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Abstract The dynamics of soil phosphorus (P) control its bioavailability. Yet it remains a challenge to
quantify soil P dynamics. Here we developed a soil P dynamics (SPD) model. We then assimilated eight
data sets of 426‐day changes in Hedley P fractions into the SPDmodel, to quantify the dynamics of six major
P pools in eight soil samples that are representative of a wide type of soils. The performance of our SPD
model was better for labile P, secondary mineral P, and occluded P than for nonoccluded organic P (Po) and
primary mineral P. All parameters describing soil P dynamics were approximately constrained by the data
sets. The average turnover rates were labile P 0.040 g g−1 day−1, nonoccluded Po 0.051 g g−1 day−1,
secondary mineral P 0.023 g g−1 day−1, primary mineral P 0.00088 g g−1 day−1, occluded Po 0.0066 g g−1

day−1, and occluded inorganic P 0.0065 g g−1 day−1, in the greenhouse environment studied. Labile P was
transferred on average more to nonoccluded Po (transfer coefficient of 0.42) and secondary mineral P
(0.38) than to plants (0.20). Soil pH and organic C concentration were the key soil properties regulating
the competition for P between plants and soil secondary minerals. The turnover rate of labile P was
positively correlated with that of nonoccluded Po and secondary mineral P. The pool size of labile P was
most sensitive to its turnover rate. Overall, we suggest data assimilation can contribute significantly to an
improved understanding of soil P dynamics.

Plain Language Summary Plant growth in terrestrial ecosystems is affected by the supply of
phosphorus in the soil, which is itself determined by the amount of phosphorus in the soil that is soluble
in water and the rates of changes to it from other forms of phosphorus in the soil. While the amount of
water soluble P in the soil is easy to quantify, it is a challenge to quantify the rates of change between the
forms of phosphorus in the soil. We showed that data assimilation, a data‐model fusion approach, can
quantify these rates of change. Some of these were quantified here for the first time, although in a
greenhouse environment. We provided a novel approach to quantify the changes of the forms of phosphorus
in the soil. This will ultimately contribute to the accurate management of phosphorus fertilizers in
agricultural lands and the accurate estimation of phosphorus limitation on plant growth in natural
terrestrial ecosystems.

1. Introduction

The dynamics of phosphorus (P) in the soil directly control its bioavailability (George et al., 2018; Hou et al.,
2016; Vitousek et al., 2010), which further affects many key functions (e.g., crop production and carbon [C]
sequestration) of terrestrial ecosystems (Augusto et al., 2017; George et al., 2018; Penuelas et al., 2013; Wang
et al., 2010). Hence, there is a growing demand to incorporate the P cycle into earth system models, to
improve predictions for crop production and terrestrial C sequestration under future global change scenarios
(Reed et al., 2015; Roy et al., 2016; Sun et al., 2017; Wang et al., 2010). To achieve this goal, we need to quan-
tify soil P dynamics (Helfenstein, Tamburini, et al., 2018; Reed et al., 2015; Sun et al., 2017), which remains a
challenge (Helfenstein, Jegminat, et al., 2018; Helfenstein, Tamburini, et al., 2018).

Soil P dynamics mainly includes sorption/desorption, precipitation/dissolution, mineralization/
immobilization, weathering, and solid‐phase P transformations such as solid‐phase diffusion, penetration,
and recrystallization (Barrow, 1983; Frossard et al., 2000; Gama‐Rodrigues et al., 2014; Hou et al., 2016;
Tiessen & Moir, 2007; Vitousek et al., 2010). Among these, fast soil P transformations such as
sorption/desorption and mineralization/immobilization have been much studied, because current
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approaches are able to quantify soil P dynamics usually within a growing season (Achat, Bakker, et al., 2010;
Barrow, 1983; George et al., 2018). For example, isotopic dilution technique, which is considered the most
reliable approach to study soil P dynamics, can quantify soil P dynamics successfully at time scales from days
to a growing season but hardly at longer time scales, due to the short half‐lives of 33P (25.3 days) and 32P (14.3
days; Achat, Bakker, et al., 2010; Bünemann, 2015; Chen et al., 2003; Helfenstein, Jegminat, et al., 2018). The
turnover rates of slow‐cycling soil inorganic P pools such as second mineral P and primary mineral P have
recently been approximated using a combination of sequential extraction with P K‐edge X‐ray absorption
spectroscopy and isotopic methods (33P and 18O in phosphate), in Hawaii, United States (Helfenstein,
Tamburini, et al., 2018). The wide application of this approach, however, is limited by its use of radioactive
isotopes and expensive equipment such as an X‐ray absorption near edge spectroscopy and an isotopic ratio
mass spectrometer.

Sequential extraction approach has been one of the most common ways to study soil P dynamics, due to its
low operational cost and practical feasibility, with the procedure of Hedley et al. (1982) and its modifications
as the most commonly used one (Condron &Newman, 2011; Hedley et al., 1982; Hou, Tan, et al., 2018; Hou,
Wen, et al., 2018; Hou, Chen, et al., 2018; Tiessen & Moir, 2007). In general, the Hedley P fractionation
procedure sequentially removes soil inorganic P (Pi) and organic P (Po) fractions with decreasing solubility
or mobility using a series of chemical reagents (Hedley et al., 1982; Tiessen & Moir, 2007). Previous applica-
tions of soil P fractionation techniques have provided valuable insights into soil P dynamics, for example,
revealing the changes in soil P forms and bioavailability with soil development (Cross & Schlesinger,
1995; Vitousek et al., 2010). Some studies have also applied a regression or path analysis approach to explore
the pathways of transformations between soil P pools (Gama‐Rodrigues et al., 2014; Hou et al., 2016; Hou,
Chen, et al., 2018; Tiessen et al., 1984), providing qualitative or semiquantitative information about soil
P dynamics. However, a quantitative understanding of this dynamics is required for the precise management
of agricultural soil P availability and reliable predictions about terrestrial ecosystems under global change
scenarios (Reed et al., 2015; Roy et al., 2016; Sun et al., 2017).

