from soil structural to soil microbial pool if no lignin is presentin Iy 450 697.7
soil structural litter.
Lignin effect on partitioning from soil structural litter to soil microbial pool. Is5 450 54.46
Lignin effect on partitioning from soil structural litter to soil slow pool. lg 700 871.5
C partitioning from soil microbial pool to slow pool if no sand or clay is present. 1] 169 747.7
Clay eftect on C partitioning from soil microbial pool. 153 5.44 29.6
Sand effect on C partitioning from soil microbial to slow pool. 13 678 636.8
Combined effect of sand and clay on C partitioning from soil microbial pool. 7] 22 99.5
C partitioning from soil microbial to passive pool if no sand or clay is present.  f5 0.51 0.152
Sand effect on C partitioning from soil microbial to passive pool. 16 2.04 12.99
Clay effect on C partitioning from slow pool to passive pool. t7 4.05 24.2
C partitioning from slow to passive pool if no clay is present. 18 14 0.012
C partitioning from slow to soil microbial pool if no clay is present. tg 449 368.8

loss. The temperature-dependent functions are follows:

CUE = CUE;jgpe x Ts — CUEg (12)
Vinaxup = Vmaxupo X GXP(—$) (13)
R x (T3 +273)
Kmup = Kmupy),,. X Ts + Kmup, 14)
Ey
Vinax = Vmaxo X CXP(—m)
X exp(—par,y X clay) (15)
Km = Kmgjgpe x Ts + Kmg x exp(parlig x lignin), (16)

where Viaxupo i the maximum rate of microbial DOC up-
take; E,yp is the activation energy of DOC uptake; Kmupg
and Kmupygjope are baseline half-saturation constants for sub-
strate limitation of DOC uptake and its dependency on tem-
perature, respectively.

Fifteen parameters of the four-pool microbial model are
also described in Table 2.

2.3 Data and cost function

Microbial models and CLM-CASA’ C-only models divide
the world into 64 x 128 grid cells and output SOC content for
each grid (Fig. 2). The observed SOC data for parameter cal-
ibration comes from the International Geosphere Biosphere
Programme — Data and Information System (IGBP-DIS)
dataset (Global Soil Data Task Group, 2000). The IGBP-DIS
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Figure 2. IBGP-DIS soil carbon distribution. Soil carbon varies
from O kg m~2 in deserts to 60 kg m~2 in boreal regions.

dataset includes a 1km resolution global land carbon data
set that has been widely used in many studies to evaluate and
improve models (Zhou et al., 2009; Smith et al., 2013).

The goal of parameter calibration is to improve the SOC
predictions to better fit the observations. Therefore, we use
the root mean squared errors (RMSEs) between the model
SOC predictions and the observations at all grid cells as the
cost function. This cost function can be described by the fol-
lowing formula:

Geosci. Model Dev., 11, 3027-3044, 2018
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Table 2. Parameter and description of the four-pool microbial models.
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Parameter name  Parameter description Default  Calibrated value

value by SBO
rd Microbial death rate. 4.38 4.89
CUE, Baseline microbial carbon use efficiency. 0.63 0.965
CUEgiope CUE( dependency on temperature. 0.016 0.00853
Kmg Baseline half-saturation constant. 500000 498467
Kmgjope Kmg dependency on temperature. 5000 9751
E, Activation energy of SOC decomposition. 47000 36 669
Parc|ay Clay limitation. 0 2.41
parijg Lignin-dependent correction factor. 0 6.23
FEnzProd Rate of enzyme production. 0.0438 0.0361
FEnzLoss Rate of enzyme loss. 8.76 8.08
Alit—to—DOC Fraction of Inputg;y that is transferred to soil. 0.3 0.832
AMIC—to—SOC Fraction of dead microbes transferred to soil. 0.5 0.716
Kmup Baseline half-saturation constants for substrate limitation of DOC uptake. 100 134
Kmupgope Kmup dependency on temperature. 10 4.62
Eaup Activation energy of DOC uptake. 47000 34811

1 N
r= \/ﬁzizl(xi -0, a7

where N denotes the total number of grid cells, and X; and
O; are the SOC of the model prediction and the IGBP-DIS
observation, respectively. To avoid overfitting and evaluate
the calibrated parameters more fairly, we separate all grid
cells into a training set and a validation set. The training set
is used to guide the parameter calibration process and the val-
idation set is used to evaluate the calibrated results. Hararuk
et al. (2014, 2015) also used this method when calibrating
SOC parameters with the Bayesian MCMC approach. The
experiment results in Sects. 3 and 4 refer to the results for
the validation set.

