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Abstract

Global soil carbon (C) stocks are expected to decline with warming, and changes in

microbial processes are key to this projection. However, warming responses of criti-

cal microbial parameters such as carbon use efficiency (CUE) and biomass turnover

(rB) are not well understood. Here, we determine these parameters using a proba-

bilistic inversion approach that integrates a microbial‐enzyme model with 22 years

of carbon cycling measurements at Harvard Forest. We find that increasing temper-

ature reduces CUE but increases rB, and that two decades of soil warming increases

the temperature sensitivities of CUE and rB. These temperature sensitivities, which

are derived from decades‐long field observations, contrast with values obtained

from short‐term laboratory experiments. We also show that long‐term soil C flux

and pool changes in response to warming are more dependent on the temperature

sensitivity of CUE than that of rB. Using the inversion‐derived parameters, we pro-

ject that chronic soil warming at Harvard Forest over six decades will result in soil C

gain of <1.0% on average (1st and 3rd quartiles: 3.0% loss and 10.5% gain) in the

surface mineral horizon. Our results demonstrate that estimates of temperature sen-

sitivity of microbial CUE and rB can be obtained and evaluated rigorously by inte-

grating multidecadal datasets. This approach can potentially be applied in broader

spatiotemporal scales to improve long‐term projections of soil C feedbacks to cli-

mate warming.
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1 | INTRODUCTION

Integration of microbial processes into carbon (C) cycle models can

potentially improve simulations of soil C dynamics under climate

warming (Luo et al., 2016; Wieder, Bonan, & Allison, 2013). Uncer-

tainty in long‐term soil C responses to climate change will likely be

reduced with more realistic and accurate parameterizations of key

microbial processes that regulate soil C stocks and respiratory C

losses (Luo et al., 2016; Todd‐Brown, Hopkins, Kivlin, Talbot, &

Allison, 2012; Wieder et al., 2015). These key parameters include

carbon use efficiency (hereafter CUE), defined as the fraction of C

uptake allocated to growth (Allison, Wallenstein, & Bradford, 2010;

Geyer, Kyker‐Snowman, Grandy, & Frey, 2016), and microbial bio-

mass turnover rate (hereafter rB), that is, the fraction of microbial

biomass that leaves the microbial pool per unit of time (Hagerty

et al., 2014). These two parameters are critical for modeling soil C

change with warming (Hagerty et al., 2014; Li, Wang, Allison, Mayes,

& Luo, 2014) but remain poorly quantified (Manzoni et al., 2017;

Sinsabaugh, Moorhead, Xu, & Litvak, 2017; Xu et al., 2017). It is also

unclear whether heterotrophic microbes might acclimate to long‐
term warming through reductions in the temperature sensitivities of

CUE and rB (Allison et al., 2010; Frey, Lee, Melillo, & Six, 2013; Wie-

der et al., 2013).

Rising soil temperatures are generally expected to reduce CUE,

as warming limits microbial growth by increasing the energy cost of

maintaining existing biomass (Manzoni, Taylor, Richter, Porporato, &

Agren, 2012; Sinsabaugh, Manzoni, Moorhead, & Richter, 2013).

Observed CUE of soil microbial communities, however, has shown

variable responses to rising temperature including increases,

decreases, or no response (Frey et al., 2013; Li et al., 2018;

Sinsabaugh et al., 2013; Steinweg, Plante, Conant, Paul, & Tanaka,

2008), due to fundamentally different pathways of C allocation in

assimilation, enzyme production, and respiration for biomass mainte-

nance and enzyme production (Hagerty, Allison, & Schimel, 2018). In

addition, warming can enhance rB if the cell‐specific microbial death

rate outpaces cell production (Joergensen, Brookes, & Jenkinson,

1990). Dead microbial cells can be metabolized by living microbes,

incorporated into the soil organic carbon (SOC) pool, or protected

from decomposition by physicochemical occlusion in soil particles

(Lehmann & Kleber, 2015; Six, Conant, Paul, & Paustian, 2002).

Quantifying CUE, rB, and their temperature responses remains a

major challenge. There are no techniques available to measure these

quantities in situ, so prior studies have relied mainly on laboratory

incubations with isotopic tracers. For example, Hagerty et al. (2014)

showed increased rB but constant CUE with warming in a week‐long
soil incubation. Still, it remains unclear how these key microbial

variables respond to warming over decadal time scales that are more

relevant to climate change (Frey et al., 2013; Geyer et al., 2016).

