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Decadal biomass increment in early secondary
succession woody ecosystems is increased
by CO2 enrichment
Anthony P. Walker1, Martin G. De Kauwe2, Belinda E. Medlyn et al.#

Increasing atmospheric CO2 stimulates photosynthesis which can increase net primary

production (NPP), but at longer timescales may not necessarily increase plant biomass. Here

we analyse the four decade-long CO2-enrichment experiments in woody ecosystems that

measured total NPP and biomass. CO2 enrichment increased biomass increment by 1.05 ±

0.26 kg Cm−2 over a full decade, a 29.1 ± 11.7% stimulation of biomass gain in these early-

secondary-succession temperate ecosystems. This response is predictable by combining

the CO2 response of NPP (0.16 ± 0.03 kg Cm−2 y−1) and the CO2-independent, linear slope

between biomass increment and cumulative NPP (0.55 ± 0.17). An ensemble of terrestrial

ecosystem models fail to predict both terms correctly. Allocation to wood was a driver of

across-site, and across-model, response variability and together with CO2-independence

of biomass retention highlights the value of understanding drivers of wood allocation under

ambient conditions to correctly interpret and predict CO2 responses.
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Of Earth’s major terrestrial biomes, forests have the
greatest potential to remove atmospheric carbon at dec-
adal time scales due to their relatively high productivity

and storage of carbon in long-lived woody structures1. Forest soils
also contain substantial carbon; however, estimated changes in
decadal storage rates in soils in response to increasing CO2

enrichment are smaller2 than for live vegetation biomass (leaves,
wood and roots). Furthermore, biomass responses are the larger
component of uncertainty in Earth System model projections
of terrestrial carbon sink responses to increasing CO2

3–5. This
uncertainty is due, in large part, to limited predictive under-
standing of the ecosystem processes that determine the fate of
additional carbon that arises from the stimulation of photo-
synthesis by CO2 enrichment6,7. Higher atmospheric CO2 may
not stimulate forest net primary production (NPP) if the supply
of photosynthetic carbon does not limit NPP at ambient CO2

concentrations8, as in cases where the availability of other
resources (e.g. nitrogen; N) limit NPP9. Even if NPP is stimulated
by CO2 enrichment, tree biomass may not increase if the addi-
tional NPP is allocated to fast-turnover foliage or fine-roots10 or
if tree mortality rates increase11. Whether increasing atmospheric
CO2 increases plant biomass increment at longer timescales
has remained an open question since the early days of CO2

research12:
“… the initial effect of elevated CO2 will be to increase NPP in

most plant communities. This increase in NPP could be limited
or reversed by nutrient availability, herbivory, or successional
dynamics […]. However, even without such effects, a critical
question is the extent to which the increase in NPP will lead to
a substantial increase in plant biomass. Alternatively, increased
NPP could simply increase the rate of turnover of leaves or roots
without changing plant biomass.”

Long-term, ecosystem-scale CO2 enrichment experiments
provide the most direct evidence of whether rising atmospheric
CO2 may lead to increased forest biomass carbon. Here we syn-
thesise NPP and biomass responses to CO2 from four ecosystem
CO2 enrichment experiments. We selected experiments that las-
ted a decade or longer, were sited in ecosystems dominated by
woody plants and that were unmanaged during the experiment,
were replicated at the ecosystem scale, and where all components
of NPP and biomass were quantified (Table 1).

Our selection criteria restrict the analysis to temperate
woody ecosystems, in the early phases of secondary succes-
sion. There were two such experiments in deciduous forests:
Oak Ridge National Laboratory (ORNL)13 and Rhinelander14,
and two in evergreen forests: Duke15 and Kennedy Space Center

(KSC)16. All sites were situated in the temperate zone and in
the USA; covering several climatic regions, humid continental
(Rhinelander) and humid sub-tropical (Duke, KSC and ORNL),
and spanning a climatic gradient (mean annual temperature
6.0–22.1 °C; mean annual precipitation 662–1221mm; Table 1).
At these sites, all major components of NPP were measured, site
and species-specific allometric relationships were developed to
calculate wood biomass at all sites, litterfall was collected at three
sites, and root biomass and production were variously measured
across sites (see Methods for further discussion of differences in
measurements). Three sites were enriched in CO2 using Free Air
CO2 Enrichment (FACE) technology on 25–30 m diameter plots
of 2–3 replicates per treatment. KSC was enriched in CO2 using
2 m diameter Open Top Chambers (OTC) with eight replicates
per treatment. The FACE experiments all increased CO2 by about
50% above ambient while at KSC the increase was about 100%.

Our objectives are threefold: determine whether a decade of
CO2 enrichment in woody ecosystems leads to an increase in the
vegetation biomass increment (ΔCveg); interpret any observed
biomass response through the effects of CO2-enrichment on NPP
and carbon allocation; and evaluate the ability of an ensemble of
terrestrial ecosystem models, commonly used to predict vegeta-
tion responses to CO2, to reproduce the observed responses.

The shifts in resource availability associated with secondary
succession17–19 are likely key factors influencing the CO2

response18–21. Therefore we begin the analysis by inferring the
successional stage of each site from trends in NPP, leaf area, and
fine-root biomass.

To analyse responses to elevated CO2 across all four sites in a
unified statistical framework we use linear mixed-effects models,
treating site as a random effect. Site as a random effect treats each
experiment as a sample drawn from a population (in the statis-
tical sense), allowing the estimation of a population-level fixed
effect and its associated uncertainty. This hierarchical mixed-
model analysis allows an estimate of the general effect of CO2 in
the population of early-secondary-succession, temperate woody
ecosystems and the random effects estimate inter-site variability.
We use Akaike Information Criterion corrected for finite sample
size (AICc) to select the best, most parsimonious, statistical model
from a set of candidate models.

A set of equations are derived to decompose the biomass
increment response to CO2 and to interpret the empirical para-
meters of the linear mixed-effects models in the context of carbon
allocation (see Methods for more details). We evaluate the ability
of a model ensemble to predict decadal biomass responses to CO2

enrichment and identify general areas of model failure where

Table 1 Experiment site description

Site Forest type Dominant
species

Dominant
PFT

Time since
disturbance

Climate* MAT
(C)

MAP
(mm)

Soil type Target
CO2 (ppm)

CO2

enrichment
method

Rhinelander Establishing
plantation

Populus
tremuloides

Deciduous
broadleaf

1 Dfa 6.0
(0.8)

662
(122)

Alfic Haplorthod 560 FACE

ORNL Unmanaged
plantation
forest

Liquidambar
styraciflua

Deciduous
broadleaf

10 Cfa 14.8
(0.9)

1221
(218)

Aquic Hapludult 565 FACE

Duke Unmanaged
plantation
forest

Pinus taeda Evergreen
needleleaf

13 Cfa 14.8
(0.6)

1081
(168)

Ultic Hapludalf Ambient+
200

FACE

KSC Natural
woodland,
regularly
disturbed

Quercus spp Evergreen
broadleaf

0 Cfa 22.1
(0.4)

1094
(207)

Arenic
Haplahumods
& Spodic
Quartzipsamments

700 OTC

MAT mean annual temperature, MAP mean annual precipitation
*Köppen-Geiger climate classification: C warm temperate, D continental or snow climates, f fully humid, a hot summer
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the whole ensemble fails to reproduce observations. Models are
evaluated against the biomass response and the decomposition of
the biomass response. Recommendations are provided for future
research to help understand and predict vegetation biomass
responses to CO2 enrichment.