3 Surrogate-based optimization algorithm design

3.1 Introduction to the surrogate-based optimization
algorithm

The parameters of most soil carbon models and land mod-
els have traditionally been tuned manually (Luo et al., 2001,
2016). The manual tuning method might be effective for
simple models but still highly depends on expert experi-
ence. Complex models may consist of various components
from different disciplines and have hundreds or thousands of
parameters. In these cases manual tuning consequently be-
comes impractical.

Different parameter calibration algorithms are available,
which have been developed based on optimization theory.
Gradient search algorithms like the quasi-Newton method are
introduced to search for a set of parameters with better per-
formance in the parameter domain. These algorithms are usu-
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ally efficient and fast. However, gradient search algorithms
are designed for finding the local optimum. They cannot be
used to solve multimodal problems derived from complex
Earth system models. In addition, they are based on the gradi-
ent information which is unavailable for most soil carbon and
land models, as these models are too complex to obtain such
details. Thus, parameter calibration usually becomes a black-
box optimization problem. Global optimization algorithms,
such as genetic algorithms and particle swarm optimization
algorithms, are based on parameter generation and selection
strategies. They are basically still gradient independent but
can be easily used for parameter calibration of complex Earth
system models. Global optimization algorithms are designed
to find the global minimum. However, the number of samples
(model runs) might still be too large to be applicable to com-
plex models with large numbers of parameters (Jones et al.,
1998). Moreover, complex Earth system models, for exam-
ple CLM, require several hours over hundreds of cores for
just one sample run and pose a special challenge regarding
the feasibility of automatic parameter calibration.

SBO is an efficient and effective automatic parameter cali-
bration framework. It fits a surrogate model (or response sur-
face) based on the previous samples and uses this surrogate
model to emulate the output behaviors of original models
with an acceptable level of accuracy. The main advantage of
SBO is to save computational costs during the global opti-
mization by using the surrogate model instead of the orig-
inal model. Furthermore the surrogate model can be con-
tinuously improved by exploiting new sample runs with the
original model. With the surrogate model, the algorithm can
make full use of previous samples’ information and reduce
the sample size, the time-to-solution, as well as the compu-
tation cost. SBO has been successfully used to solve the pa-
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rameter calibration of computationally expensive black-box
problems (Vu et al., 2016).

3.2 Key components of the surrogate-based
optimization algorithm

A flowchart describing the SBO is presented in Fig. 3.

First, initial sets of parameter values are generated using
a sampling method. These sets are then used as inputs to
run the real simulation model. Second, a surrogate model is
constructed by fitting the outputs of these sample runs. The
surrogate model serves as a computationally inexpensive ap-
proximation of the expensive simulation model (Booker et
al., 1999). Then in each iteration, new sample points sim-
ulated by the real model are generated according to a spe-
cific strategy. This strategy can make use of the information
gained from the surrogate model and only exploits the avoid-
able real model runs to meet the accuracy requirement. The
new sample points and their simulation outputs are used to
update the surrogate model at the same time. Finally, when
some stop criteria (typically the maximum number of simu-
lations allowed) are met, the algorithm returns the optimized
parameter values. During the SBO process, quite a few sam-
ple runs are generated based on the evaluation of the surro-
gate model and most meaningless simulations with bad pa-
rameter values are avoided. As a result, the computationally
expensive model is only simulated at a few selected promis-
ing parameter points, and the surrogate model replaces the
real model during the calibration process. Thus, the compu-
tation cost is substantially reduced.

Different surrogate-based optimization algorithms may
have different choices with respect to the following:

— The sampling method to generate the initial set S.

— The surrogate model, which predicts the output y using
the given data point x. Before prediction, some (x,y)
data pairs should be given to train the model (these data
are called the training set).

— How to decide the new points at which to run the real
model in each iteration.