Data assimilation is a data‐model fusion method that combines a model with the data in a rigorous way to
constrain the parameters of the model and the states of the system, identify the model error, and improve
ecological prediction (Luo et al., 2011; Luo et al., 2016; Niu et al., 2014). It has been successfully used to
quantify terrestrial C dynamics, with a combination of process‐based C cycle models and field or laboratory
measurements of C pools and fluxes (Liang et al., 2015; Luo et al., 2016; Niu et al., 2014). Since the dynamics
of soil P is also based on pools and fluxes, a data assimilation analysis of soil P fraction data is potentially
able to quantify this dynamics and thus contribute to an improved understanding of soil P dynamics. Yet
no study has applied such an approach to quantify soil P dynamics, despite the numerous soil P fraction
measurements in the literature (Hou, Tan, et al., 2018; Negassa & Leinweber, 2009). The data assimilation
approach is potentially superior to other currently available techniques in quantifying soil P dynamics in
several ways. It can use the existing multiple sources of diverse observations (e.g., soil P pool size and plant
P uptake), simultaneously quantify the rates of all major soil P processes and provide information about the
uncertainties of the parameters related to soil P (Luo et al., 2011; Luo et al., 2016; Niu et al., 2014). And it
may be particularly useful to quantify the dynamics of slow‐cycling soil P pools (e.g., soil occluded P), which
can hardly be achieved by any currently available experimental technique (Helfenstein, Tamburini,
et al., 2018).

This study aims to explore whether a data assimilation analysis of soil P fractions can quantify soil P
dynamics and contribute to an improved understanding of it. With this aim, we first built a process‐based
soil P dynamics (SPD) model. Then we assimilated eight data sets of temporal changes in Hedley P fractions
(Hedley et al., 1982) into the SPD model, to quantify the dynamics of the major soil P pools. Finally, we
linked our estimates to plant P uptake and key soil properties such as soil pH and organic C concentration,
to examine the effects of the properties of the plants and soil on soil P dynamics.

2. Materials and Methods

As stated above, one main purpose of this study was to examine the potential of data assimilation in quanti-
fying soil P dynamics. Theoretically, all soil P fraction data can yield information about soil P dynamics.
However, low‐frequency (e.g., single time) measurements of soil P fractions usually reveal small temporal
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changes in soil P fractions and contain very limited information about soil P dynamics (Luo et al., 2009;
Luo et al., 2016). Soil P fractions determined using different fractionation procedures are not directly
comparable (Hou, Tan, et al., 2018). Therefore, we preferred consistent and frequent measurements of the
P fractions in a group of soils with a wide variety of physiochemical properties. By searching the literature,
we found data sets in Guo et al. (2000) meeting our requirements well. This is because Guo et al. (2000)
reported consistent (i.e., using the same fractionation procedure) and frequent (i.e., seven or eight times)
measurements of the P fractions of eight soils that represent eight soil series and four of the twelve major
USDA soil types (Table 1). In addition, most soil P fractions changed substantially or significantly during
the study period (Figure S1; Guo et al., 2000). Such data sets are more likely to constrain soil P dynamics,
and the soil samples are representative of a wide type of soils. A less desirable feature of these data sets is
that they derived from experiments performed in a greenhouse, where the soil P pools could have higher
turnover rates than in the field. This will be discussed in section 4.

2.1. Greenhouse Experiment

Guo et al. (2000) described in detail the experimental design, cropping, sampling and preparation of the soils,
and determination of the P fractions and physiochemical properties of the soils. In general, they used crops
to remove labile P from eight soils to trigger changes in the P fractions in these soils over a total of 14
cropping periods. After every two croppings, they sampled small amounts of the soils to determine the soil
P fractions.

Guo et al. (2000) planted crops in plastic pots (18 cm in diameter and 30‐cm deep) in a greenhouse. For
croppings 1 to 10, 13, and 14, they planted corn seeds (Zea mays L.) and harvested the corn after 28 days
of growth. For croppings 11 and 12, they planted soybean seeds (Glycine max [L.] Merr.) and harvested
the soybeans after 45 days of growth. They also carried out several treatments (e.g., N fertilization and irriga-
tion) to facilitate intensive uptake of P from the soils. They set a randomized complete block with three repli-
cates of each type of soil.

Guo et al. (2000) took a 2‐g soil sample from each pot before the first planting and after croppings 2, 4, 6, 8,
10, 12, and 14 (i.e., 0, 56, 112, 168, 224, 280, 370, and 426 days after the first planting, as used in our data
assimilation system) for the determination of the soil P fractions. They determined the soil P fractions using
a modified Hedley procedure (Hedley et al., 1982). In brief, they sequentially extracted a 0.5‐g soil sample
with (1) 30‐ml deionized water and one Fe‐impregnated strip (2 × 10 cm2), (2) 0.5 M NaHCO3 at pH 8.5,
(3) 0.1 M NaOH, (4) 1 M HCl, and (5) 5.0‐ml concentrated H2SO4 and 2 to 3‐ml H2O2. They determined
the inorganic P (Pi) in all five extracts (i.e., the strip‐P, NaHCO3‐Pi, NaOH‐Pi, HCl‐P, and residual P frac-
tions) by the method of Murphy and Riley (1962). They determined the total P (PT) in extracts 2 and 3 by
the method of Murphy and Riley (1962) after autoclave digestion to convert Po to Pi with acid ammonium
peroxysulfate (Guo et al., 2000). They calculated the organic P in extracts 2 and 3 as the difference between
PT and Pi in these extracts.