Results show that a decade of CO2 enrichment stimulates
live-biomass increment in early-secondary-succession, temperate
woody ecosystems and that the rate of conversion of NPP to
biomass was not directly affected by CO2.

Results
Analysis of successional stage. Following Bormann and Likens18

we interpret the successional stage of these ecosystems using the
first three stages of their classification: reorganisation, aggrading
and transition. We also interpret these ecosystems (and succes-
sional stages) in the context of three coupling states of growth to
resource availability described by Körner19: expanding, coupled,
and uncoupled. Trends in key ecosystem variables—NPP, peak
leaf area index (LAI), and fine-root biomass—indicate the
dynamics of resource acquisition and space filling in relation to
resource acquisition, which in turn are related to secondary-
successional stage18,19. The reorganisation stage immediately
following a disturbance is indicated by an increasing linear
trend in NPP18,22, caused by expanding resource acquisition
volumes both above and below ground. Expanding resource
acquisition volumes are indicated by increasing trends in LAI and
fine-root biomass17,19. Aggrading and transition phases are both
stages where growth is coupled to light availability and endo-
genous nutrient cycling18,19. We associate the absence of a trend
in NPP, LAI and fine-root biomass with the aggrading stage and
declining trends with the transition stage18.

The dynamics of annual NPP, LAI, and fine-root biomass in
the ambient CO2 treatment were different across sites (Fig. 1) and
these early secondary successional ecosystems do not fit neatly
into a single successional phase18 or resource coupling state19. At
Rhinelander, the site with the youngest trees, there was a linear
increase in NPP matched by increasing LAI and fine-root
biomass (Fig. 1a, e, h). These trends indicate that Rhinelander was
in the reorganisation stage of succession with expanding resource
acquisition volumes.

At ORNL, NPP increased initially, peaked, and then declined
in the later years to below the initial NPP (Fig. 1b). Fine-root
biomass exhibited a similar trend (Fig. 1i). The peaked trend was
not matched by LAI, though there appeared to be a decline in the
final years. The sweetgum stand was N limited23 and N addition
alleviated the decline in NPP in ambient CO2

13 suggesting, along
with 15N data24, that the forest was experiencing progressive
nitrogen limitation under ambient CO2 conditions. We propose
that coupled, tightening resource availability and intensifying
competition caused the forest at ORNL to undergo a shift from
the aggrading to transition phases during the course of the
experiment.

NPP at Duke showed strong inter-annual variability but no
trend (Fig. 1c). LAI and fine-root biomass showed substantial
inter-annual variability, but in contrast with NPP, LAI increased
early in the experiment and then saturated, and fine-root biomass
increased throughout the experiment (Fig. 1g, j). Duke appears
to have been in the expanding resource acquisition phase for
light early in the experiment and for below-ground resources
during the whole experiment (fine-root biomass saturated in the
elevated CO2 treatment with fine-root biomass in the ambient
treatment approaching this saturation value by the end of the
experiment). However, the lack of a trend in NPP data suggests
that the expanding resource acquisition volumes over time were
not yielding increased resource acquisition (Fig. 1b). Thus we

conclude that Duke was primarily in a coupled resource state in
the aggrading stage of succession.

The strongest inter-annual variability in NPP was seen at KSC
with a declining linear trend (Fig. 1d). At KSC, the inter-annual
variability of fine-root biomass was strong (Fig. 1k, similar to
NPP) and no clear trend was apparent (unlike NPP). The
declining NPP trend suggests a rapid response post fire that
decreased over time. This rapid post-fire response could have
been supported by nutrients released from fire and large below-
ground reserves indicated by 5–10-fold higher fine-root biomass
than at the other three sites. The very high NPP in the early years
of the experiment suggests that growth was uncoupled from
resource availability immediately following the disturbance at
KSC, with coupling to resources increasing as NPP declines
through the experiment. KSC does not fit cleanly into the scheme
of Bormann and Likens as the disturbance did not kill the trees
and the stand is recovering from live below-ground organs and
not from seedling re-establishment.

Forest responses to CO2 enrichment. Over the full duration of
the experiments, mixed-model analysis revealed that CO2

enrichment (to 550–700 μmol mol−1) increased population-level
biomass increment (ΔCveg) ± SEM by 1.05 ± 0.26 kg Cm−2 above
a population-level ambient ΔCveg of 3.62 ± 1.16 kg Cm−2, an
increase of 29.1 ± 11.7% (Table 2, model 1; and Supplementary
Table 1). Comparison of AICc’s provided weak evidence that the
random effect of site applied only to the intercept and not the
CO2 response (Supplementary Table 1). While the mean ΔCveg

responses at each site showed large variability (Fig. 2), statistical
detection of these differences (through random effects on the
eCO2 term) was obscured by high within-treatment variability
and thus high within-site uncertainty in their mean responses.

Mixed-model analysis also revealed that CO2 enrichment
increased population-level mean annual NPP ± SEM by 0.16 ±
0.03 kg Cm−2 y−1 above a population-level ambient NPP of
0.72 ± 0.13 kg Cm−2 y−1 (Table 2, model 2; and Supplementary
Table 2). Thus the population-level response to CO2 enrichment
was 22.9 ± 6.1%. As with ΔCveg, the random effects suggested that
the absolute response of annual NPP to CO2 enrichment was not
statistically different across sites (Table 2 and Supplementary
Table 2). Again the detection of site level differences in the CO2

response was obscured by high within-site and within-treatment
variability. This variability in NPP was likely driven in large part
by heterogeneity in N availability15,25.

We attempted to explain some of the uncertainty in the ΔCveg

response by adding cumulative NPP (cNPP) to the explanatory
model of ΔCveg. This more extensive statistical model of ΔCveg

revealed a strong positive relationship between ΔCveg and
cumulative NPP (cNPP), a relationship that did not include an
effect of CO2 enrichment in the best model (Fig. 2; Table 2, model
3; Supplementary Table 3, row 10). The absence of CO2 treatment
as a predictor in the best model means that the change in ΔCveg

for a unit change in cNPP (dΔCveg/dcNPP; hereafter referred to
as the biomass retention rate) was maintained across CO2

treatments (at 0.55 ± 0.17, unitless). Therefore, the ΔCveg response
to CO2 depended on the cNPP response to CO2 constrained by
the CO2-independent, biomass retention rate. At the population-
level, for every kg Cm−2 increase in cNPP, ΔCveg increased by
0.55 ± 0.17 kg Cm−2. While the biomass retention rate was
preserved across CO2 treatments within a site, the best model
included a random effect on the slope suggesting that the
biomass retention rate varied across sites, ranging from a non-
significant 0.14 (0.07–0.55, quantiles of the standard error;
Table 2, model 3) at ORNL to 0.87 (0.77–0.93) at Duke (Fig. 2;
Table 1, model 3).
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Given that the ΔCveg response to CO2 depends upon the CO2-
independent biomass retention rate, we now turn to investigate
the biomass retention rate in more depth. The processes
governing vegetation turnover determine rates of biomass loss
and therefore the period over which NPP is retained as live
biomass. Vegetation turnover is determined by allocation of NPP
among tissues with differing turnover rates (i.e. leaves and fine-
roots vs wood) and, over longer timescales, tree mortality. To
explain the variability in the biomass retention rate in these
aggrading forests, where tree mortality was a relatively small
fraction of total vegetation turnover, a first-order hypothesis for
the fraction of cNPP remaining as ΔCveg is simply the fraction of
cNPP that is allocated to long-lived woody tissue (fW).