For the initial sampling, Monte Carlo sampling and Latin
hypercube sampling (LHS) are two main sampling meth-
ods (McKay et al., 1979; Iman et al., 1981). In Monte Carlo
sampling values are sampled from a probability distribution,
which is generally a uniform distribution unless we have ad-
ditional knowledge about the model and the parameters. Dur-
ing the LHS procedure, the range of each parameter is di-
vided into M equally probable intervals. M sample points
are selected to cover all intervals of each parameter. Com-
pared to random sampling, LHS ensures that the ensemble
of random numbers is representative of the real variability
of the parameters. As a result, we use LHS to generate the
initial set Sop (Iman et al., 1981).

www.geosci-model-dev.net/11/3027/2018/

There are various surrogate models, such as multivariate
adaptive regression splines (MARS) (Friedman, 1991), poly-
nomial regression models (Myers et al., 2016), radial basis
functions (RBFs) (Gutmann, 2001; Miiller and Shoemaker,
2014; Powell, 1992; Regis and Shoemaker, 2007, 2009; Wild
and Shoemaker, 2013), and kriging (Davis and Lerapetritou,
2009; Forrester et al., 2008; Jones et al., 1998).

The MARS model is an extension of naive linear models
introduced by J. H. Friedman (Friedman, 1991). The form of
MARS is presented as follows:

for=>"" eBix), (18)

where f (x) represents the prediction of y at the point x, and
¢; is a constant coefficient to be trained. B;(x) is the basis
function which can take one of the following three forms: a
constant, a hinge function like max (0, x —const) and a prod-
uct of more than one hinge function.

The RBF model is a real-valued function. The prediction at
a point x using the RBF model only depends on the distance
between x and other points in the training set, whose outputs
have already been given. The distance r = | x, c|| is generally
the Euclidean distance. The radial function is the function
that satisfies the property ¢ (x,c) = ¢ (||x,c||) = ¢ (). The
prediction at point x with the RBF model is formulated as
follows:

Fey=>"" wig(lx. xl. (19)

where x; represents the point of the training set which has
N points in total. Many different radial functions have been
introduced and some commonly used of these are Gaussian
¢ (r) = e~ multiquadric ¢ (r) = /1 + (er)2 and poly-
harmonic spline: ¢(r) = r*1In(r). In our experiments, we
choose the Gaussian radial function.

Both the kriging model and the Gaussian process regres-
sion model predict the output using a Gaussian process gov-
erned by prior covariance. The x and y should be normal-
ized to satisfy a normalization distribution where the means
is zero and the covariance is 1 one before they are used to
train the kriging model. The kriging predictor can be found
as follows:

foy=a+>"" an), (20)

where fi is the estimated mean of the Gaussian process, ¢; is
a constant representing the weight and r; (x) = Corr(x, x@)
is the correlation between the x and the ith point x) in the
training set. (i and ¢; can be trained with the training set.

In addition, many machine learning regression models are
also introduced, such as support vector regression (Zhang et
al., 2009), artificial neural network (Behzadian et al., 2009)
and random forest (Breiman, 2001).

The strategies of parameter point generation are iterative
algorithms that use data acquired from previous iterations to

Geosci. Model Dev., 11, 3027-3044, 2018
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with global optimization
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Figure 3. A flowchart of the surrogate-based optimization.

guide new parameter point generation. Most strategies con-
vert the parameter point generation to optimization problems
using an evaluation criterion (Fig. 3). There are many differ-
ent generation strategies, including “Minimizing an Interpo-
lating Surface” (MIS) (Jones, 2001) and “Maximizing Ex-
pected Improvement” (MEI) (Schonlau et al., 1997; Picheny
et al., 2012). In MIS, the minimum of the surrogate model
response surface is found and treated as the new parameter
point to evaluate the real simulation model and then update
the surrogate model. MEI introduces the “expected improve-
ment” criterion. This criterion estimates the uncertainty of
the surrogate model and balances the exploration and ex-
ploitation. Exploration refers to searching in an unfamiliar
area of the parameter space to learn about it and avoiding
being trapped in the local optimum. Exploitation means fast
convergence in an area. Balancing the exploration and ex-
ploitation ensures SBO can find real global optimum and
does not waste simulations on meaningless parameter sets
and areas. Another parameter generation strategy is the can-
didate point approach (CAND) (Regis and Shoemake, 2007).
In the CAND strategy, the criterion for exploitation is MIS
and the criterion for exploration is the distance of the candi-
date point to the set of sampled parameter points from pre-
vious iterations. The previously sampled points represent the
explored region and we can estimate the uncertainty from the
distance to the explored region. A weighted sum of these two
criteria is used to determine the new parameter point during
the SBO.
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3.3 Design of the surrogate-based optimization
algorithm for soil carbon models

Elaborating on the previous introduction of SBO, a detailed
account of the SBO procedure follows.