Table 1
Basic Physiochemical Properties of the Eight Soils Studied

Soil property Unit Honouliuli Lualualei Nohili Paaloa Wahiawa Kapaa Leilehua Mahana

Soil order Vertisols Vertisols Mollisols Oxisols Oxisols Oxisols Ultisols Oxisols
Total P g/kg 1840 2098 815 596 528 1722 699 1327
Extractable P mg/kg 26.3 31.9 3.2 1.1 1.6 2.5 1.2 15.8
pH 7.26 7.65 7.44 5.05 5.05 4.92 4.66 4.31
Organic C g/kg 16.6 4.1 17.1 40.0 35.8 45.6 44 36.7
Exchange cation cmolc/kg 30.6 106.8 109.5 5.5 4.1 3.8 1.0 1.4
Feox g/kg 3.4 3.82 11.8 7.48 3.27 4.54 6.56 5.7
Alox g/kg 1.43 2.94 4.32 2.98 3.65 5.61 6.5 12.81
Sand g/kg 56.5 49.9 26.8 53.8 20.4 91.5 17.0 146.1
Silt g/kg 363.6 161.7 166.6 205.4 84.6 383.4 120.2 367.6
Clay g/kg 580.0 788.4 806.6 740.8 895.0 525.1 862.9 486.3

Note. Extractable P is inorganic P extracted by 0.5 M NaHCO3. Feox and Alox are the concentrations of Fe and Al, respectively, extracted by a mixture of ammo-
nium oxalate and oxlic acid.

10.1029/2018JG004903Journal of Geophysical Research: Biogeosciences

HOU ET AL. 2161



2.2. Description of the Model

The soil P dynamics (SPD) model (Figure 1) was modified from the con-
ceptual model of Tiessen et al. (1984) according to the selected data sets.
Specifically, the sum of the strip‐P and the NaHCO3‐Pi was calculated as
labile P (P1 in Figure 1). This is because the strip‐P and the NaHCO3‐Pi
were highly positively correlated (r= 0.85, P< 0.001, n= 60) and changed
in similar ways over the course of the experiment (Figure S1 in the sup-
porting information). The sum of the NaHCO3‐Po and the NaOH‐Po
was calculated as nonoccluded Po (P2 in Figure 1), because of the func-
tional similarity between the two Po fractions (Hou et al., 2016; Tiessen
& Moir, 2007). Similarly, as defined by Tiessen et al. (1984), the NaOH‐

Pi was used as secondary mineral P (P3 in Figure 1), and the HCl‐P was
used as primary mineral P (P4 in Figure 1). The residual P in organic
and inorganic forms were defined as occluded Po (P5 in Figure 1) and
occluded Pi (P6 in Figure 1), respectively (Tiessen et al., 1984). In Guo et al.
(2000), the residual P was believed to be composed of but not separated
into residual organic P and residual inorganic P. A proportion of occluded
P in organic forms (OPo) was introduced in our study to represent the
amounts of occluded Po (calculated as residual P × OPo) and occluded
Pi (calculated as residual P × (1 − OPo)). The lower/upper bounds and
initial value ofOPo (Table S1) were set based on the proportions of organic
P in the NaHCO3 and the NaOH extracts, as justified in detail in Text S1.

Our SPD model included all major soil P transformations, as detailed in Figure 1. Plant P uptake during a
specific period was calculated as the sum of the decreases in P1‐6 during the period. For instance, plant
P uptake after cropping 14 was calculated as the difference between the sum of P1‐6 at cropping 0 and the
same sum after cropping 14. Soil moisture content was maintained near soil available water capacity during
the experiment (Guo et al., 2000); therefore, no P leaching was considered in our SPDmodel. Since this took
place in greenhouse environment, no atmospheric P deposition was considered. No leaf litter was likely to be
produced during the experiment, because plants were young (≤45 days of growth). Although Guo et al.
(2000) did not describe how they harvested the crops, we assumed that they harvested the whole of the plants
(i.e., both the aboveground and the belowground parts) without leaving significant amounts of roots in the
soil, because they were aimed to remove as much P from the soil as possible to trigger essential changes in
the soil P fractions. Hence, no litter production or litter decomposition was considered in our SPD model.
Note that if roots were not harvested or if coarse roots were harvested with much of the fine roots left in
the soil, a pathway from the plants to nonoccluded Po would need to be considered during modeling.

In reference to the SPD model in Figure 1, soil P dynamics are represented by the following set of
balance equations.

dP1 tð Þ
dt

¼ a14P4 tð Þ þ a12P2 tð Þ þ a13P3 tð Þ−k1P1 tð Þ
dP2 tð Þ
dt

¼ a21P1 tð Þ þ a25P5 tð Þ−k2P2 tð Þ
dP3 tð Þ
dt

¼ a31P1 tð Þ þ a36P6 tð Þ−k3P3 tð Þ
dP4 tð Þ
dt

¼ −k4P4 tð Þ
dP5 tð Þ
dt

¼ a52P2 tð Þ−k5P5 tð Þ
dP6 tð Þ
dt

¼ a63P3 tð Þ−k6P6 tð Þ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(1)

Note that plant P uptake was not listed in equation (1), because it is treated as a soil P flux in the SPDmodel.
Meanwhile, ap1 was not used in equation (1), because it can be directly estimated from a21 and a31 by the
following equation:

Figure 1. Schematic representation of the soil P dynamics model. Primary
P indicates primary mineral P; secondary P indicates secondary mineral P;
Pi indicates inorganic P; Po indicates organic P. An “a” on an arrow indi-
cates the coefficient of soil P transformation: plant immobilization (ap1),
weathering (a14), microbial immobilization (a21), mineralization (a12),
sorption/precipitation (a31), desorption/dissolution (a13), and solid‐phase
transformations (a25, a52, a36, and a63).
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ap1 ¼ 1−a21−a31 (2)

The set of balance equations (1) can be summarized by the following first‐order differential equation:

dP tð Þ
dt

¼ −AKP tð Þ (3)

where A and K are the matrices given by

A ¼

−1 a12 a13 1 0 0

a21 −1 0 0 1 0

a31 0 −1 0 0 1

0 0 0 −1 0 0

0 1−a12 0 0 −1 0

0 0 1−a13 0 0 −1

0
BBBBBBBBB@

1
CCCCCCCCCA

K ¼ diag kð Þ ¼

k1 0 0 0 0 0

0 k2 0 0 0 0

0 0 k3 0 0 0

0 0 0 k4 0 0

0 0 0 0 k5 0

0 0 0 0 0 k6

0
BBBBBBBBB@

1
CCCCCCCCCA

and P(t) = (P1(t) · P2(t) · P3(t) · P4(t) · P5(t) · P6(t))
T is a 6 × 1 vector describing the sizes of the soil P pools.