Traditionally, a sole value of a model parameter can be determined

via least squares fitting between model output and observation (Luo

et al., 2011). Probabilistic inversion techniques use data to inform

model parameters and produce most probable values and uncertain-

ties of parameters (Clark, 2005; Luo et al., 2011). Probabilistic inver-

sion thus offers an alternative to the deterministic modeling

approach and direct empirical measurement of key microbial parame-

ters, particularly for those not well quantified due to technical diffi-

culty. With an inversion approach, observational data are used to

constrain the model. Parameter values are discounted if they result

in model outputs inconsistent with the data (Clark, 2005; Luo et al.,

2011; Xu, White, Hui, & Luo, 2006). Previously, such approaches

have been applied successfully in many contexts, including terrestrial

carbon cycling (Hararuk, Smith, & Luo, 2015; Niu et al., 2014).

Here, we used a probabilistic inversion approach (i.e., the Baye-

sian inference) to estimate the apparent temperature sensitivities

(hereafter referred to as temperature sensitivities) of CUE and rB

under field conditions. We assembled 14 datasets that were col-

lected from soil warming experiments at the Harvard Forest Long‐
term Ecological Research (LTER) site in Petersham, MA, USA, where

soil temperature has been continuously elevated to ~5°C above

ambient for 10 to 26 years (Melillo et al., 2017). We used Bayesian

probabilistic inversion to obtain the temperature sensitivity coeffi-

cients of CUE and rB by assimilating data into the Microbial‐ENzyme

Decomposition (MEND) model. MEND was chosen because it has

been validated previously, and it represents relevant microbial pro-

cesses and mineral interactions without excessive complexity (Li

et al., 2014; Wang, Post, & Mayes, 2013). To analyze the effects of

temperature‐sensitive CUE and rB on long‐term soil C dynamics,

posterior parameter values and forcing data obtained from the con-

trol and heated plots were implemented in long‐term projections of

soil carbon and respiratory responses over six decades.

2 | MATERIALS AND METHODS

2.1 | Data compilation from Harvard Forest

We assembled multiple observational datasets collected from several

experimental soil warming studies at the Harvard Forest Long‐term
Ecological Research (LTER) site in Petersham, MA, USA (42°50′N,

72°18′W). The list of data sources is presented in Table 1. The cli-

mate at Harvard Forest is cool, temperate, and humid, with mean

annual precipitation and mean annual air temperature of 1,080 mm

and 7.0°C, respectively. Soils are of the Gloucester series (fine‐
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loamy, mixed, mesic, Typic Dystrochrepts) and dominant tree species

are red oak (Quercus rubra) and red maple (Acer rubrum) (Peterjohn,

Melillo, Bowles, & Steudler, 1993).

Data span the period of 1989–2010 and were obtained from

published articles or the Harvard Forest online data archive (http://

harvardforest.fas.harvard.edu/harvard-forest-data-archive). Data

were collected from three soil warming experiments initiated at

three different times (1991, 2001, and 2006). Site and experimental

design information is described in Peterjohn et al. (1993), Melillo

et al. (2002), and Contosta, Frey, and Cooper (2011).

Briefly, soils in heated plots were continuously warmed 5°C

above control plots using buried heating cables placed 10 cm below

the soil surface and spaced 20 cm apart. Climate conditions, soil

temperature, and soil moisture were monitored continuously. Soil

respiration was measured monthly between April and October. Data-

sets of soil temperature (Arguez et al., 2010; Brzostek & Finzi,

2011a; Melillo, Steudler, & Mohan, 1999), CO2 efflux (Melillo et al.,

1999), soil C (Frey, 2009; Nadelhoffer, Boone, & Bowden, 1990),

DOC (Bradford et al., 2008; Compton, Watrud, Arlene Porteous, &

DeGrood, 2004), MBC (Compton et al., 2004; Frey, Drijber, Smith, &

Melillo, 2008; Wallenstein, McNulty, Fernandez, Boggs, & Sch-

lesinger, 2006), extracellular enzyme activity (Brzostek & Finzi,

2011a), and litterfall (Frey & Ollinger, 1999), were also used for this

modeling study.

Several assumptions were made to meet the requirements for

MEND model input and the inversion analysis. Litter input C used

for the model was assumed to be 48% of measured litter biomass

(Schlesinger & Bernhardt, 2013), and litter entered the SOC and

DOC pool at a constant rate (i.e., 98% as particular organic carbon

(POC) and 2% as DOC). SOC concentrations were selected to repre-

sent the top 10‐cm mineral soil depth (i.e., A horizon). Using an aver-

age value for specific enzyme activity (i.e., µmol min−1 mgC−1) and a

temperature normalization based on a measured Q10 value (Q10 = 2)