Step 1: Generate an initial sampling set Sp.

Step 2: Run the real model and calculate the output error
of the parameter points of Sy.

Step 3: Build the surrogate model using the parameters
and outputs generated in Step 2.

Step 4: Predict the output errors of those points that do
not belong to Sy using the surrogate model and deter-
mine the points at which to run the real model.

Step 5: Run the real model again for the new parameter
points from Step 4 and calculate the output errors of
these selected points.

Step 6: Update the surrogate model with the new data
from Step 5.

Step 7: Iterate through Steps 4 to 6 until the end condi-
tion has been met.

The SBO scheme mentioned in previous sections is a pa-
rameter calibration framework. The key components intro-
duced in Sect. 3.2 must be selected when calibrating the pa-
rameters of soil carbon models. The LHS can cover the whole
parameter space with a limited number of sample points
while Monte Carlo sampling usually requires a much larger
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number of samples. Therefore, we choose the LHS as the ini-
tial sampling strategy.

As mentioned in the previous section, many kinds of
surrogate-based models have been introduced and developed.
The machine learning regression models do not perform as
well as RBF and kriging models, according to an evaluation
of similar cases (Wang et al., 2014). In this study, we use
the RBF surrogate model (RBF-SBO) as our default choice
because it has been shown to perform better than other sur-
rogate models (Miiller and Shoemaker, 2014) and is easily
implemented. Our algorithm framework also includes other
surrogate models, such as kriging and MARS, and can intro-
duce others in the future.

The surrogate model is not accurate enough to represent
complex and nonlinear models when the SBO starts. The
MIS can be very efficient but is easy to trap into local op-
tima, as the strategy does not consider the uncertainty of the
surrogate model and only selects the optimum of the surro-
gate model. The MEI eliminates the disadvantage of MIS but
can only be used for the kriging surrogate model because the
calculation of the expected improvement requires the stan-
dard error at the parameter point and only the kriging (Gaus-
sian Process) surrogate model can provide this (Jones et al.,
1998). Finally, we use the CAND strategy as the parameter
generation strategy in our algorithm to balance the exploita-
tion and exploration of the uncertain region.

4 Parameter calibration experiments
4.1 Experiment configuration

In this study, we select the Bayesian MCMC approach and
four advanced global optimization algorithms for compari-
son with our proposed SBO method. Our SBO algorithm is
implemented based on the “Surrogate Model Optimization
Toolbox” toolkit (Miiller, 2014). Three SOC models and their
cost functions are introduced in Sect. 2. The target of param-
eter calibration is to find the optimal values of parameters
to achieve the minimum value of the cost function (average
RMSE). Moreover, we repeat the parameter calibration pro-
cess of each algorithm 50 times and use the average results
for algorithm evaluation. We compare the performance of al-
gorithms in terms of both effectiveness and efficiency. The
effectiveness refers to the accuracy of the calibrated results
and the efficiency can be evaluated by the required number
of simulations of the original SOC models.

4.2 Various global optimization algorithms and the
Bayesian MCMC approach

The Bayesian MCMC approach and the four following ad-
vanced global optimization algorithms: differential evolu-
tion (DE), particle swarm optimization (PSO), shuffled com-
plex evolution (SCE-UA) and the covariance matrix adaption
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evolution strategy (CMA-ES), are compared with our RBF-
SBO.