Matrix A gives the transfers of P between the individual P pools, as described by the arrows in Figure 1. The
elements (aij) are the P transfer coefficients, representing the fraction of P entering the ith (row) pool from
the jth (column) pool. a52 is calculated as 1− a12; a63 is calculated as 1− a13; a14, a25, and a36 are fixed at 1.0.
K is a 6 × 6 diagonal matrix representing the release rates of six soil P pools (units: g P g−1 P day−1; for con-
venience, g g−1 day−1 was used in the following), i.e., the amount of P leaving each of the soil P pools per day.

2.3. Model Validation and Data Assimilation

Before the data assimilation analysis, we validated the SPDmodel with soil P pool measurements at cropping
0 (Table S2) and initial model parameter values (i.e., initial values of k1‐6, OPo, and the as; Table S1). The
prior knowledge used to ascertain the initial model parameter values was described in Text S1. The same
parameter values were used for all the eight soils studied. In general, the SPD model simulated temporal
changes in the soil P pools reasonably well, with a better performance for labile P, secondary mineral P,
and occluded P than for nonoccluded Po and primary mineral P (Figure S2 and Table S3).

The performance of the model was quantified by both R2 of the linear relationship between the measure-
ments (X axis) and the modeled values (Y axis) and the normalized root‐mean‐square error (NRMSE) for
each P pool of each soil. The NRMSE was calculated as

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑N

i¼1 Zsim
i −Zobs

i

� �2q
y

(4)

where Zobs
i is the ith measurement of a soil P pool, Zsim

i is the corresponding model value, N is the total
number of measurements for the soil P pool, and y is the average of the N measurements of the soil P pool.

For the data assimilation analysis, we used a probabilistic inversion approach described by Liang et al. (2015)
to estimate the parameters describing soil P dynamics. The approach is based on Bayes' theorem:

P θjZð Þ∝P Zjθð ÞP θð Þ (5)

where P(θ|Z) was the posterior probability density function (PDF) of model parameter θ, P(Z| θ) was a like-
lihood function that included information obtained during the greenhouse experiment, and P(θ) was the
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prior knowledge of parameter θ. The prior PDF was specified as the uniform distribution over the range of
the specific parameter. The likelihood function P(Z| θ) was calculated with the assumption that the errors
between the observed and the modeled values were independent from each other and followed a multivari-
ate Gaussian distribution with a zero mean:

P Zjθð Þ∝ exp −∑6
i¼1∑tϵobs Zið Þ

Zi tð Þ−Xi tð Þ½ �2
2σi2 tð Þ

( )
(6)

where Zi(t) and Xi(t) were the observed and the modeled values of P (either one of the five measured soil
P pools or plant P uptake), respectively, and σi(t) was the standard deviation of the measurement.

The probabilistic inversion was carried out on using the Metropolis‐Hasting (M‐H) algorithm, which is a
Markov Chain Monte Carlo technique (Hastings, 1970) to construct the posterior PDFs of the parameters.
Briefly, the M‐H algorithm repeats two steps: a proposing step and a moving step. In the proposing step, a
new point θnew is generated based on the previously accepted point θold with a proposal distribution
P(θnew| θold):

θnew ¼ θold þ d θmax−θminð Þ
D

(7)

where θmax and θmin were the maximum and minimum values in the prior range of the given parameter, d
was a random variable between −0.5 and 0.5 with a uniform distribution, and D was used to control the
proposing step size and was set to 30 in the current study. In the moving step, the new point θnew was tested
against the Metropolis criterion to examine if it should be accepted or rejected. Because the initial accepted
samples were in the burn‐in period, the first half of accepted samples were discarded and only the rest were
used to generate posterior PDFs.

Measurement errors of soil P pools were not given in Guo et al. (2000). Instead, they (Table S4) were
estimated based on the Fisher's least square deviations given in Guo et al. (2000) and current knowledge
of the errors in Hedley P fraction measurements (Condron & Newman, 2011; Tiessen & Moir, 2007). In
general, small soil P pools (e.g., primary mineral P in highly weathered soils and labile P) have larger mea-
surement errors than large soil P pools (e.g., primary mineral P in lightly weathered soils and occluded P),
due to their ease of loss and/or being contaminated by the previous extract during fractionation (Condron
& Newman, 2011; Tiessen &Moir, 2007) and their close proximity to the detection limit of the typically used
colorimetric method (Murphy & Riley, 1962). Active soil P pools (e.g., nonoccluded Po) have larger measure-
ment errors than the less active soil P pools (e.g., occluded P), due to their more intense reactions with the
chemical reagents used for extraction (Condron & Newman, 2011). The lower/upper bounds and initial
value of each parameter (Table S1) were set based on current knowledge of soil P transformations, as justi-
fied in Text S1.

To facilitate intensive uptake of P by the crop, Guo et al. (2000) treated all soils with P fertilizers and then
incubated the soils for 60 days to allow the P fertilizers to mix well with the P in the soils. Temporal changes
in soil P fractions (Figure S1), however, showed that the P fertilizers had not yet mixed well with the P in the
soils at cropping 0. To deal with this experimental problem, we estimated the soil P fractions at cropping 0
using a probabilistic inversion approach as described by equation (7). We listed the initial value and range of
the proportion of each soil P pool in the total soil P at cropping 0 in Table S2. In general, the initial values
were calculated from soil P pool measurements at cropping 0, and the ranges were estimated based on the
temporal changes in soil P pools after cropping 0 (Figure S1).

TheM‐H algorithmwas formally run 5 replicates and 500,000 times for each soil to examine the convergence
of the parameters. We tested the convergence of the sampling chains by the Gelman‐Rubin (G‐R) diagnostic
method to ensure that the within‐run variation is roughly equal to the between‐run variation.