At the three sites with a biomass response to CO2 enrichment,
the negative intercept of the ΔCveg~cNPP relationship (Fig. 2)

indicates that the fraction of cNPP retained as ΔCveg (ΔCveg/
cNPP; here defined as the biomass retention ratio) increased as
cNPP increased. Assuming that fW is the main driver of the
biomass retention ratio, constant fW across the range of cNPP
would predict: 1) that the biomass retention ratio would not
change with cNPP, 2) an intercept of zero in the ΔCveg~cNPP
relationship, and therefore 3) the biomass retention ratio would
equal the biomass retention rate. None of these three predictions
were observed, suggesting that either fW did not explain
variability in biomass retention or that fW changed with cNPP.
Supporting the hypothesis that wood allocation explained
biomass retention, a positive linear relationship of fW with cNPP
was observed (Table 2, model 3), consistent with other empirical
observations26. The population-level increase in fW per unit
cNPP was 0.02 ± 0.005 m2 kg C−1 and the best model did not
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Fig. 1 Trends in ecosystem variables to indicate successional stage. Annual net primary production (NPP; a–d), peak leaf area index (LAI; e–g) and fine-root
biomass (h–k) dynamics over the duration of the experiments. Data show treatment (ambient shown in blue and elevated in red) means ± SEM (standard
error of the mean) in each year, lines and shaded areas show the best generalised additive mixed model (GAMM) or linear models selected
using corrected Akaike Information Criterion (AICc) from a set of candidate models. The number of knots in the GAMMs were determined using half the
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minimum of four knots). This knot specification was intended for multi-annual trend detection that avoided over-sensitivity to inter-annual variation
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include a random effect on slope (Table 3, model 3 and
Supplementary Table 4), suggesting no difference among sites.
As with ΔCveg, CO2 enrichment affected fW only indirectly by
increasing cNPP (Table 2, model 3 and Supplementary Table 4).

It is possible that factors other than fW (i.e. tree mortality and
litterfall) were substantial contributors to vegetation turnover

and therefore the biomass retention rate. To test whether the
biomass retention rate could be explained solely by wood
allocation and its response to increasing production, the biomass
retention rate (dΔCveg/dcNPP) can be expressed as a function of
the observed linear relationship of fW to cNPP (see Methods for
derivation):

dΔCveg

dcNPP
¼ fWa þ 2fWbc �N PP; ð1Þ

where fWa and fWb are the intercept and the slope of the linear
relationship between fW and cNPP, and c �N PP is the cross-
treatment mean cNPP. This hypothesis suggests that the
ΔCveg~cNPP relationship is quadratic, which could obviate the
unrealistic negative intercept of the imposed linear relationship
between ΔCveg and cNPP (Fig. 1, Table 2).

At three sites with a biomass response to CO2 enrichment,
Rhinelander, Duke, and KSC, the calculated biomass retention
rate (Eq. 1) was within the 95% CI of the observed retention rate
(Table 3), indicating the key role of wood allocation and its
response to CO2. At Duke, the calculated biomass retention rate
was very close to that observed (0.89 versus 0.87) indicating that
wood allocation was likely the sole driver of the biomass retention
rate. At Rhinelander, the observed biomass retention rate was
lower than calculated (0.64 versus 0.73) indicating that a process
other than allocation was likely increasing vegetation turnover
rates (lower biomass retention rate indicates higher vegetation
turnover rates). This process may have been self-thinning
through stand development in the youngest forest of this study.
At KSC, the observed biomass retention rate was higher than
calculated (0.53 versus 0.40) indicating that vegetation turnover
was decreased by a process other than a change in wood
allocation. Also, estimates of the wood allocation relationship to
cNPP at KSC was less precise due to higher variability in wood
allocation when compared with Duke and Rhinelander (Fig. 3).

Overall the increase in wood allocation, an indirect effect of
CO2 via the enhancement of NPP by CO2 enrichment, lowered the
vegetation turnover rate thereby increasing the biomass retention
ratio under CO2 enrichment by a small amount from 65 to 72%
(calculating Eq. 1 with population level estimates of the fW~cNPP
relationship and cNPP under ambient and elevated CO2).

Table 2 Best mixed-effects models

Model Response Fixed effect Parameter SEM Random effects

Re.site Re.Intercept Re.slope

1 ΔCveg Intercept 3.616 1.156 Rhin. 3.320 (2.995–3.652) –
eCO2 1.045 0.258 ORNL 4.047 (3.698–4.376) –

Duke 6.294 (5.913–6.585) –
KSC 0.801 (0.825–0.614) –

2 NPP Intercept 0.723 0.133 Rhin. 0.516 (0.481–0.556) –
eCO2 0.164 0.031 ORNL 0.814 (0.773–0.849) –

Duke 1.050 (1.003–1.086) –
KSC 0.511 (0.486–0.540) –

3 ΔCveg Intercept −0.332 1.422 Rhin. −0.245 (−1.055–0.627) 0.642† (0.504–0.764)
cNPP 0.546† 0.173 ORNL 3.205 (−0.436–3.849) 0.144† (0.070–0.553)

Duke −2.103 (−2.704–−0.985) 0.873† (0.767–0.933)
KSC −2.183 (−2.640–−1.720) 0.526† (0.460–0.594)

4 fW Intercept 0.365 0.121 Rhin. 0.476 (0.435–0.507) –
cNPP 0.020 0.005 Duke 0.480 (0.417–0.529) –

KSC 0.139 (0.101–0.172) –

Model 1: mean annual NPP (kgCm−2 y−1) against CO2 treatment; Model 2: forest biomass increment (ΔCveg; kgCm−2) against CO2 treatment; Model 3: forest biomass increment (ΔCveg; kgCm−2)
against cumulative NPP (cNPP; kgCm−2) and CO2 treatment; and Model 4: fraction of cNPP allocated to wood. Parameter values are absolute for intercept and cNPP, while the eCO2 parameter is
expressed as a difference from the intercept (i.e. ambient CO2 parameter). CO2 treatment does not appear in model 3 or 4 as it did not feature in the best models (Supplementary Tables 2 and 3). re.
Intercept and re.slope show the random effect estimates of the intercept and slope for each site. Numbers in parentheses represent quantiles equivalent to the SEM of the normal distribution taken from
non-parametric distributions of the random effects generated by bootstrapping model fitting with the best models.
†Indicates the biomass retention rate, i.e. the slope of the assumed linear relationship between ΔCveg and cNPP
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At ORNL, there was little evidence for a ΔCveg~cNPP
relationship due to greater uncertainty than at the other sites
(Supplementary Fig. 1). The mean absolute residual from the
relationship shown in Fig. 2 was 2.5 times higher at ORNL than
for the site with the next highest mean absolute residual. Also,
the standard error of the biomass retention rate was more than
twice as large as the site with the next highest error (Table 2).
This uncertainty at ORNL was caused by large within-treatment
variation (0.52–0.68) in the fraction of NPP allocated to wood
(fW; Fig. 3), which led to differential retention of NPP as wood.