DE (Storn and Price, 1997) and PSO (Kennedy, 2011;
Shi and Eberhart, 2009) are the representative algorithms of
the evolution strategy and swarm intelligence, respectively.
They both have the ability to converge quickly and outper-
form many genetic algorithms and simulated annealing algo-
rithms (Price et al., 2006; Shi and Eberhart, 2009). SCE-UA
is designed for the parameter calibration of hydrologic mod-
els and has been successfully applied to various hydrology
models such as the TOPMODEL, the Xinanjiang watershed
model and short-term load forecasting (Hapuarachchi et al.,
2001; Ma et al., 2006; Li et al., 2007). SCE-UA tries to keep
both effectiveness and efficiency by combining the local (the
simplex method) and global optimization methods. Despite
the difference in algorithm details, DE, PSO and SCE-UA
all generate new parameter points according to some sim-
ple mathematical formulas. Unlike these three algorithms,
CMA-ES creates new parameter points based on a multi-
variate normal distribution (Hansen and Ostermeier, 2001;
Hansen and Kern, 2004). The dependencies between param-
eters are represented by the covariance matrix of a normal
distribution. CMA-ES has been shown to be the best global
optimization algorithm in the BBOB-2009 comparison study
(Hansen, 2009).

The Bayesian MCMC approach is typically designed to
obtain the posterior distributions of model parameters but it
can also be used to calibrate parameters to reduce the predic-
tion error. The Bayesian MCMC consists of two main parts:
sampling and parameter estimation. During the sampling
part, the adaptive Metropolis (AM) algorithm, a Markov
chain Monte Carlo method, is used to conduct sampling from
the prior parameter distributions and generate a parameter
chain (Haario et al., 2001). The AM algorithm has two steps:
the proposing step and the moving step. A new parameter
set pkt1 is generated from the previously accepted param-
eter set pX through a proposal distribution g(p**!|pk). In
the moving step, the probability of acceptance is calculated
according to the Metropolis criterion (Xu et al., 2006). The
parameter set that is not accepted is discarded. The AM al-
gorithm repeats the proposing step until the new parameter
set is accepted. The accepted new parameter set becomes
the p**! set of accepted parameters in the posterior param-
eter distribution (Marshall et al., 2004). The proposal step
is usually repeated for 50 000 to 1000 000 times to generate
enough accepted parameter sets for the posterior parameter
distribution. The posterior distribution is used to estimate the
maximum likelihood estimator (MLE). Hararuk et al. (2014,
2015) applied the Bayesian MCMC approach to the param-
eter calibration problem of the CLM-CASA’ C-only model
and microbial models. They also conducted experiments in
which the proposing step required 50000 simulations for
microbial models and 1000000 simulations for the CLM-
CASA’ model. We used the code from Hararuk et al. (2014,
2015) and repeated the calibration experiments. The detailed
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calibration results from the Bayesian MCMC approach are
presented in Table 3.

4.3 Results and analysis
4.3.1 Effectiveness and efficiency

Figure 4 presents the calibrated results (RMSE) of the dif-
ferent algorithms we applied. For each algorithm, we only
perform 100 simulations to compare the effectiveness if the
number of simulations is limited. As the Bayesian MCMC
approach requires a large number of samples to reach a sta-
ble distribution, over 500 000 simulations were conducted for
the algorithm evaluation.

Clearly, the average RMSE of the RBF-SBO is the lowest
(0.6 kg m~2 better than the Bayesian MCMC algorithm) for
the two microbial models among all the algorithms (Fig. 4b,
¢). For the CLM-CASA’ model, our RBF-SBO algorithm
is still superior to the global optimization algorithms. The
Bayesian MCMC approach performs slightly better (about
0.02 kg m~2) but requires many more simulations to achieve
the results (Fig. 4a).

The results of RBF-SBO also indicate less variation
among the 50 repeated experiments than the global optimiza-
tion algorithms for the three models. For the same reason pre-
viously mentioned, the Bayesian MCMC approach has less
variation than our RBF-SBO algorithm for the two micro-
bial models. For the CLM-CASA’ model, our RBF-SBO is
still promising to get stable results. Among the global opti-
mization algorithms, CMA-ES shows a very significant fluc-
tuation (Fig. 4b, ¢), indicating that it is unreliable when the
number of simulations is as small as 100. This is because the
CMA-ES requires quite a few simulations on the exploration
of the parameter domain and the construction of the param-
eter covariance matrix. Therefore, RBF-SBO is the most ef-
fective and stable algorithm when the number of simulations
is limited.