(Allison, Romero‐Olivares, Lu, Taylor, & Treseder, 2018), extracellular

enzyme data in each collection were converted to potential activity

(i.e., µmol g−1 soil hr−1) of labile substrate‐acquiring enzymes (i.e.,

the sum of β‐D‐cellobiosidase, acid phosphatase, protease, and β‐1,4‐
N‐acetyl‐glucosaminidase) and oxidase (i.e., the sum of peroxidase

and phenol oxidase) that contribute to fast‐ and slow‐cycling soil

organic matter turnover, respectively. The sum of these potential

activities is equivalent to the sum of enzyme activities for POC and

mineral‐associated organic carbon (MOC). Soil heterotrophic respira-

tion was assumed to represent 67% of measured soil CO2 efflux

(Bowden, Nadelhoffer, Boone, Melillo, & Garrison, 1993; Melillo

et al., 2002; Sanderman, 1998). Daily soil temperature measurements

at 4‐cm depth (i.e., approximately at the middle of 10‐cm soil depth)

were available during 1991–2010 (Melillo et al., 1999).

We calculated hourly soil temperatures based on daily averages

and the NCEP Climate Forecast System Reanalysis (CFSR) which

provides hourly gridded soil temperature data at 5‐cm soil depth

(http://rda.ucar.edu/datasets/ds093.1/index.html). Scaled hourly vari-

ation of soil temperature at Harvard Forest from the CFSR data was

added to the daily average station observation. A scaling factor,

computed as the ratio of standard deviation of daily station observa-

tion to standard deviation of daily average CFSR data, was applied

to the hourly variation of CFSR data. The daily station observation

was derived from hourly observations in 2009 and 2010 (Brzostek &

Finzi, 2011a). The use of scaling factor is to account for the depth

difference below the soil surface in the CFSR and station data. The

available datasets are presented in Supporting Information Figure S1.

2.2 | Microbial‐ENzyme Decomposition (MEND)
model

MEND is a microbial ecosystem model that incorporates multiple

soil and enzyme pools (Wang et al., 2013) and shows reasonable

TABLE 1 Datasets and their sources collected from the soil warming experiments at Harvard Forest Long‐term Ecological Research (LTER)
site, Massachusetts, USA

No. Variable Frequency Measurement period References

1 Litterfall Yearly 1989–2010 Frey and Ollinger (1999)

2 Litterfall Yearly 2001–2013 Melillo et al. (2013)

3 Soil CO2 efflux Hourly, consecutive 1991–2010 Melillo et al. (1999), Contosta, Frey, Ollinger, and Cooper (2013)

4 SOC Certain days 1990, 1991, 1995, 2000 Nadelhoffer et al. (1999)

5 DOC Certain days 1999, 2000, 2001 Compton et al. (2004)

6 DOC Certain days 2005, 2006 Bradford et al. (2008)

7 MBC Certain days 1999, 2000, 2001 Compton et al. (2004)

8 MBC Certain days 2002 Wallenstein et al. (2006)

9 MBC Certain days 2002 Frey et al. (2008)

10 MBC Certain days 2005, 2006 Bradford et al. (2008)

11 EEA Certain days 2008, 2009, 2010 Brzostek and Finzi (2011b)

12 Soil temperature Daily, consecutive 1991–2010 Melillo et al. (1999)

13 Soil temperature Hourly, consecutive 2009–2010 Brzostek and Finzi (2011b)

14 Soil temperature Hourly, consecutive 1989–1990 Arguez et al. (2010)

Note. DOC: dissolved organic carbon; EEA: extracellular enzyme activity; MBC: microbial biomass carbon; SOC: soil organic carbon.
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fit to soil C observations in response to perturbation (Li et al.,

2014). The model structure is presented in Supporting Information

Figure S2, and the full list of governing equations can be found in

Li et al. (2014). In MEND, the decomposition of particulate organic

matter (POC) and MOC, and the uptake of dissolved organic matter

(DOC) are described by the Michaelis–Menten kinetics with a half‐
saturation constant (K) and maximum reaction rate (V). The kinetics

parameters are temperature sensitive and represented by the

Arrhenius equation (Wang, Post, Mayes, Frerichs, & Sindhu, 2012).

In addition, the adsorption and desorption rates of DOC are also

temperature‐dependent (Cornelissen, VanNoort, Parsons, & Govers,

1997; Wang et al., 2013). Following SOC decomposition and DOC

uptake, C is lost through growth and maintenance respiration

dependent on CUE. Note that the CUE parameter in MEND refers

to the assimilation efficiency (Pirt, 1965; Wang & Post, 2012). Con-

sistent with previous studies, the model assumes that carbon use

efficiency (CUE, EC) varies with temperature based on a linear rela-

tionship (DeVêvre & Horwáth, 2000; Fieschko & Humphrey, 1984;

Frey et al., 2013; Steinweg et al., 2008; Tucker, Bell, Pendall, &

Ogle, 2013):

ECðTÞ ¼ EC;ref þm� ðT�TrefÞ (1)

where EC (T), EC,ref, and m denote the CUE at simulation temperature

T, the reference temperature (Tref), and the slope parameter (°C−1),

respectively.