Wi ¼ 1
K
∑k

k¼1σ
2
k (8)

Bi ¼ N
K−1

∑k
k¼1 p:;k−p:;:

� �2
(9)
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where K is the number of replicates, N is the number of accepted interactions after the burn‐in period, p:;k

and σk are the mean and standard deviation of the specific parameter in the kth replicate, and p:;: is the
mean of the specific parameter over the five replicates. When the Markov chain reaches convergence, GRi
is close to 1.0.

GRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wi N−1ð Þ=N þ Bi=N

Wi

s
(10)

In this study, the GRs of all parameters of all soils were < 1.10 (Table S5), indicating that all the parameters
reached approximate convergence (Brooks & Gelman, 1998).

2.4. Sensitivity Analysis of the Model Parameters

The sensitivity of the modeled soil P pools to the model parameters was analyzed using a first‐order approx-
imation method, as described by Gao et al. (2011). For a modeled soil P pool, Z, we first quantified an uncon-
ditional variable V(Z) from model output when all parameters pi in matrices K and A, freely vary over their
entire ranges as listed in Table S1. We then estimated the conditional expectation of variable Z for each para-
meter pi (for i= 1, 2,… 11, i.e. k1‐6, a21, a31, a12, a13, OPo). We randomly selected a value of pi from a uniform

distribution within its prior range p*i , as shown in Table S1. We then randomly selected 1000 values for each
of the other parameters (pj: j ≠ i) from uniform distributions within their prior ranges. From this sample of

1000 parameter sets we estimated a conditional expectationE Zjpi ¼ p*i
� �

. We repeated this sampling for 100

randomly selected values of pi and used the results to estimate the variance V(E(Z| pi)). Finally, we repeated
this procedure for each of pi (for i = 1, 2, … 11).

A sensitivity index Si was calculated for each parameter pi (for i = 1, 2, … 11), where

Si ¼ V E Zjpið Þð Þ
V Zð Þ (11)

To compare Si for all the modeled soil P pools, we normalized Si by

Ii ¼ Siffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑11

i¼1S
2
i

q (12)

where Ii is the normalized sensitivity index, with a larger value of Ii indicating a greater sensitivity of the soil
P pool to the ith parameter. We calculated Ii for all modeled soil P pools.

2.5. Statistical Analysis

We calculated Pearson's correlation coefficients for the model parameters based on 1,000 sets of parameter
values that were randomly selected from the second half of accepted samples. The relationships between the
Maximum Likelihood Estimates of the parameters and the physiochemical properties of the soil as well as
plant P uptake were analyzed using Pearson's correlation and linear regression in SigmaPlot 12.0 (Systat
Software, San Jose, CA, United States).

3. Results

The 14 croppings had essentially changed all soil P pools, with labile P changed by−87.8% to−61.0% (a nega-
tive value means a decrease and a positive value means an increase, the same below), nonoccluded Po
changed by −23.3%–62.2%, secondary mineral P changed by −86.1%–1.5%, primary mineral P changed by
−49.3%–216.0%, and occluded P changed by −21.6%–19.7% (Figure 2). Generally, the SPD model simulated
well these temporal changes (Figure 2). The relationships between the measured and the modeled soil
P pools were mostly significant (P < 0.05), with R2 values generally larger for labile P, secondary mineral
P, and occluded P than for nonoccluded Po and primary mineral P (Tables S3). NRMSE was small (<0.3)
for all pools of all soils except for primary mineral P of the five highly weathered soils (0.391–1.023; Table
S3). This was mainly due to the relatively small amounts of primary mineral P in the five highly weathered
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soils (4.3–24.7 mg/kg; Figure S1e). Most of the parameters have one apparent peak in their probability dis-
tributions for all soils (Figures S3 and S4).

The turnover rate of labile P was positively correlated to those of nonoccluded Po and secondary mineral P in
all soils (average r of 0.54 and 0.63, respectively), and was also positively correlated to the coefficients of
transfers from nonoccluded Po and secondary mineral P to labile P in most soils (average r of 0.34 and
0.52, respectively; Tables 2 and S6). The turnover rates of nonoccluded Po and secondary mineral P were
positively correlated to their transfers from labile P in all soils (average r of 0.55 and 0.54, respectively;
Tables 2 and S6). The coefficient of transfer from labile P to nonoccluded Po was negatively correlated to
the coefficient of transfer from labile P to secondary mineral P in all soils (average r of −0.88; Tables 2
and S6).

The amount of labile P was the most sensitive to its turnover rate in all soils (I = 0.81–0.99; Tables 3 and
S7). Moreover, it was sensitive to the turnover rate of secondary mineral P in four of the five highly
weathered soils (Paaloa [I = 0.30], Kapaa [0.40], Leilehua [0.19], and Mahana [0.54]) and was sensitive
to the release rate of primary mineral P in two of the three lightly weathered soils (Honouliuli [0.27]
and Nohili [0.15]; Table S7). Nonoccluded Po, secondary mineral P, primary mineral P, and occluded
P were sensitive (I > 0.2) to both their own turnover rates and the turnover rate of labile P in most of

Figure 2. Measured and modeled changes in P pools of the eight soils studied with cropping after data assimilation. The
eight soils are Honouliuli (a), Wahiawa (b), Nohili (c), Paaloa (d), Lualualei (e), Kapaa (f), Leilelua (g), and Mahana
(h). Secondary P: secondary mineral P; primary P: primary mineral P.
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the soils (Tables 3 and S7). Occluded P was generally sensitive to all parameters in all soils (I ≥ 0.12;
Tables 3 and S7).

The average turnover rates of the soil P pools were labile P 0.040 g g−1 day−1, nonoccluded Po 0.051 g g
−1 day−1, secondary mineral P 0.023 g g−1 day−1, primary mineral P 0.00088 g g‐1 day−1, occluded Po
0.0066 g g−1 day−1, and occluded Pi 0.0065 g g−1 day−1 (Table 4). Both the turnover and transformation
rates of the P pools varied across soils (coefficient of variance of 36%–88%; Table 4). The turnover rate of
secondary mineral P was ~4 times higher in the lightly weathered soils (0.044–0.047 g g−1 day−1) than
in the highly weathered soils (0.006–0.013 g g−1 day−1; Table 4). The coefficient of transfer from labile
P to plants tended to be higher in the lightly (0.16–0.59, mean 0.34) than the highly weathered soils
(0.04–0.020, mean 0.11), while the opposite trend was true for the coefficient of transfer from labile
P to secondary mineral P (lightly weathered: 0.06–0.33, highly weathered: 0.31–0.61; Table 4).