Figure 5 shows the results in terms of average validation
RMSE. We don’t compare the efficiency of Bayesian MCMC
since it is in nature a sampling algorithm, not an optimiza-
tion algorithm. The average validation RMSE of RBF-SBO
is lower than the four global optimization algorithms before
the number of simulations increases to 600 for the two mi-
crobial models and to 200 for the CLM-CASA’ model, re-
spectively. Our RBF-SBO requires fewer simulations than
the global optimization algorithms when they reach the same
RMSE value and accuracy range. Thus, our RBF surrogate
optimization is the most efficient algorithm, requires the min-
imum number of simulations and has the lowest computa-
tional cost. Compared to the global optimization algorithms,
SBO has two main advantages. Firstly, SBO samples an ini-
tial parameter set to build a surrogate model; this building
process is a learning process which can better understand the
parameter space and thus help conduct better optimization.
Secondly, SBO can avoid some bad parameter points (“bad”
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means high prediction error), which are not supposed to be
evaluated with the help of the surrogate model.

Another important observation is that the difference be-
tween the results of our RBF-SBO and the global optimiza-
tion algorithms decreases as the number of simulation in-
creases (Fig. 5). Moreover, the CMA-ES outperforms the
RBF-SBO when the number of simulations exceeds 200 for
the CLM-CASA’ model (Fig. 5a). Our SBO can quickly
build the surrogate model with relatively good accuracy,
which helps find a near-optimal solution with lower com-
putation cost. However, the surrogate model is only an ap-
proximation of the real model and accuracy might be lim-
ited due to the strong nonlinearity and high complexity of the
real model. After gaining sufficient knowledge of the original
model through many simulations, the excellent global opti-
mization algorithms, such as CMA-ES, may achieve similar
performance to or even outperform our SBO, which suggests
that our SBO is better fitted for use regarding the parameter
calibration of cost-intensive models.

4.3.2 Impact of the model complexity

Compared to the two-pool and four-pool microbial models,
the CLM-CASA’ model has 13 carbon pools and 20 param-
eters. Despite the increased complexity of the CLM-CASA’
model, the SBO obtains better results before conducting 200
simulations of the real model (Fig. 5a). Moreover, the SBO
is always the best parameter calibration method for the two-
pool and four-pool microbial models before conducting 600
simulations (Fig. 5b, c). In addition, only one global opti-
mization algorithm, CMA-ES, has better performance com-
pared to the SBO on the CLM-CASA’ model after 200 sim-
ulations. Considering the high variance of CMA-ES on the
two microbial models (Fig. 4b, ¢), our SBO is more effective
and more reliable on average.

4.3.3 Impact of different types of surrogate models

We select the RBF as the surrogate model in the experiments
because the RBF is widely adopted in many SBO algorithms
(Miiller and Shoemaker, 2014). In this section, we also test
two other typical surrogate models, kriging and MARS. The
MARS model is simple and has almost no requirements for
the sample quality. MARS is very quick to train and pre-
dict. Kriging, also known as Gaussian process regression,
is a method of interpolation for which the interpolated val-
ues are modeled by a Gaussian process governed by prior
covariance. Kriging provides the best linear unbiased predic-
tion of the intermediate values under suitable assumptions on
the priors.

Figure 6 presents the results of kriging, MARS and RBF in
terms of average validation RMSE. The performance of the
three surrogate models is similar. The three surrogate models
all have reasonable performance in the parameter calibration
of the three types of SOC models and perform better than
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Table 3. Calibration results of the Bayesian MCMC and our surrogate-based optimization.

SOC model Detail Method Lowest RMSE  Variance Number of
(kg m~2) explained simulations

Two-pool microbial 8 parameters, 2 carbon pools. Bayesian MCMC 6.609 51.6 % 500004500000
RBF-SBO 5.785 51.6% 221

Four-pool microbial 15 parameters, 4 carbon pools. Bayesian MCMC 7.142 51.3% 500004500000
RBF-SBO 5.756 51.4% 199

CLM-CASA 20 parameters, 13 carbon pools.  Bayesian MCMC 7.000 41.0% 500001000000
RBF-SBO 7.162 42.8 % 321
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Figure 4. The RMSE:s of the different optimization algorithms: (a) CLM-CASA’ model; (b) two-pool microbial model and (c) four-pool
microbial model. The box plots show the means and the quartiles spreading over a total of 50 calibration runs. The central line indicates
the median, the bottom and top of the box are the first and third quartiles, the black bottom and top lines out of the rectangles are the
maximum and minimum and the red crosses represent the outliers. The number of simulations of the five algorithms is 100 and the number

of simulations of the Bayesian MCMC is presented in Table 3.

global optimization algorithms, indicating that our SBO is
robust.