In the model, microbial turnover rate (rB) also depends on tem-

perature. The temperature sensitivity of the microbial turnover rate

(n) is defined based on the following equation (Hagerty et al., 2014;

Malik, Blagodatskaya, & Gleixner, 2013; Saggar, McIntosh, Hedley, &

Knicker, 1999):

rBðTÞ ¼ rBref þ n� ðT�TrefÞ (2)

where rB(T), rBref, and n denote the rB at simulation temperature T

(i.e., 5°C), the reference temperature (20°C), and the slope parameter

(mg C mg−1 C hr−1 °C−1), respectively.

2.3 | Data‐model integration via a probabilistic
inversion analysis

We used a Bayesian probabilistic inversion technique to constrain

five key model parameters and seven initial pool sizes under the

control and heated conditions, respectively. These parameters

include the CUE at the reference temperature (EC,ref), the tempera-

ture sensitivity of CUE (m), the temperature sensitivity of the micro-

bial turnover rate (n), the fraction of decomposed POC entering

DOC (fD), and the fraction of dead microbes becoming DOC (gD), as

well as seven initial pool sizes (iPOC, iMOC, iQOC, iMBC, iDOC, iEP,

and iEM; Table 2). Default values of these and other model parame-

ters are presented in Supporting Information Table S1.

2.3.1 | Constructing the likelihood function

According to the Bayes’ theorem (Clark, 2005), the posterior probabil-

ity density function (PDF) P(p|Z) of model parameters p can be esti-

mated from the prior knowledge of parameters p (i.e., a prior PDF, P

(p)) and the information contained in existing observations (i.e., a likeli-

hood function P(Z|p)):

TABLE 2 Parameters and their prior ranges included under control and heated conditions in the probabilistic inversion analysis

Parameter Description Unit Lower limit
Upper
limit References

EC, ref CUE at reference

temperature

mg C mg−1 C 0 0.72 Manzoni et al. (2012), Sinsabaugh et al. (2013)

m Temperature sensitivity of

CUE

mg C mg−1 C °C−1 −0.017 0.017 See Supporting Information Figure S3; Sinsabaugh

et al. (2016), Sinsabaugh et al. (2017)

n Temperature sensitivity of

rB

mg C mg−1 C hr−1 °C−1 −4e−5 4e−5 Gregorich, Voroney, and Kachanoski (1991),

Gregorich, Liang, Drury, Mackenzie, and McGill

(2000)

fD Fraction of decomposed

POC allocated to DOC

— 0.3 0.7 Wang et al. (2012), Wang et al. (2013)

gD Fraction of dead MBC

transferred to SOC

— 0.3 0.7 Pietikainen, Pettersson, and Baath (2005)

iPOC Initial pool size of POC mg C g−1 soil 1 23 Nadelhoffer et al. (1999)

iMOC Initial pool size of MOC mg C g−1 soil 30 55 Nadelhoffer et al. (1999)

iQOC Initial pool size of QOC mg C g−1 soil 0.1 1.9 Nadelhoffer et al. (1999)

iMBC Initial pool size of MBC mg C g−1 soil 0.02 0.9 Frey et al. (2008)

iDOC Initial pool size of DOC mg C g−1 soil 0.02 0.9 Compton et al. (2004)

iEP Initial pool size of EP mg C g−1 soil 0.0001 0.007 Brzostek and Finzi (2011a)

iEM Initial pool size of EM mg C g−1 soil 0.0001 0.007 Brzostek and Finzi (2011a)

Note. EM: enzymes for decomposition of MOC; EP: enzymes for decomposition of POC; MOC: mineral‐associated OC; QOC: DOC associated with min-

eral surface; POC: particulate OC.
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PðpjZÞ / PðZjpÞPðpÞ (3)

Assuming that errors between observed and modeled values fol-

low Gaussian distributions, the likelihood function P(Z|p) can be

expressed by:

PðZjpÞ / exp �∑6
i¼1∑t∈ Zi

½ZiðtÞ�XiðtÞ�2
2σ2i ðtÞ

( )
(4)

where Z(t) is measured value, X(t) is model simulation, and σ is the

standard deviation for each measurement. i = 1, 2, … 6, represents

the available observations of hourly CO2 efflux, daily CO2 efflux,

SOC, DOC, MBC, and ENC (i.e., the sum of EP and EM). We adopt

the Gaussian assumption for mathematical convenience in the

absence of more precise information about the data‐model error

structure (Feyen, Gomez‐Hernandez, Ribeiro, Beven, & Smedt, 2003;

Luo & Zhou, 2010; Luo et al., 2003).