The turnover rate of secondary mineral P increased with increasing soil pH (R2 = 0.99, P < 0.001; Figure 3a).
The coefficient of transfer from labile P to plants also increased with increasing soil pH (R2 = 0.53, P =
0.042), with a corresponding decrease in the coefficient of transfer from labile P to secondary mineral P
(R2 = 0.71, P = 0.009; Figure 3c). The relationships of soil organic C with model parameters were generally
opposite to those of soil pH (Figure 3 and Table S8). Plant P uptake decreased with increasing coefficient of
transfer from labile P to nonoccluded Po (R2 = 0.81, P = 0.002; Figure 4). Neither oxalate extractable Fe nor
oxalate extractable Al was significantly related to any of the parameters (P > 0.05; Table S8).

4. Discussion

The dynamics of the soil P control its P bioavailability, yet it remains a
challenge to quantify the dynamics either in the field or in a laboratory
or greenhouse environment. This study shows that data assimilation is
able to quantify the dynamics of all major soil P pools in a greenhouse
environment. The estimated turnover rates of secondary mineral P and
primary mineral P were comparable to the previous estimates using iso-
tope dilution and spectroscopic techniques. The estimated soil P transfor-
mation rates enabled robustly comparing P transformation rates among
soil processes and soils. By linking the estimated parameters to the proper-
ties of the soil and the plant P uptake, we identified soil pH and organic C
concentration as the key regulators of the competition for P between
plants and soil secondary minerals in the plant‐soil systems studied.

4.1. Soil P Dynamics and Their Relations to Soil Properties and
Plant P Uptake

Previous studies have estimated the turnover rate of solution P in
soils worldwide (101–109 g g−1 day−1; Helfenstein, Jegminat, et al.,

Table 3
Normalized Sensitivity Indices of the Model Parameters

Parameter
Labile

P
Nonoccluded

Po
Secondary
mineral P

Primary
mineral P

Occluded
P

k1 0.96 0.71 0.52 0.39 0.28
k2 0.05 0.21 0.34 0.17 0.26
k3 0.09 0.22 0.40 0.44 0.22
k4 0.13 0.15 0.12 0.42 0.47
k5 0.06 0.07 0.10 0.11 0.24
k6 0.05 0.06 0.08 0.12 0.22
a21 0.04 0.17 0.19 0.14 0.31
a31 0.04 0.05 0.09 0.13 0.20
a12 0.09 0.09 0.11 0.11 0.26
a13 0.05 0.06 0.08 0.09 0.24
OPo 0.04 0.04 0.05 0.09 0.23

Note. Data are averaged values of eight soils. Data of each soil are shown
in Table S7. Data >0.20 are in bold. See Table 1 for abbreviations.

Table 2
Coefficients of Correlations Between the Posterior Parameters

Parameter k1 k2 k3 k4 k5 k6 a21 a31 a12 a13

k2 0.54
k3 0.63 0.16
k4 0.03 −0.01 0.02
k5 −0.09 0.18 −0.09 −0.03
k6 0.05 0.15 0.46 0.00 −0.01
a21 −0.10 0.55 −0.36 −0.06 0.03 0.12
a31 0.37 −0.30 0.54 0.03 −0.07 −0.06 −0.88
a12 0.34 0.22 0.16 0.00 −0.21 −0.08 0.20 −0.06
a13 0.52 0.28 0.08 −0.02 −0.16 −0.49 −0.22 0.39 0.02
OPo −0.02 0.04 −0.09 −0.05 −0.14 −0.03 −0.11 0.08 −0.06 0.11

Note. Data are average values of eight soils. Absolute values≥0.50 are shown in bold. Data of each soil are shown in Table S6. For each soil, n= 1,000. k1‐6 are the
turnover rates of labile P, nonoccluded Po, secondary mineral P, primary mineral P, occluded Po, and occluded Pi, respectively. as are the coefficients of the
P transformations described in Figure 1. OPo is the proportion of occluded Po to occluded P.
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Table 4
Maximum Likelihood Estimates of the Model Parameters

Parameter Unit

Lightly weathered soil Highly weathered soil

Mean
CV
(%)Honouliuli Lualualei Nohili Paaloa Wahiawa Kapaa Leilehua Mahana

k1 g g−1 day−1 0.040 0.027 0.063 0.048 0.021 0.065 0.024 0.029 0.040 41
k2 g g−1 day−1 0.022 0.096 0.095 0.073 0.043 0.020 0.038 0.019 0.051 60
k3 g g−1 day−1 0.044 0.047 0.047 0.012 0.010 0.013 0.009 0.006 0.023 76
k4 g g−1 day−1 0.00193 0.00187 0.00043 0.00015 0.00022 0.00180 0.00021 0.00041 0.00088 88
k5 g g−1 day−1 0.0077 0.0014 0.0069 0.0067 0.0049 0.0093 0.0073 0.0090 0.0066 36
k6 g g−1 day−1 0.0062 0.0038 0.0055 0.0090 0.0095 0.0025 0.0090 0.0067 0.0065 37
a21 Unitless 0.51 0.08 0.66 0.53 0.49 0.43 0.39 0.30 0.42 38
a31 Unitless 0.33 0.32 0.06 0.38 0.31 0.53 0.47 0.61 0.38 42
ap1 Unitless 0.16 0.59 0.28 0.09 0.20 0.04 0.14 0.09 0.20 82
a12 Unitless 0.97 0.24 0.21 0.23 0.25 0.89 0.73 0.95 0.56 60
a52 Unitless 0.03 0.76 0.79 0.77 0.75 0.11 0.27 0.05 0.44 75
a13 Unitless 0.23 0.30 0.96 0.72 0.84 0.49 0.88 0.76 0.65 40
a63 Unitless 0.77 0.70 0.04 0.28 0.16 0.51 0.12 0.24 0.35 72
OPo Unitless 0.28 0.02 0.02 0.02 0.22 0.28 0.21 0.18 0.15 72

Note. See Table 1 for abbreviations. ap1 is calculated as 1‐a21‐a31. a52 is calculated as 1‐a12. a63 is calculated as 1‐a13. CV is the coefficient of variance.