5 Analysis of parameter calibration results
5.1 CLM-CASA’ model

The steady-state global SOC simulations (Eq. 2) using CLM-
CASA’ with the default and calibrated parameter values are
presented in Fig. 7a and b, which are also compared to the
observed SOC pools provided by the IGBP-DIS dataset. The
SOC simulation results, using the calibrated parameter val-
ues from the SBO, match the observation better than the sim-
ulation results with the default parameter values (Fig. 7¢) and
display a relatively lower RMSE. By using the calibrated
parameter values the SOC simulations are significantly im-
proved in most parts of the world, except for some grid cells
in the west of Canada and the east of Russia (Fig. 7a, b and
¢). As a result, the CLM-CASA’ simulation result with the
default parameter values can only explain 33 % of variation
in the observed soil C, whereas the simulation with the cali-
brated parameter values can explain an improved ratio (42 %)
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of variation in the observed soil C. The unexplained variation
is partly due to uncertainty in observations. To further im-
prove the model’s accuracy, we need to gain a more in-depth
understanding of uncertainty sources from the data, model
structure, parameters and forcing.

Figure 8 presents the frequency distributions of the 20 cal-
ibrated parameters based on MCMC and the calibrated pa-
rameter values using the proposed SBO (the blue lines in
Fig. 8). Narrow posterior distributions indicate highly sensi-
tive parameters, consistent with the conclusions of Hararuk et
al. (2014). The calibrated parameter values of SBO are quite
similar to the responding parameter values at the peaks of
posterior distributions for most highly sensitive parameters,
such as the temperature sensitivity of heterotrophic respira-
tion (Q10) and the clay effect on C partitioning from slow
pools to passive pools (7). The parameter calibration results
(RMSE) of the SBO and the Bayesian MCMC are similar,
which means that both are consistent with the parameter cal-
ibration results listed in Table 3.

Some calibrated parameter values are very close to the as-
signed bounds of the parameters in Fig. 8, which is usually
related to the correlations among parameters. Further inves-
tigation on the covariance among parameters is necessary to
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Figure 6. The average RMSEs with the increase of number of simulations and different surrogate models.

explain this issue. In addition, the unreasonable setting of
those bounds might be another possible reason. For instance,
the calibrated c(12,12) value (1.01 x 10_3) reaches its lower
bound, indicating that passive SOC residence time almost ap-
proaches 1000 years.

As listed in Table 1, the calibrated temperature sensitivity
(Q10) decreases from 2 to 1.74. The size of soil microbial
and passive pools increases due to the longer residence time
of the passive pool and lower temperature sensitivity (Q19).
The size of the slow pool, on the contrary, decreases due to
the increase in the decomposition rate from the slow pool
or the decrease of its residence time. Comprehensively, the
size of the SOC, which is the sum of carbon capacity in pas-
sive pools, slow pools and soil microbial pools, increases and
closely approximates the observation.

5.2 The microbial models

According to the calibrated RMSE and 72 the SOC simu-
lation of the two-pool and four-pool microbial models are
very similar. Without the loss of generality, we only analyze
the parameter calibration results of the four-pool microbial
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model in this section. After parameter calibration using the
SBO, the global SOC produced by the four-pool microbial
model is improved, especially in China, Russia, Europe and
North America (as shown in Fig. 9). Overall, the microbial
models explain a higher fraction of the global variability of
the observed SOC data and have lower spatial RMSEs than
the CLM-CASA’ model (as listed in Table 3).