2.3.2 | Prior knowledge

The prior PDF P(p) is specified by giving a set of limiting intervals for

parameters p with uniform distribution. We set the prior range of m

to (−0.017, 0.017) and the prior range of n to (−4e−5, 4e−5) to

reflect the range of values observed in the literature (Table 2).

Despite negative values revealed in previous experiments (Support-

ing Information Figure S3), the positive values of m were included

according to Sinsabaugh et al. (2017), in which the microbial CUE

increased weakly with mean annual temperature. The prior ranges of

the five parameters and seven initial pool sizes were determined

based on published values and are presented in Table 2.

2.3.3 | Posterior probability density function

The posterior PDFs were then generated from prior PDFs P(p) with

observations Z by a Markov chain Monte Carlo (MCMC) sampling

technique, using the Metropolis–Hastings (M‐H) algorithm as the

MCMC sampler (Xu et al., 2006). Specifically, the M‐H algorithm was

run by repeating two steps: a proposing step and a moving step. In

each proposing step, the algorithm generated a new point pnew for a

parameter vector p based on the previously accepted point pold with

a proposed distribution P(pnew|pold):

pnew ¼ pold þ θðpmax�pminÞ (5)

where pmax and pmin are the maximum and minimum values within

the prior range of the given parameter. is a random variable between

−0.5 and 0.5 with a uniform distribution. In each moving step, point

pnew was tested to determine whether it should be accepted or not.

Whether a new point pnew was accepted or not depends on the

comparison of R ¼ Pðpnew jZÞ
Pðpold jZÞ with a uniform random number U from 0

to 1. Only if R ≥ U is the new point accepted; otherwise pnew = pold.

2.4 | Parameter selection and long‐term projection

Five parallel runs of the MCMC algorithm started at dispersed initial

points were conducted with each run iterated for 100,000 times.

The acceptance rates for the newly generated samples were ~10%

under control conditions and ~22% under heated conditions for each

run, and all five runs passed the stability test prior to data analysis

(Supporting Information Table S2). The initial samples (about 5,000

and 11,000 in the so‐called burn‐in period) were discarded after the

running means and standard deviations stabilized. The union of the

samples of the five runs (about 25,000 and 55,000 samples in total)

after their burn‐in periods was used to derive and compare the pos-

terior means and standard deviations of the target parameters for

control and heated conditions. The model performance with inver-

sion (i.e., calibration of parameters based on observations) and with-

out inversion (i.e., relying on default parameterization) was compared

based on model simulations given the default and posterior mean

parameter values (R2 presented). The means of posterior parameters

(m, n) were compared based on the Student's t test and the p‐values
were reported.

To examine effects of different CUE and rB parameterization

on soil C stocks and CO2 emissions as well as the associated

uncertainties, the model was first run to reach equilibrium under

constant forcing data (i.e., soil temperature and litterfall inputs

averaged over 22 years under control conditions). Then, long‐term
model projections were conducted by running the model forward

based on 3,000 pairs of m and n sampled from the inversion‐
derived posterior distribution under both control and heated con-

ditions. We simulated four different scenarios to analyze the con-

sequences of variation in m and n. The four scenarios included no

temperature sensitivities of CUE or rB (m = 0; n = 0; Scenario I),

no temperature sensitivity of CUE but sampled posterior tempera-

ture sensitivity of rB (m = 0; varying n; Scenario II), no tempera-

ture sensitivity of rB but sampled posterior temperature sensitivity

of CUE (n = 0; varying m; Scenario III), and sampled posterior tem-

perature sensitivities of CUE and rB (varying m and n; Scenario

IV). In each scenario, model projections were conducted for

66 years which represents three repetitions of the original 22‐year
forcing data. The end‐simulation SOC pool sizes and cumulative

CO2 emissions were obtained.

To further examine climate change effects on soil C stocks and

CO2 emissions, the model projections were also conducted under

three different forcing conditions, that is, 0°C increase in soil tem-

perature (W0), 5°C increase in soil temperature (W5), and 5°C

increase in soil temperature in addition to 9.6% increase in litterfall

input, a value derived from the litterfall input averaged over 22 years

under heated conditions (W5L). The end‐simulation SOC pool sizes

and cumulative CO2 emissions were calculated under W0, W5, or

W5L for each scenario (I–IV). For each projection, the relative

changes in SOC stock and CO2 emission with climate warming (5°C)

were calculated by comparisons between W5 and W0. Based on the

3,000 independent simulations, the means of relative changes were

compared between treatments with control plot parameters and

heated plot parameters based on the Student's t test. A bar graph

and a boxplot were also produced to display the mean, standard

deviation, median, and 1st and 3rd quartiles of these long‐term
projections.
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3 | RESULTS

3.1 | Model performance

The accuracy of model simulations was significantly enhanced when

parameters were estimated via our probabilistic inversion approach. For

heterotrophic soil respiration, the coefficients of determination (R2)

increased from 0.26 without the inversion to 0.59 with inversion in the

control soil, and from 0.14 without inversion to 0.75 with inversion in

the heated soil (Figure 1). The simulations of respiration, MBC, DOC, and

SOC also better matched the observations using this inversion approach

(Supporting Information Figure S4). The posterior probability distribu-

tions of all target parameters in the inversion differed between the con-

trol and heated conditions (Supporting Information Figures S5, S6).