Ecosystem model predictions. We used 12 state-of-the-art
terrestrial ecosystem models (CABLE, CLM4.0, CLM4.5, DAY-
CENT, GDAY, ISAM, JULES, LPJ-GUESS, O-CN, ORCHIDEE,
SDGVM, and TECO)27–32 to simulate these four CO2 enrichment
experiments and identify any common areas where model pre-
dictions of biomass carbon increment might be improved.
Despite large inter-model variability, general features of the
ensemble predictions are clear in relation to observations (Fig. 4).
At Rhinelander and Duke, the ΔCveg response to CO2 enrichment
was strongly under-predicted by the model ensemble (Fig. 4a).
All models except one at each site predicted the ΔCveg response
to CO2 enrichment below one standard error from the mean
(Supplementary Fig. 2). At ORNL and KSC the ΔCveg response
was generally over-predicted by the model ensemble (Fig. 4a),
though the ensemble over-prediction was less pronounced
(indicated by the larger overlap between the ensemble distribu-
tion and the observed uncertainty range) than the under-
prediction at Rhinelander and Duke.

Partitioning the modelled ΔCveg response to CO2 enrichment
into the cNPP response to CO2 and the CO2-independent biomass
retention rate, as described for the observations, allows the
identification of the processes that were responsible for the model
ensemble bias. At Rhinelander and Duke where ΔCveg was under-
predicted, the partitioning indicates that both the cNPP response
to CO2 and the biomass retention rate were under-predicted by
the ensemble, with a stronger bias in the biomass retention rate
prediction than the cNPP prediction. At ORNL, the partitioning
indicates that over-prediction of the biomass retention rate was
primarily responsible for the ΔCveg over-prediction; whereas at
KSC over-prediction of cNPP was primarily responsible for the
ΔCveg over-prediction. At KSC, models predicted the highest cNPP
and cumulative gross primary production responses to CO2 at
KSC, the site with highest MAT (Table 1), most likely due to the
greater C3 photosynthesis response to CO2 at higher tempera-
tures33. Over-prediction of the cNPP response at KSC was driven
by the high predicted GPP response, supported by the largest
predicted increase in N use efficiency (Supplementary Fig. 3).

At Rhinelander, ORNL, and Duke, biases in the simulation of
the biomass retention rate translated to biases in the prediction of
the ΔCveg response to CO2. Partitioning the biomass retention
rate according to Eq. 1 (into the two empirical parameters fWa

and fWb and the variable cNPP) shows which of these three terms
were responsible for model variability and bias in the biomass
retention rate (Fig. 4d–f).

Ensemble predictions of the intercept of the fW relationship
with cNPP (fWa) showed very large variability at each site that
was much larger than the observed uncertainty (Fig. 4d).

Table 3 Comparison of biomass retention rate (dΔCveg/dcNPP) calculations

Site Model 3 biomass retention rate Biomass retention rate calculated from Eq. 1 fWa 2fWbcNPP

Rhin. 0.642 (0.39–0.89) 0.729 0.476 0.253
Duke 0.873 (0.70–1.01) 0.889 0.480 0.409
KSC 0.526 (0.39–0.67) 0.404 0.139 0.265

These are calculated empirically (Fig. 2c and Table 2, Model 3) and calculated according to Eq. 1 from the wood allocation fraction relationship with cNPP (Table 1, model 4). fWa and 2fWbcNPP represent
the two terms in Eq. 1 which sum to give dΔCveg,w/dcNPP. The 95% CIs are presented in parentheses for the empirical biomass retention rate
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However, a clear directional bias in fWa was apparent only at
KSC (Fig. 4d), where the model ensemble strongly over-predicted
fWa. None of the models predicted fWa within the observed 95%
CI at KSC. KSC had a relatively low fWa, consistent with the
Quercus species that dominate the KSC ecosystem which allocates
a large fraction of growth below-ground to fine-roots at the
expense of fW (Fig. 4). This allocation pattern is interpreted as an
adaptation to frequent hurricane and fire disturbance that allows
rapid resprouting and recovery post-disturbance16. The models’
allocation schemes do not include such adaptation to frequent
disturbance, which may account for the large over-prediction of
fWa by the model ensemble (Fig. 4d).

Discussion
The Rhinelander, Oak Ridge, Duke, and Kennedy Space Center
experiments represent the most direct evidence for decadal bio-
mass responses to CO2 enrichment in early-secondary-succes-
sion, temperate woody ecosystems. The analysis shows that CO2

enrichment to CO2 concentrations predicted for the mid-to-late
century stimulates an increase in the decadal vegetation carbon
increment (ΔCveg) of 1.05 ± 0.26 kg Cm−2. This evidence suggests
that at CO2 concentrations of the late 1990’s and early 2000’s,
CO2 is a resource that limits decadal-scale biomass increment in
early-secondary-succession, temperate woody ecosystems. The
analysis also shows that the ΔCveg response to CO2 enrichment in
these ecosystems can be predicted with knowledge of the CO2

response of NPP (0.16 ± 0.03 kg Cm−2 y−1) and the CO2-

independent biomass retention rate (dΔCveg/dcNPP; 0.55 ± 0.17
at the population level), which can be calculated under ambient
CO2 conditions (Fig. 2, Table 2). This finding emphasises the
importance of understanding the drivers of ecosystem variability
and dynamics under current conditions in order to interpret and
predict ecosystem responses to experimentally manipulated ele-
vated CO2 concentrations.

The CO2 stimulation of annual NPP observed in this study is
consistent with the 23 ± 2% median increase previously calculated
over 1–6 years at Rhinelander, POPFACE, ORNL, Duke34.
Mixed-model analysis allows estimation of the response of the
statistical population and is the reason the uncertainty in this
study is larger, 6% versus 2% in ref. 34. The approximately linear
cross-treatment relationship between ΔCveg and cNPP over a
decade (Fig. 2) is consistent with a previous finding for Rhine-
lander35. We have now shown this cross-treatment conservation
of the biomass retention rate at all four sites, suggesting that CO2

stimulated gains in NPP are retained as biomass at the same rate
as variation in NPP caused by other factors. Nitrogen (N) has
been shown to control much of the within treatment variability in
NPP at these sites15,25 and it is remarkable that CO2-stimulated
gains in NPP were retained as biomass at the same rate as NPP
driven by variability in N availability. The implication is that in
these ecosystems and at the decadal scale, allocation patterns were
not directly affected by CO2 enrichment.