The microbial models achieve better SOC predictions than
the calibrated CLM-CASA’ model in terms of their predic-
tion of the C capacity in the low-temperature regions (Russia,
Europe, North America) and in the regions with small soil C
inputs (Figs. 7b and 9). The SOC contents are determined by
two main factors: the soil carbon inputs and the SOC resi-
dence time (Luo et al., 2003). Considering the same soil car-
bon inputs in the CLM-CASA’ and the microbial models, the
improvement is mostly induced by the differences in SOC
residence time. In all three models, the SOC residence time
is essentially controlled by temperature (Xia et al., 2013). As
a result, the temperature sensitivity (Q10) contributes to the
difference across the three models. The temperature sensi-
tivity remains constant in the CLM-CASA’. However, both
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Figure 7. Spatial correspondence of SOC produced by CLM-CASA’ to SOC reported by IGBP-DIS. Map (a) shows the results using
the default parameter values, and (b) shows the results after parameter calibration using the surrogate-based optimization. The points in
(c) represent the grid cell values (blue represents the results with default parameter values and red represents the results after parameter
calibration). CLM-CASA’ with the default parameter values explains 33 % of the variation in the observed soil C, while CLM-CASA’ with
the calibrated parameter values explains 42 % of the variation in the observed soil C.
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Figure 9. Spatial correspondence of the four-pool microbial model
produced SOC to the IGBP-DIS reported SOC.

of the microbial models calculate spatially variable Q1o with
higher values in the low-temperature regions and lower val-
ues in the high-temperature regions, which reflects the im-
pact of temperature on the microbial activity. In addition,
the SOC residence time can also be affected by the quality
of SOC inputs and is related to the microbial decomposition
processes. Fresh C input stimulates microbial growth dynam-
ics, resulting in an increase in the old SOC decomposition
rate (i.e., priming effect) (Kuzyakov et al., 2000; Fontaine et
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al., 2004, 2007). Therefore, the microbial models simulate
lower SOC residence times than the CLM-CASA’ in regions
with high SOC input and a high SOC residence time and the
regions with low SOC input. This is due to the nonlinearity of
the substrate limitation in microbial models (Egs. 8 and 10),
as well as the dependency of the residence time on micro-
bial dynamics. Comprehensively, the introduction of micro-
bial dynamics allows the microbial models to better predict
SOC than the CLM-CASA’ model.

Figure 10 presents the posterior distributions of the param-
eters calculated by Bayesian MCMC and the parameter val-
ues calibrated using our SBO. According to the posterior dis-
tribution, rg4, CUE;gope, CUEo, E,, pary;, and parj,, are the
most constrained and sensitive parameters. The calibration
results of the SBO are consistent with the posterior distri-
butions of these highly sensitive parameters (Fig. 10) except
CUEgqiope and CUEq. CUE)ope and CUEj are highly sensitive
owing to their influence on temperature sensitivity. Due to the
difference between CUE;)ope and CUE(, the RMSE of SBO
is 1.4 and 0.8 kgm~2 lower than those found with Bayesian
MCMC for four-pool and two-pool microbial models respec-
tively (as listed in Table 3). The mismatch of CUEgjope and
CUE( may mainly be due to the different targets of the pa-
rameter selection between the two methods.
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Figure 10. Posterior probability density functions of the four-pool microbial model parameters (generated by Bayesian MCMC). The blue
vertical lines are the final calibrated parameter values from our surrogate-based optimization.

6 Conclusions

Parameter calibration is becoming more and more challeng-
ing for SOC model development, especially for the compu-
tationally expensive global land models, owing to the large
number of simulations. In this study, we introduce an SBO
algorithm to the parameter calibration of three SOC models.
The main findings are as follows:

1. Compared to advanced global optimization algorithms,
SBO is more effective and more efficient on average.
Our RBF-SBO outperforms other parameter calibration
algorithms when the number of simulations does not ex-
ceed 200.

2. The parameter optimization based on the RBF surrogate
model gains more accurate calibration results than those
of the Bayesian MCMC approach in the three soil car-
bon models.

3. The SBO scheme is robust. Various types of surrogate
models have similar performance in the parameter cali-
bration tasks of SOC models.

4. Although SBO is only guided by a single cost function,
it can still result in better parameter values than the de-
fault algorithms. We carefully analyze the spatial SOC
distributions produced by the models with the calibrated
parameters using SBO, which indicate that SBO truly
improves the model’s prediction and simulation capa-
bility.
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Although the three SOC models used in this analysis are
not computationally unattainable for parameter calibration,
what we have learned about SBO from this study can poten-
tially be applied to more complex models. Currently, more
and more complex simulation models present challenges to
the SBO algorithm. To improve the accuracy of SBO, bet-
ter surrogate models are expected. Current surrogate models
including our implementation for soil carbon models mainly
employ only one surrogate model, which may limit success-
ful use for different kinds of models. In the future we will
focus on the application of multiple surrogate models using
ensemble learning.
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