3.2 | Temperature sensitivity of microbial CUE and
rB

The mean values of temperature sensitivity of CUE (i.e., the slope m)

were −0.0101°C−1 under control conditions and −0.0117°C−1 under

heated conditions, which differed significantly from each other

(p < 0.001; Figure 2). The standard deviation of m was 0.0052 in

both cases. The absolute value of slope m was 15.1% greater under

heated conditions than that under control conditions. Given the

mean value of m and observed soil temperatures, the average CUE

was estimated at 0.42 with a range of 0.25–0.67 in the control con-

ditions, and the average was 0.39 with a range of 0.19–0.66 in the

heated conditions (Supporting Information Figure S7).

The mean values of temperature sensitivity of rB (i.e., the slope

n) were 1.58e−5 hr−1 °C−1 (i.e., 3.80e−4 day−1 °C−1) under control

conditions and 1.66e−5 hr−1 °C−1 (i.e., 3.99e−4 day−1 °C−1) under

heated conditions, which differed significantly from each other

(Figure 2). The slope n was 5.0% greater under heated conditions

than under control conditions.

3.3 | Temperature sensitivities of microbial CUE
and rB on long‐term projections

The simulated trajectory of SOC stocks and CO2 emissions with

warming was influenced by the temperature sensitivities of CUE and

rB (Figure 3 and Supporting Information Figure S8). Assuming con-

trol plot‐derived parameters, no temperature sensitivity of either

CUE or rB, and a + 5°C temperature forcing, SOC stocks on average

declined by 15.6%, and emissions of CO2 increased by ~8.0% on

average (blue bars, top and bottom panels in Figure 3). With a tem-

perature‐sensitive (i.e., increasing) rB and a constant CUE, the results
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F IGURE 1 MEND model outputs of
daily soil CO2 efflux rate (mg C m−2 day−1)
at Harvard Forest better matched
observational data with the inversion
approach (red) compared to without the
inversion (blue) in both control (a) and
heated (b) conditions [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 2 Boxplots of temperature sensitivities of CUE (above)
and rB (bottom) in control and heated conditions. Boxplots show
means (dot), medians (line), 1st and 3rd quartiles (box, interquartile
range or IQR), and upper and lower extremes (whiskers). The
whiskers were determined as equal to or less extreme than 1.5
times IQR against 1st and 3rd quartiles, respectively. p < 0.001
denotes significant difference between means in control and heated
conditions
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were nearly identical. With a temperature‐sensitive (i.e., decreased)

CUE and a constant rB, SOC stocks declined by ~2.1% and emis-

sions of CO2 increased by ~0.7% on average. When both CUE and

rB were temperature sensitive, the results were very similar to when

only CUE was temperature sensitive.

Assuming heated plot parameters, SOC and CO2 trajectories

under warming appeared significantly different from those under

control plot parameters (compare red and blue bars in scenarios II,

III, and IV, p < 0.001, Figure 3). When there was no CUE tempera-

ture sensitivity, the difference between treatments appeared minor

(compare red and blue bars in scenario II, Figure 3). However,

increasing the CUE temperature sensitivity (i.e., heated plot param-

eters vs. control plot parameters) resulted in SOC gains of 0.5%

and 0.9% on average, respectively, which contrasted with SOC

reductions (compare red and blue bars in scenarios III and IV, Fig-

ure 3). The variations of the projected end‐simulation pool sizes

and respiration are presented in Supporting Information Figure S8.

When the effects of experimental warming and temperature sensi-

tivities of both parameters were combined, uncertainty in the SOC

projection ranged from a 3.0% loss to a 10.5% gain for the 1st and

3rd quartiles, or from a 12.2% loss to a 13.6% gain for the 5% and

95% quantiles (i.e., scenario IV, Supporting Information Figure S8).

We also found that elevated litter inputs with warming did not

substantially affect SOC stock changes (Supporting Information

Table S3).