The relative increase in ΔCveg in response to CO2 enrichment
was higher than the relative increase in cNPP (29.1 ± 11.7%
versus 22.9 ± 6.1%) due to a linear increase in the wood allocation
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fraction (fW) as cNPP increased (Table 2; an indirect effect of
eCO2). Increasing fW with NPP is consistent with a compre-
hensive analysis of forest carbon allocation across gradients of
productivity26, and our analysis suggests that the relationship
between fW and production is no different when production is
affected by CO2 or other factors. A simple hypothesis for the
linear relationship between fW and cNPP (Table 2) is that allo-
cation to resource acquisition organs (i.e. leaves and fine roots) at
the decadal scale is fairly well conserved in these even aged stands
and that variability in NPP is primarily driven by variability in
wood production.

Random effects in the best statistical model of ΔCveg suggest
site-level differences in the biomass retention rate. Rhinelander,
Duke, and KSC showed a positive biomass retention rate and thus
a decadal biomass response. These three sites were in the reor-
ganising and aggrading phases of secondary succession, with
various degrees of expanding above-and-below-ground resource
acquisition volumes and thus coupling to resource availability. At
these sites, the biomass retention rate was tied via Eq. 1 to cNPP
and wood allocation. Both the baseline wood allocation fraction
(fWa) and the unit change in fW for a unit change in cNPP (fWb;
which was conserved across sites) were important (Table 3).
Rhinelander and Duke shared a similar fWa and the difference in
cNPP at the sites determined the different biomass retention rates
via the second term in Eq. 1 (Table 3). fWa was lower at KSC,
leading to a lower biomass retention rate.

At ORNL, the biomass retention rate of 0.144 (−0.093–0.678,
95% CI) was not statistically different from zero and therefore
there was no relationship between ΔCveg and cNPP. The absence
of a relationship was not a response to CO2 enrichment. ΔCveg at
ORNL was simply more variable within CO2 treatments than
across treatments, related to high within-treatment variability in
fW (Fig. 3) that resulted in a highly uncertain biomass retention
rate. In several years of the ORNL experiment, annual root
production was stimulated by CO2 enrichment36. However, at the
decadal scale, a treatment effect on allocation was not detected
(Supplementary Tables 5 and 6). At ORNL, the peak and later
decline in NPP in both treatments (Fig. 1) was attributed to
progressive nitrogen limitation, which was intensified by CO2

enrichment13,24. That both treatments were under-going PNL at
ORNL suggests that stand development was the under-lying cause
of the PNL77. In this state of tightening resource availability ΔCveg

was controlled by within-treatment variability in fW that was
unrelated to variability in cNPP. We propose the hypothesis that
cross-plot variability in the timing and intensity of competition as
the plots at ORNL shifted from the aggrading phase into the
transition phase of secondary succession was the cause of the
within-treatment variability in fW. As with the sites in the earlier
stages of succession, understanding the ambient condition and
successional status is important for interpreting the (lack of)
ΔCveg response to CO2 at ORNL.

Furthermore, the time since disturbance at Duke is greater than
at ORNL, while results suggest that ORNL is in a later stage of
succession. The disconnection of time since disturbance and suc-
cessional stage suggests that time since disturbance, or age of the
trees, may not be sufficient to indicate successional stage, which
appears to be an important factor in the CO2-response of biomass.

At the population level and at all four of these reorganising,
aggrading, and approaching transition ecosystems, there was no
evidence to suggest that the biomass retention rate was affected
by CO2 enrichment. The biomass retention rate was one of two
variables needed to predict the ΔCveg response to CO2 enrichment
and was calculable with knowledge of allocation and NPP under
ambient conditions.

Model predictions of the ΔCveg response to CO2 enrichment
were highly variable (Figs 4a and S2), as is common5,37.

Nevertheless, site-specific biases across the whole ensemble were
observed, indicating areas for improvement that are general to the
group of models in the ensemble. At Rhinelander and Duke, the
strong under-prediction of the ΔCveg response to CO2 enrichment
resulted from under-prediction of both the cNPP response and
the response of fW to cNPP. At ORNL, the over-prediction (but
within observed uncertainty) of the ΔCveg response resulted from
over-prediction of the (highly uncertain) biomass retention rate.
At KSC, the over-prediction of the ΔCveg response was primarily
due to over-prediction of the cNPP response, albeit that accurate
predictions of the biomass retention rate were a result of com-
pensating errors in fW prediction.

We highlight four findings related to C allocation that will help
models to improve simulated ΔCveg responses to CO2 enrich-
ment: (1) across CO2 treatments, fW was a linear function of
cNPP; (2) large variability in the predicted intercept of the rela-
tionship (fWa) led to large variability in the predicted biomass
retention rate; (3) model predictions of the wood allocation
response to cNPP (fWb) were low biased; and (4) models did not
capture the low fWa at KSC that is assumed an adaptation to
frequent disturbance. Models vary substantially in how C allo-
cation is implemented resulting in substantial model C sink
variability32,37. Overall, our results suggest that allocation rules
were more constrained across sites than across models, though
successional stage and disturbance regime did drive cross-site
differences in allocation. Models with allometric constraints, such
as the pipe model38, tended to perform better in a previous
analysis32 and a representation of tree size and potentially forest
structure through succession may help models to better imple-
ment the more conservative allometric constraints implied by the
observations and previous analyses26,39.

In these four ecosystems, the N constraints on NPP responses
to elevated CO2 were met by increased N uptake, rather than an
increase in N use efficiency31,40. In the models with an N cycle,
under-prediction of the cNPP response at Rhinelander and Duke
was likely a result of overly strong N constraints that did not
allow flexibility in the coupling of the C and N cycles31,40,41.
Understanding the coupling of the C and N cycles through plant-
microbe C and N dynamics and the C cost associated with N
uptake will help to improve model simulations and is an ongoing
area of research31,42–46. Furthermore, the strong nutrient con-
straint at ORNL, imposed by stand development, and within-
treatment variability in allocation patterns makes a case for
representing succession tied to dynamics of resource limitation in
models.