Figure 3. Estimated turnover and transformation rates of soil P pools in relations to key soil properties. The turnover rate
of secondary mineral P versus soil pH (a; R2 = 0.99, P < 0.001) and organic C concentration (b; R2 = 0.87, P = 0.001).
The coefficients of transfers from labile P to plants (green; R2 = 0.53, P = 0.042) and secondary mineral P (red; R2 = 0.71,
P= 0.009) versus soil pH (c). The coefficients of transfers from labile P to plants (green; R2= 0.56, P= 0.034) and secondary
mineral P (red; R2 = 0.38, P = 0.106) versus organic C concentration (d).
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2018), and the turnover rate of resin extractable P in Hawaii, United States
(>100 g g−1 day−1; Helfenstein, Tamburini, et al., 2018), using isotope
dilution techniques. These estimates were much higher than our turnover
rates of labile P (0.021–0.065 g g−1 day−1), because labile P in this study
included Fe‐impregnated strip extractable P and NaHCO3 extractable Pi,
which are both likely to have a slower turnover rate than solution P,
and the latter could also have a slower turnover rate than resin extractable
P (Hedley et al., 1982; Tiessen &Moir, 2007). Our turnover rates of nonoc-
cluded Po (0.019–0.096 g g−1 day−1) were, however, within the range of
turnover rate of soil microbial biomass P (MBP) estimated in previous
studies using isotope dilution techniques (0.001–0.300 g g−1 day−1, recal-
culated using an MBP concentration of 40 mg/kg if MBP concentration
was not given; Achat, Morel, et al., 2010; Bünemann, 2015; Oberson &
Joner, 2005), though the nonoccluded Po here probably included both
MBP and some other soil organic P compounds (Hou et al., 2016;
Tiessen & Moir, 2007). Our turnover rates of secondary mineral P
(0.006–0.047 g g−1 day−1) and primary mineral P (0.00015–0.00193 g g−1

day−1) were comparable to the previous estimates (secondary mineral P:
0.003–0.140 g g−1 day−1; primary mineral P: <0.003 g g−1 day−1) in

Hawaii, United States, which were approximated using a combination of spectroscopic and isotopic techni-
ques (Helfenstein, Tamburini, et al., 2018). These comparisons suggest that our data assimilation approach
provides generally comparable estimates of soil P turnover rates with the previous studies using isotopic and
spectroscopic techniques.

The turnover rates of the inorganic P pools decreased in the following order: labile P > secondary mineral
P > occluded Pi and the turnover rate of nonoccluded Po was faster than that of occluded Po. These
results provide empirical support for the hypothesis that the Hedley P fractionation procedure can sequen-
tially extract soil P fractions with decreasing mobility (Hedley et al., 1982; Tiessen et al., 1984; Tiessen &
Moir, 2007). Our turnover rates of soil occluded Pi (mean 0.0065 g g−1 day−1) and occluded Po (mean
0.0066 g g−1 day−1) are the first estimates for the two soil P pools, to the best of our knowledge. These esti-
mates were consistent with some other studies that found a significant change in Hedley occluded P within
years or even seasons of plant growth in the field (Fan et al., 2019; Zhang et al., 2006) and suggest that Hedley
occluded P is more dynamic than previously thought (i.e., Hedley occluded P is a very stable soil P that is
hardly available to plants; Cross & Schlesinger, 1995; Yang et al., 2014). Noted that we estimated soil
occluded Pi and occluded Po pools based on soil residual P fraction and OPo rather than direct measure-
ments. This may cause some but not large uncertainties in the estimated turnover rates of soil occluded Pi
and occluded Po, because the turnover rates of the two P pools were generally comparable across soils
and the proportions of occluded P in organic forms (i.e., OPo) were generally small for the soils studied
(Table 4; Guo et al., 2000).

Beside soil P turnover rates, we have also provided the first estimates of the rates of transformations
between all major Hedley P pools. These estimates can convey deep insights into soil P dynamics and soil
P bioavailability. For example, the generally larger coefficients of transfer from labile P to secondary
mineral P (mean 0.42) and to nonoccluded Po (0.38) than to plants (0.20) suggest that soil secondary
minerals and microbes were more competitive than plants in acquiring P from soil labile pool.
Nevertheless, since secondary mineral P and nonoccluded Po can be essentially transform back to labile
P, their amounts generally decreased while accumulated plant P uptake gradually increased with cropping.
Both the coefficient of transfer from labile P to plants and the labile P turnover rate differed between the
soils (Table 4), suggesting the varied dynamics of labile P for various soils. These results explain why the
amount of labile P has frequently failed to indicate soil P bioavailability (Tandy et al., 2011; Zehetner et al.,
2018), as soil P bioavailability is determined not only by the amount and but also by the dynamics of labile
P in the soil.

The negative relationship between the coefficients of transfer from labile P to plants and to secondary
mineral P suggests a significant competition for P between plants and soil secondary minerals. Significant

Figure 4. Plant P uptake in relation to the coefficient of transfer from labile
P to nonoccluded Po.
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relationships between these two parameters and both soil pH and organic C concentration (Figure 3) suggest
the regulation of soil pH and organic C concentration on such a competition. It is reasonable to observe an
increase in the coefficient of transfer from labile P to secondary mineral P with decreasing soil pH. This is
because soil P sorption capacity typically increases with decreasing soil pH (Barrow, 1983; Celi &
Barberis, 2005), which also explains the decreasing secondary mineral P turnover rate with decreasing soil
pH (Figure 3a). The decrease in the coefficient of transfer from labile P to plants with increasing soil organic
C was probably because of an enhancement of microbial P immobilization by soil organic C (Olander &
Vitousek, 2004), which can result in a less flow of P from soil labile pool to plants. This hypothesis was
supported by the significant and negative relationship between plant P uptake and the coefficient of transfer
from labile P to nonoccluded Po (Figure 4).