4 | DISCUSSION

4.1 | Warmer temperature reduced CUE but
decades‐long warming elevated CUE temperature
sensitivity

Given the inversions conducted in both control and heated condi-

tions, the negative slope m indicates that increasing temperature

reduced microbial CUE in field experimental conditions, which is

consistent with many studies based on laboratory experiments (Man-

zoni et al., 2012; Sinsabaugh et al., 2013). Previous observations also

have suggested a wide range of m from −0.017 to −0.003°C−1

(DeVêvre & Horwáth, 2000; Frey et al., 2013; Steinweg et al., 2008;

Tucker et al., 2013), consistent with the negative effect of increasing

temperature on maintenance energy observed in experiments with

heterotrophic soil microbes (Crowther & Bradford, 2013; Frey et al.,

2013). Therefore, soil warming, under either field or laboratory con-

ditions, can generally lead to constraints on microbial metabolic

activity due to greater energy cost for maintaining microbial biomass

(del Giorgio & Cole, 1998; Frey et al., 2013) or energy spilling (i.e.,

waste metabolism) (Bradford, 2013).

We found no evidence that Harvard Forest microbes acclimate

to warming by reducing the temperature sensitivity of CUE. The

absence of microbial acclimation is consistent with a sustained

increase in soil microbial activity in response to geothermal warming

in a different study (Walker et al., 2018). Incubations with C‐rich cal-

careous temperate forest soils subjected to 9 years of warming also

showed no thermal adaptation of the microbial decomposer commu-

nity (Schindlbacher, Schnecker, Takriti, Borken, & Wanek, 2015).

Based on our model inversion, CUE was more temperature sensitive

with long‐term soil warming (slope m = −0.0101°C−1 for control plot

vs. −0.0117°C−1 for heated plot). Our results contrast with those of

Frey et al. (2013) who found a decline in the temperature sensitivity

of microbial CUE in Harvard Forest soils subjected to 18 years of

warming. Although the reason for this discrepancy is uncertain, the

temperature acclimation in Frey et al. (2013) was only observed for

one of three added carbon substrates (i.e., phenol) in a laboratory

assay and may not apply to the integrated CUE determined by our

inversion analysis.

The greater temperature sensitivity of CUE under heated com-

pared to control conditions could be driven by selection for microor-

ganisms with higher maintenance costs (DeAngelis et al., 2015; Frey

et al., 2008; Zhou et al., 2012). After 12 years of warming at Har-

vard Forest, relative abundances of fungal biomarkers declined,

whereas gram‐positive bacterial and actinobacterial biomarkers

increased (Frey et al., 2008). Such community shifts may have over-

ridden physiological acclimation of CUE within some microbial spe-

cies (Allison, 2014; DeAngelis et al., 2015; Melillo et al., 2017).

The inversion‐derived averages (0.39 and 0.42 for the control

and warming plots) and range of CUE (0.19–0.67) are similar to val-

ues reported previously for Harvard Forest soils subject to 2‐ and

18‐year warming treatments (Frey et al., 2013) and also comparable

to the average values (i.e., 0.3) observed in soils and aquatic
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are presented in the Section 2 [Colour figure can be viewed at
wileyonlinelibrary.com]
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ecosystems (Sinsabaugh et al., 2013). The inversion‐derived maximal

CUE value (0.67) is close to the thermodynamic efficiency of aerobic

microbial growth (Roels, 2009). However, the inversion‐derived aver-

age and range are much lower than 0.72–0.74, the values reported

from a week‐long laboratory incubation study with 13C‐labeled glu-

cose in a forest soil (Hagerty et al., 2014), or 0.7–0.8 reported in a

month‐long incubation study with cellobiose amendment in a crop-

land soil (Steinweg et al., 2008).

The lower value of CUE determined here suggests that the

active microbial community functions at low biochemical efficiency

under field conditions, implying that microorganisms with relatively

high maintenance costs dominate in field soils. Low CUE may also

indicate reduced availability of labile substrates as energy sources

(Knorr, Prentice, House, & Holland, 2005) or dominance of recalci-

trant organic compounds in SOC (Frey et al., 2013). On the other

hand, the higher value of measured CUE in incubation studies could

be due to short measurement periods of hours to weeks; longer

incubations yield lower effective CUE values (Hagerty et al., 2018).

The isotopic probing approach via 13C‐labeled substrate amend-

ment used to quantify CUE in these incubation studies (Hagerty

et al., 2014; Steinweg et al., 2008) may also have led to an overesti-

mation of CUE. In short‐term incubation studies, the re‐use of 13C in

microbial necromass and microbial preference for 12C for respiration

could result in a relatively 13C‐enriched microbial biomass pool and

relatively 13C‐depleted respiration, which were used to derive CUE.

Furthermore, some CUE values (~0.8) reported for agricultural soils

(Steinweg et al., 2008) exceeded the formerly reported maximal car-

bon conservation efficiency for microbial growth (Roels, 2009),

potentially due to more efficient C uptake induced by the labile sub-

strate addition in agricultural soils.