The role of N in determining variability in NPP in these early
successional ecosystems is expected17,47. In addition to N, other
nutrients play a substantial role in areas of high N deposition,
later-successional stages, and in areas with highly weathered soils
(such as the tropics)47–49. More general understanding the
effect of elevated CO2 on temperate forest biomass requires
knowledge of biomass responses in ecosystems across all stages of
secondary succession. In a later-successional Eucalyptus wood-
land on very low P soils, P addition stimulated above-ground
woody biomass increment over a 3-year period, while CO2

enrichment did not50. At Flakaliden, Sweden, biomass increment
in individual, 27-year-old Norway Spruce trees was increased by
CO2 enrichment only when a nutrient solution optimal to the
species was also added51. In two later-successional temperate
forests in Switzerland, CO2 enrichment did not stimulate radial
tree growth despite a stimulation of photosynthesis8,52. These
results suggest that in these later successional forests, perhaps in
the transition phase, aboveground tree biomass increment was
not carbon limited. Tree-ring analyses have also found no con-
sistent effect of the historical CO2 trend on basal area
increment53,54. Interestingly, and potentially linking our results
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and those from later successional stage experiments, Voelker20

demonstrated a decline with age in the radial growth stimulation
by CO2 in temperate oak and pine species. The potential for age-
associated diminishing CO2 responses again emphasises the need
to understand the dynamics of resource limitation through sec-
ondary succession and the influence of increased photosynthate
on these dynamics.

Understanding the interaction of mortality with higher rates
of decadal biomass accumulation early in succession is also
necessary for predicting the response of the long-term carbon
sink to increasing CO2

5,32,37,55. On the premise that accelerated
growth causes shorter tree longevity (i.e. higher turnover rates), it
has been argued that increased growth rates caused by elevated
CO2 during early phases of secondary succession may not sti-
mulate woody ecosystem biomass in the long term11,19. We agree
that in plantation forests, where mortality (i.e., harvest) is an
economic decision, higher turnover rates are a likely consequence
of higher growth rates19. However, while there is some evidence
to support the premise of increased conspecific mortality for
individuals with higher growth rates56,57, there is also a sub-
stantial body of evidence that does not support the premise,
including both species-specific or site-specific studies58–61 and an
extensive multi-site synthesis62. The interactions of growth rate
and mortality may also be important at the stand scale. Self-
thinning of forest stands could be accelerated or intensified by
CO2-stimulated individual growth rates. Growth rates of non-
dominant individuals at ORNL63 and biomass of under-story
trees at Duke64 were both lower, but not significantly, under CO2

enrichment. If increased growth rates do indeed lead to increased
mortality, the immediate consequence will be increased inputs of
C to the soil. How soil C responds to CO2 enrichment is an active
area of research that must also be considered in analyses of
feedbacks between the atmosphere and terrestrial ecosystems5,37.

The data presented here clearly show that a decade of CO2

enrichment in temperate, early-secondary-succession, woody
ecosystems increased vegetation carbon increment (ΔCveg) by
about 30%. Gap dynamics are ubiquitous in primary forests,
while 60% of temperate forests are naturally regenerating, sec-
ondary forests and 22% are plantation forests65. And the single-
decade scale of these FACE and OTC studies is the temporal scale
at which the carbon cycle becomes relevant to climate change.
Thus post-disturbance stands and early successional forests are
likely to be a major component of the climate-relevant, temperate
forest responses to increasing CO2. Nevertheless, four sites is a
small sample size of the temperate woody ecosystem population,
a single decade is at the lowest end of the decadal scale, and a full
range of secondary succession was not sampled. Secondary suc-
cession, gap dynamics, and the dynamics of limiting resources
through successional stages, provides a context for scaling CO2

responses to greater spatial and temporal scales. To implement
secondary succession as a context for accurately scaling predic-
tions of terrestrial ecosystem biomass responses to increasing
CO2 requires further development and synthesis of mechanistic
theory. In particular, we need to understand how stand devel-
opment across successional stages influences: wood allocation in
relation to NPP, the interaction of CO2 with other resources to
limit plant production, and the interaction of NPP, mortality, and
self-thinning.

Methods
Experiments. The Rhinelander FACE experiment was established on moderately
fertile sandy loam soils at the Harshaw Experimental Farm of the USDA Forest
Service, Wisconsin (45.6 °N, 89.5 °W) following 20 years of plantation forestry, pre-
dated by 50 years of agricultural use. Small trees (~25 cm tall) were planted in 1997
at 1 m spacing in one of three community types: aspen (Populus tremuloides
Michx.), equal parts aspen and birch (Betula papyrifera Marshall), or equal parts
aspen and maple (Acer saccharum Marshall). Only the mixed-genotype aspen

community was used in this analysis. Climate is the fully humid, warm-summer,
continental cold climate of the Köppen-Geiger classification66 (mean annual
temperature 4.9 °C, mean annual precipitation 800 mm). The other three sites’
climates are classified as fully-humid, hot-summer, warm temperate66.

The ORNL FACE experiment was located in a sweetgum (Liquidambar
styraciflua L.) plantation on the Oak Ridge National Environmental Research Park,
Tennessee (35.90 °N, 84.33 °W). The forest is on a low fertility silty-clay loam and
the climate at the site is typical of the humid southern Appalachian region (mean
annual temperature 13.9 °C and mean annual precipitation 1370 mm). The trees
were planted in 1988 and at the start of the experiment in 1998 the trees had a fully
developed canopy.

The Duke FACE experiment was located within a 90 ha loblolly pine (Pinus
taeda L.—Piedmont provenance) plantation situated in the Duke Forest, Chapel
Hill, North Carolina (35.97 °N, 79.08 °W). The forest is on a moderately low
fertility acidic loam and the climate is typical of the warm-humid Piedmont region
of the south-eastern US (mean annual temperature 15.5 °C and mean annual
precipitation 1150 mm, with precipitation evenly distributed throughout the year).
The trees were planted in 1983 and the experiment was initiated in late 1996.

The Kennedy Space Center experiment occurred at the Merritt Island National
Wildlife refuge, Florida (28.63 °N, 80.70 °W). After controlled burning, open-top
chambers were established over the regrowing scrub oak (Quercus spp.) vegetation.
The experiment began in May 1996. The soils at the site are sandy with a low pH
(c. 4) classified as Arenic Haplahumods and Spodic Quartzipsamments and the
climate is subtropical (mean annual temperature 22.1 °C and mean annual
precipitation 1094 mm).

Our selection criteria excluded three woody ecosystem CO2 enrichment
experiments: POPFACE, WebFACE, and EucFACE from the analysis, as they were
either managed, did not quantify NPP and biomass, or had been running for just
5 years, respectively. We have a maximum of 11 years of data for each experiment.
Experiment data used in this study are freely available67.

All components of NPP and biomass were measured, though somewhat
different methods were used at each site. For our analyses, allocation fractions were
calculated as the organ production divided by total NPP (which was calculated as
the sum of production of all organs: leaves, wood, coarse-roots, fine-roots). Details
of how the measurements were made can be found in Table 4 and the references
cited therein. At three of the sites methods were consistent across years while at
Rhinelander different methods in the early and later parts of the experiment were
carefully combined35. Ecosystem live-biomass calculations were some combination
of mean (commonly fine-roots), peak (leaves and fine roots at some sites), and
point-in-time measurements (wood at the end of the growing season). Across sites,
woody biomass was calculated from measured diameter (and other non-destructive
measurements in some cases) in conjunction with measured site and species-
specific allometric models (Table 4). Annual net primary production (NPP) was
calculated as the sum of annual dry matter production of all plant organs using a
combination of the above method for biomass to calculate wood increment, canopy
assessments and litter traps, mini-rhizotrons and root coring (Table 4). Dry matter
units were converted into carbon units using organ-specific carbon concentrations.