4.2. Performance and Application of the Data Assimilation System

Our data assimilation system simulated generally well the temporal changes in all the P pools of all the soils
studied. The relatively poor simulation of nonoccluded Po was probably due to its relatively large measure-
ment errors (Guo et al., 2000) and highly dynamic nature (George et al., 2018). Theoretically, primary
mineral P decreases with plant growth all the time (Vitousek et al., 2010; Walker & Syers, 1976).
However, the HCl‐P fraction that serves as an index for the amount of primary mineral P increased with
cropping in the five highly weathered soils (Figure 1e), probably because they were significantly contami-
nated by the previous extract (i.e., the NaOH extract; Tiessen &Moir, 2007). This pattern was not well simu-
lated in our study, because as in previous models (e.g., Tiessen et al., 1984), our SPD model did not include
any input into primary mineral P.

Beside the soil P turnover rates and transfer coeffecients, our data assimilation system also provided infor-
mation about the data sets and the model in three other aspects. First, we showed how model parameters
were constrained by the available data sets. Here all the parameters describing soil P dynamics were approxi-
mately constrained by the 426‐day changes in the soil P fractions. This may be a surprise to many scientists,
because soil chronosequence studies have found dramatic changes in the major soil P pools in natural
terrestrial ecosystems only at timescales of hundreds of years or longer (Vitousek et al., 2010; Walker &
Syers, 1976). We proposed two explanations for the seemingly contradictory results. One is that soil chron-
osequence studies have revealed the net change rates rather than the turnover rates of soil P pools. In fact,
the size of a soil P pool changes only in a small proportion within one turnover cycle, because of the replen-
ishments from other soil P pools (Figure 1). An exception was the soil primary mineral P, which can be
replenished only at a geological time scale. For example, in the present study, only an average of <20% of
the labile P was depleted by crop P uptake within one turnover cycle of labile P (an average of 25 days).
The other explanation is that our data sets were derived from experiments performed in a greenhouse, where
several experimental treatments (e.g., N fertilization) had been made to facilitate intensive crop P uptake
(Guo et al., 2000); therefore, our estimated turnover rates could be higher than those in the field.
Nevertheless, our approach can be applied in the field if field changes in terrestrial P pools and fluxes are
monitored in a frequent and consistent way, although the model structure and the prior parameter ranges
will need to be modified according to the field conditions (Guo et al., 2000; Luo et al., 2011).

Second, we found relationships between the parameters describing the soil P dynamics, which probably
reflect relationships defined by the model structure, the correlations between the soil P pools, or errors, or
any combination of the three (Gao et al., 2011). For example, the labile P turnover rate was positively corre-
lated with the nonoccluded Po turnover rate, probably because part of the nonoccluded Po (i.e., the
NaHCO3‐Po) was extracted using the same chemical reagent (0.5 M NaHCO3 at pH 8.5) as the labile
P (represented by the NaHCO3‐Pi).

Finally, we identified the parameters that are important in simulating the temporal change of a soil P pool,
which is critical for forecasting soil P amounts (Gao et al., 2011; Huang et al., 2018). For example, we found
that the amount of labile P was the most sensitive to its turnover rate, suggesting that its turnover rate is the
most important parameter for simulating and forecasting the amount of labile P. The labile P turnover rate
depends on the capabilities of the plants and soil microbes to cycle labile P and soil minerals in
fixing/releasing labile P, which need to be explored further by models with more comprehensive P cycle pro-
cesses. Labile P amount was also sensitive to the secondary mineral P turnover rate in four of the highly
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weathered soils and to the primary mineral P release rate in two of the three lightly weathered soils. These
results suggest that forecasting labile P amount in highly weathered soils should consider the secondary
mineral P turnover rate, while forecasting labile P amount in lightly weathered soils should consider the
primary mineral P release rate.

While our SPD model performed reasonably well with the eight data sets selected, it was not tested by other
independent data sets, due to a lack of similar published data sets. The structure of the SPD model, though
theoretically well established (Tiessen et al., 1984), needs to be evaluated with new greenhouse experiments
of the kind used in this study and with field measurements of soil P pools before being extensively adopted
for other more general modeling activities (e.g., used as a soil P cycle submodel in earth system models).
Future data‐model fusion work on soil P dynamics or terrestrial P cycle may also use multiple sources of ter-
restrial P cycle measurements (e.g., litter P production measured in the field and soil phosphatase activities
measured in the laboratory), ideally with the incorporation of more comprehensive P cycle processes and C
and nitrogen cycles. We expect more data‐model fusion work on the terrestrial P cycle in the future that will
essentially improve our understanding and predictions of crop production and terrestrial C sequestration
under future global change scenarios.

5. Conclusion

By assimilating eight data sets of 426‐day changes in soil P fractions into the SPD model developed in the
present study, we successfully quantified the dynamics of all major P pools in a variety of soils in a green-
house environment. The estimated turnover rates of soil P pools were generally comparable to the previous
estimates using isotope dilution and/or spectroscopic approaches. A comparison of turnover rates among
soil P pools supported the hypothesis that Hedley P fractionation procedure sequentially extracts soil P pools
with decreasing mobility. Meanwhile, we found that Hedley occluded P is more dynamic than previously
thought. Differing labile P turnover rates and transfer coefficients with different soils explained why labile
P amount frequently fails to indicate the bioavailability of soil P. We also identified soil pH and organic C
concentration as the key soil properties that regulate the competition for P between plants and soil
secondary minerals. Since our SPD model was similar to the soil P submodels in earth system models
(Wang et al., 2010; Yang et al., 2014), our estimated parameter values can aid the parameterization of the soil
P submodels, so as to improve the predictions concerning terrestrial ecosystems under future global change
scenarios. Overall, we suggest that data assimilation can contribute significantly to an improved understand-
ing of soil P dynamics.
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