4.2 | Warmer temperature accelerated turnover
and decades‐long warming increased rB temperature
sensitivity

Given the inversion results in this study, the positive slope n indi-

cates that microbial turnover was faster with higher temperatures,

which may be attributed to a shift in microbial community physiol-

ogy, stimulated viral activity, and/or accelerated senescence of

microbial cells (Joergensen et al., 1990). The same mechanisms may

also explain the increased temperature sensitivity of turnover with

warming (i.e., +5°C) over decades.

This slope n is 3.80–3.99e−4 day−1 °C−1 under control and heated

conditions, which is about one order of magnitude lower than the value

of 0.003–0.004 day−1 °C−1 derived from the 1‐week laboratory incuba-

tion experiment described previously (Hagerty et al., 2014). Given the

mean value of n and observed soil temperatures in our inversion study,

rB derived at 20°C is only half the value observed at the same tempera-

ture in the 1‐week laboratory study (Hagerty et al., 2014).

These comparisons marked a major difference in the microbial bio-

mass turnover rate estimated over time scales of days versus decades.

We speculate that given little change in microbial biomass, the high bio-

mass turnover rate with warming over the short term may be driven by

stronger microbial competition, thus leading to greater cell death (Kaku-

manu, Cantrell, & Williams, 2013), greater formation of necromass

(Crowther et al., 2015), and higher extracellular enzyme activities (Blank-

inship, Becerra, Schaeffer, & Schimel, 2014). Furthermore, the metabolic

tracer probing method used in the short‐term laboratory experiment can

potentially overestimate the biomass turnover rate (Dijkstra et al., 2011).

Temperature sensitivities of microbial biomass turnover that were one

order of magnitude lower in our study may be associated with wide-

spread microbial dormancy through which microbes acclimate to stress

and reduce mortality (Lennon & Jones, 2011).

4.3 | Elevated temperature sensitivity of CUE
reduced long‐term soil C losses

The 66‐year simulation results indicated that rB had minimal effects,

but that CUE was important in determining CO2 emissions and SOC

stocks. Mechanistically speaking, the lower CUE at higher tempera-

ture resulted in fewer resources allocated to microbial biomass and

associated enzyme pools given a constant uptake. These changes

might reduce the decomposition rate (Li et al., 2014), thereby dimin-

ishing both SOC loss and CO2 emissions.

A recent report indicates that 26 years of soil warming at the

Harvard Forest resulted in a loss of about 8%–17% of SOC in the

upper 60 cm of the soil (Melillo et al., 2017). Given the 12.2% loss

to a 13.6% gain (5% and 95% quantiles) in SOC over six decades

revealed in the inversion analysis, the MEND model may underesti-

mate potential SOC losses from the full soil profile under warming,

even when parameterized through an inversion approach with Har-

vard Forest data. Future incorporation of SOC stock changes into

the model inversion would be useful for improving estimates of

parameters, particularly m (CUE temperature sensitivity) which

showed a broad distribution (Figure 2). Our results suggest that

lower magnitudes of m could result in MEND simulations more con-

sistent with observed SOC losses under warming (Figure 3).

4.4 | Implications for soil warming experiments and
data assimilation

Using Bayesian inversion approaches to combine emerging biogeo-

chemical datasets with more advanced models should help improve

confidence in predictions of carbon–climate feedbacks. Our inversion

approach offered a tractable means of parameterizing the long‐term
response of CUE and turnover rate sensitivity to temperature based

on available data. Still, we emphasize that our results could change

as additional data, mechanisms, and feedbacks are incorporated into

models like MEND. More soil C and microbial biomass measure-

ments over years to decades would likely have substantially reduced

the uncertainty of our parameter estimates. Furthermore, the MEND

model used in this study lacks potentially important details about

microbial community structure, moisture responses, and climate‐dri-
ven feedbacks with the vegetation community that should be con-

sidered in future modeling efforts. To address potential experimental

artefacts, future inversion analyses should also consider
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incorporating disturbance controls (i.e., heating cables installed but

not turned on) if such data are available from field experiments.

We conclude that both CUE and microbial turnover are key param-

eters moderating SOC stocks and respiratory C losses at higher tem-

peratures, but their inferred temperature sensitivities differ

substantially depending on experimental duration and measurement

approaches. Our simulations confirm that these parameters influence

the decadal‐scale predictions of SOC stock and CO2 emission changes

with warming. In particular, the temperature sensitivity of CUE

induced a more pronounced effect on soil C dynamics than that of

microbial turnover. Further, we did not find evidence that acclimation

of microbial CUE or rB is likely to affect soil dynamics under warming.

Our method could be applied to the increasing number of datasets on

soil C cycle responses to perturbation at annual to decadal time scales,

thereby incorporating key microbial functions into global ecosystem

models and improving long‐term projections of soil C changes and

CO2 emissions under environmental and climate changes.
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