For the allocation analysis coarse roots were combined with stem wood for a
total ‘wood’ pool. Biomass and NPP components at Duke are the sum of both
evergreen over-storey and hardwood under-storey. Biomass and NPP at
Rhinelander are from only the tree components of the ecosystem and do not
include the herbaceous component (which made a minimal contribution).

An issue in all meta-analysis type studies is that variability in the way that
measurements have been made may result in artifacts that obscure true differences
across experiments. Random effects in mixed models account for unidentified
variability across samples within a group when calculating population level fixed-
effects, but cannot account for unidentified variability when specific sample-to-
sample comparisons are made. The decadal biomass increment is mostly a result of
wood increment, which was measured using site and species-specific allometric
functions and detailed measurements across sites, as described above. Thus the
primary result of a 1.05 ± 0.26 kg Cm−2 stimulation of biomass increment by CO2

enrichment is likely robust. Measurements within each experiment site were
consistent, which suggests that our second major result, that the biomass retention
rate is independent of CO2, is also likely robust. Measurements of fine-root
production are likely to vary the most among sites, though each method was state-
of-the-art, and are thus most likely to influence cross-site comparisons. For
example, at KSC fine-root biomass was quantified with a combination of cores and
mini-rhizotrons, and coarse roots with a combination of allometry and ground-
penetrating radar. Although the same suite of methods was not used at other sites,
we have no reason to believe such differences explain 5–10 times higher root
biomass at the KSC site. Furthermore, at two sites (ORNL and KSC) with different
methods of measuring root production, and largely different values of fine-root
production, the measurements of production both under ambient CO2 and in
response to CO2 enrichment were supported by measurements of fine-root biomass
during final harvests68,69. Thus while the cross-site comparisons of the exact value
of the biomass retention rate may be coloured by methodological differences, we
expect these biases to be small.

KSC used biomass increment and litterfall to calculate NPP69. In a few years
this calculation resulted in negative NPP in some plots because biomass (in
particular, fine-root biomass; Fig. 1l) fluctuated strongly year-to-year but
calculations of litterfall did not fluctuate as strongly. Based on the conceptualisation
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of NPP used at the other three sites (i.e. the sum of gross production), negative
values of NPP at KSC mean that components of either litterfall or biomass were not
measured. Negative NPP and not knowing whether the unmeasured litterfall or
biomass component of NPP varies annually or not makes annual time-scale
comparisons with the other three sites difficult. At multi-annual timescales the
large fluctuations in biomass that cannot be accounted for with litterfall
measurements are averaged leaving a single directional bias, a bias that is likely
present and similar in both cumulative NPP and biomass.

Statistical analysis. We used mixed-model analyses with site as the random effect
because the data were unbalanced and the particular sites and ecosystems in which
the experiments were conducted represent a ‘population’ (in the statistical rather
than the biological sense) of ecosystems (temperate, early-secondary-successional,
woody ecosystems) for which we are interested in CO2 responses. Mixed-effects
models are capable of handling unbalanced data and have generalisable conclusions
due to their assumption that the groups within the random effects are random
samples drawn from a population70. Although the sites in our analysis were not
strictly selected at random, they span a range of climates, soil types and ecosystems.
We analysed all sites together in a unified framework using mixed-effects models,
treating sites as random effects in a way that is analogous to blocks in a randomised
block design experiment. The advantage of using mixed-effects models is their
ability to analyse data gathered across multiple individuals within a single statistical
model and to handle unbalanced data. In treating individuals—in this case sites—as
samples drawn from a population distribution, mixed-effects models allow the
determination of a population level fixed effect including the uncertainty in that
effect. The fixed effects provide population level estimates of the effect of CO2 on
NPP and biomass increment, i.e. an estimate of the general effect of CO2 in semi-
natural aggrading temperate forests. Random effects allow an estimation of the
variability in fixed effects among groups and thus whether there are differences
across sites.

Given the evolving landscape of mixed-effects modelling methods, for model
fitting we used the ‘lmer’ function within the up-to-date ‘lme4’ R package71. All
models were fit using maximum likelihood (ML) estimation of the parameters to
allow comparison of models with different fixed-effects using Akaike Information
Criterion corrected for finite sample size (AICc)72. Once the fixed effects terms
were selected according to the minimum adequate model, models with the same
fixed effects but different random effects were fit using restricted maximum
likelihood (REML) parameter estimates as REML gives a more robust estimate of
the random effects70. We were interested in the site-level parameter estimates so
accurate fitting of the random effects was desired. Confidence intervals for the site-
level parameter estimates in the minimum adequate model were generated by

bootstrapping using the ‘bootMer’ function in ‘lme4’, i.e. the minimum adequate
model was refit 1000 times by resampling the data.

From a full model that included all main effects and interactions, model
simplification was exhaustive (all possible combinations of main effects and
interactions were tested, subject to the inclusion of a main effect if the variable was
also considered in interaction). A null model that included only the random effect
on the intercept was included in the model selection to ensure that models with
fixed effects contained information in addition to simply the sites having different
mean values. Model selection, based on Akaike Information Criterion corrected for
finite sample size (AICc), was used to find the ‘minimum adequate model’ where
the model with the lowest AICc was considered the minimum adequate model. The
AIC is a metric of fit to the data while also considering parsimony in the number of
parameters used in the model, i.e. the minimum adequate model can be thought of
as the model that simultaneously maximises the fit to the data and parsimony70,72.
For brevity in the main text we refer to the minimum adequate model as the best
model, specifically this means the model that minimises the Kullback–Leibler
distance indicating that minimum information is lost in the model72.

The ‘gamm4’ R package was used to calculate the generalised additive mixed
models (GAMMs) used in the trend detection. The GAMMs were fit to each
variable (NPP, LAI, and fine-root biomass) at each site individually. Random
effects were the treatment ring, fixed effects were year and CO2 treatment. Model
selection was conducted as described above. Confidence intervals were generated
using the ‘predict’ function.

All statistical analyses were conducted in R v3.3.273 using the ‘lmer’ function for
mixed effects modelling71 and the ‘lm’ function from the ‘stats’ package for fixed-
effects modelling. AICc’s were calculated using the ‘AICcmodavg’ package in R74.
Unless otherwise stated error bars describe one standard error of the mean (SEM)
with an n of four at Duke, eight at Kennedy Space Center, three and two in the
ambient and elevated treatments at ORNL, and three at Rhinelander.

Analysis of production and biomass increment relationship. The mixed-model
analysis provides a rigorous statistical approach to analyse results from all the sites
together in a single statistical model. However, the resulting statistical model is
empirical and does not immediately provide information on mechanism. Below we
derive a set of equations designed to mechanistically interpret the empirical
parameters of the linear mixed-effects models. Assuming a linear empirical rela-
tionship to describe ΔCveg as a function of NPP over multiple years (i.e. the
statistical model that is fit to the data):

ΔCveg;e�s ¼ aþ b
Xe

t¼s

NPPt ; ð2Þ

Table 4 Comparison of various methods used to calculate biomass and NPP at the four sites

Site

Rhinelander ORNL Duke KSC

Biomass

Leaves 2002–2008, littertraps. Pre-2002,
allometric relationship.

Littertraps. Littertraps, lagged for pines. Diameter based allometric
functions.

Wood Diameter based
allometric functions. Two
functions were used depending
on a diameter based cutoff.

Diameter and height based
functions relationships,
annual measurements of
wood carbon density.

Diameter and height based
allometric functions, annual
measurements of wood
density. Sub-sample of full
plot.

Diameter based allometric
functions.

Coarse-root Linear function of above-ground
tree mass and fine-root mass.

Diameter based allometric
functions.

Function of above-ground
biomass.

Soil cores, ground-penetrating
radar, and allometric functions
(when cores and GPR were not
taken).

Fine-root 2002–2008, mini-rhizontrons.
Pre-2002, allometric relationship.

Mini-rhizotrons. Soil cores. Mini-rhizotrons and soil cores.

Production

Leaves Equal to biomass. Equal to biomass. Peak Leaf Area Index divided
by species specific SLA.

Biomass increment plus litterfall.
Litterfall estimated from littertraps.

Wood Biomass increment at the tree
scale*.

Biomass increment at
the tree scale*.

Plot scale biomass increment. Biomass increment plus litterfall.
Litterfall assumed zero.

Coarse-root " " " Same method as fine roots.
Fine-root 2002–2008, in-growth cores

and mini-rhizontrons. Pre-2002,
biomass increment plus estimated
root litterfall from 2002–2008
mini-rhizotron data.

Mini-rhizotrons. Biomass multiplied by
proportion of annual length
production from mini-
rhizotrons.

Biomass increment plus litterfall.
Litterfall estimated as biomass
multiplied by C turnover rate.
Turnover rate measured using an
isotopic tracer approach.

for details see Talhelm et al.35 Norby et al.13 McCarthy et al.15 Hungate et al.16,69

*Accounts for mortality such that mortality is not included in this estimate and the minimum NPP for this variable is zero
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where a and b are the empirical intercept and slope of a linear relationship, the
subscripts s and e are the time at the start and the end of the experiment, andPe

t¼s NPPt is cumulative NPP over the time period in question (cNPP as referred
to in the main text). Equation 2 is equivalent to the more process oriented:

ΔCveg;e�s ¼
Xe

t¼s

NPPt �
Xe

t¼s

Lt ; ð3Þ

where Lt is litterfall in year t. The advantage of starting our analysis with Eq. 2 is
that it links directly to the mixed-effects statistical analysis. To describe the
response of ΔCveg to CO2 enrichment Eq. 2 can be used to represent the response
of ΔCveg from ambient CO2 (subscript amb) and elevated CO2 (subscript ele)
treatments:

ΔCveg;e�s;response ¼ ΔCveg;e�s;ele � ΔCveg;e�s;amb

¼ ðaele þ belecNPPeleÞ � ðaamb þ bambcNPPambÞ;
ð4Þ

and assuming the the slope and the intercept of Eq. 3 do not respond to CO2

enrichment, simplified to:

ΔCveg;e�s;response ¼ bðcNPPele � cNPPambÞ ¼
dΔCveg

dcNPP
ðcNPPele � cNPPambÞ; ð5Þ

giving the response of ΔCveg to CO2 enrichment as a function of the cNPP response
to enrichment and b. As the differential of Eq. 2, b is the rate of change in ΔCveg

with respect to cNPP (dΔCveg/dcNPP).
Given that b is an empirical parameter, an analysis to explain b in terms

of biological processes is now proposed, which also allows the evaluation of
the models in terms of process. Hypothesising that the primary cause of the
relationship between ΔCveg and cNPP is wood allocation, such that:

ΔCveg;e�s ¼ fWcNPP; ð6Þ

where fW is the fraction of cNPP allocated to wood. Again, to link with the
statistical analysis, assuming that wood allocation follows a linear function of
cNPP:

fW ¼ fWa þ fWbcNPP; ð7Þ

were fWa and fWb are the empirical intercept and slope of a linear relationship.
Substituting Eq. M6 into Eq. M5 gives the quadratic:

ΔCveg;e�s ¼ ðfWa þ fWbcNPPÞcNPP: ð8Þ

A quantitatively testable hypothesis that the biomass retention rate estimated
from the empirical relationship of Eq. 2 is controlled by wood allocation is that at
the mean cNPP the differential of Eq. 2 (i.e. b) is equal to the differential of Eq. 8:

dΔCveg

dcNPP
¼ fWa þ 2fWbcNPP: ð9Þ

Models. Twelve terrestrial biosphere/ecosystem/carbon cycle models (TBMs) were
used to simulate the four experiments. The models were applied to the sites fol-
lowing a common protocol which specified meteorological data, CO2 data, com-
mon parameterisations of soil characteristics, plant traits and site land use
history75,76. Meteorological data went through rigorous quality control and stan-
dardisation. The protocol and data can be found on the FACE model data synthesis
webpage (facedata.ornl.gov/facemds). The models we used were seven global land
surface models: CABLE, CLM4.0, CLM4.5, ISAM, JULES, O-CN, and ORCHIDEE;
two global dynamic vegetation models: LPJ-GUESS and SDGVM; and three eco-
system models DAYCENT, GDAY and TECO (see 26–31 for model descriptions).
Nine of these models simulate a process-based mass-balanced N cycle while JULES,
ORCHIDEE and SDGVM simulate only the carbon cycle (SDGVM considers an
empirical N limitation on photosynthetic rates).

The modelling protocol specified site histories to ensure these simulations were
in a successional stage similar to the ecosystems of the experiments. Models that
were in equilibrium at the beginning of the simulation of the experiments were
excluded from the analysis. The modelling protocol required two simulations—one
ambient CO2 and one elevated CO2—at each site, meaning the determination of
model relationships of fW with cNPP using regression was not possible. As a
surrogate for the linear slope we use the difference in fW divided by the difference
in cNPP between the simulated treatments, and plot dfW/dcNPP against the wood
allocation fraction in the simulated elevated CO2 treatment (Fig. 4c, f, i, l). For the
TBMs we used mean standing crop within a year to calculate biomass.
Meteorological data, model output, and protocols are freely available75,76.

Data availability
The site-based meteorological dataset (https://data.ess-dive.lbl.gov/view/ess-dive-
7807cf86f1dd42a-20181127T173047368940), the model output dataset (https://
data.ess-dive.lbl.gov/view/ess-dive-8260043c35fc925-20181130T171955541030)

and the experiment dataset (https://data.ess-dive.lbl.gov/view/ess-dive-
f525c71da7d2681-20181128T160851574946) generated and analysed during the
current study are available at the US Department of Energy’s (DOE) ESS-DIVE
repository.
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