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One of the fundamental goals in ecology is to determine how 
biodiversity is generated and maintained across space and 
time. Understanding the spatial and temporal distribution 

patterns of biodiversity is central to determining the underlying 
mechanisms shaping biodiversity1, the development of ecological 
theories2 and biodiversity conservation3,4. One of the most well-
documented spatial patterns in ecology is that the number of spe-
cies or taxa observed increases with the area investigated, that is, the 
species–area relationship (SAR) or taxa–area relationship (TAR)4–6. 
The SAR has been well documented in hundreds of publications5 
and has provided a conceptual foundation for theoretical ecology 
and important tools for assessing species diversity7, extinction rates8 
and species hotspots9. Since the last decade, spatial scaling of micro-
bial diversity has attracted substantial attention4,10,11; great insights 
were obtained in terms of the scaling factor (z values) and underly-
ing mechanisms4,6,10,12. Various studies demonstrated that SAR exists 
in microbial communities; hence, SAR appears to be a universal law 
in ecology4,10,11,13,14.

Similar to SAR, STR is also believed to be a fundamental pat-
tern in ecology3. More than 40 years ago, it was proposed that 
the number of species observed in a fixed area increases with 
the length of time, which could follow the same form as SAR13,15. 
This increase in species richness is theoretically explained by eco-
logical processes such as successional changes, climatic variability,  

metapopulation dynamics, random sampling processes and/or 
their combinations16,17. However, despite extensive studies in SAR, 
STR has received much less attention17–19, particularly in microbial  
ecology11,13, owing to the scarcity of long-term data sets. As a result, 
it is not clear whether STR exists or if it is a universal pattern in 
microbial ecology. Also, phylogeny-based spatial and temporal pat-
terns are necessary for setting conservation areas and periods that 
optimize the preservation of evolutionary history2,20–22, and are more 
powerful for testing biodiversity theory2,23. However, there are only 
a few recent studies demonstrating the existence of phylogenetic 
analogues of the SAR based on phylogenetic diversity, that is, phy-
logenetic–area relationship (PAR) in macrocommunities2,19. Almost 
nothing is known about PTR except one recent study in plant  
ecology19. Thus, there is a major gap given that STRs and PTRs are 
needed for soil biodiversity preservation and ecosystem manage-
ment, especially in the face of climate change.

One of the greatest scientific and political challenges of the 
twenty-first century is to predict biological responses to climate 
change24,25. Under climate change, the surface temperature of earth 
has increased by 0.76 °C in the past 150 years and is expected to 
increase by another 1.1–6.4 °C by the end of this century, signify-
ing the largest anthropogenic disturbance to natural systems on 
record24,26. Consequently, global and regional temperatures and 
precipitation patterns are predicted to shift dramatically inducing 
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Determining the temporal scaling of biodiversity, typically described as species–time relationships (STRs), in the face of global 
climate change is a central issue in ecology because it is fundamental to biodiversity preservation and ecosystem management. 
However, whether and how climate change affects microbial STRs remains unclear, mainly due to the scarcity of long-term 
experimental data. Here, we examine the STRs and phylogenetic–time relationships (PTRs) of soil bacteria and fungi in a long-
term multifactorial global change experiment with warming (+3 °C), half precipitation (−50%), double precipitation (+100%) 
and clipping (annual plant biomass removal). Soil bacteria and fungi all exhibited strong STRs and PTRs across the 12 experi-
mental conditions. Strikingly, warming accelerated the bacterial and fungal STR and PTR exponents (that is, the w values), 
yielding significantly (P < 0.001) higher temporal scaling rates. While the STRs and PTRs were significantly shifted by altered 
precipitation, clipping and their combinations, warming played the predominant role. In addition, comparison with the previ-
ous literature revealed that soil bacteria and fungi had considerably higher overall temporal scaling rates (w = 0.39–0.64) than 
those of plants and animals (w = 0.21–0.38). Our results on warming-enhanced temporal scaling of microbial biodiversity sug-
gest that the strategies of soil biodiversity preservation and ecosystem management may need to be adjusted in a warmer world.
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extreme weather events, which will profoundly affect ecosystem 
functions and services24,26. All levels of biological organization, from 
individuals to whole biomes, will be affected by climate change25,26. 
In turn, the feedback responses of ecosystems affect climate and 
atmospheric composition24,26. Therefore, global climate change is 
expected to alter the spatial and temporal scaling of ecological com-
munities27. During the last two decades, intensive studies have been 
performed to examine ecosystem responses to changes in climate 
warming, precipitation and land use patterns24,28. However, whether 
and how global climate change affects the temporal scaling (that is, 
STR and PTR) of biodiversity remains unclear.

Based on the metabolic theory of ecology (MTE), rising tem-
perature should have profound effects on the temporal scaling of 
biodiversity. MTE predicts that the metabolism of organisms, popu-
lation growth rates and species diversity increase exponentially with 
environmental temperature29–31. Therefore, it is expected that cli-
mate warming will increase the rates of ecological and evolutionary 
processes30, including the rates of genetic mutation, speciation and 
interactions. Accordingly, temporal scaling rates (that is, the STR 
and PTR w values) of soil microbial communities should increase 
under future climate warming. Furthermore, based on MTE29, the 
temporal scaling rates of microbial communities are expected to 
be higher than plants and animals due to their smaller body sizes 
and much higher metabolic rates than macroorganisms. However, 
higher temperatures may act as a deterministic filtering factor to 
select more adapted microorganisms, and further constrain the 
stochastic drift and dispersal of species in niche-based theory32,33. 
Therefore, in contrast to MTE, climate warming could decrease the 
temporal scaling rates of soil microbial communities.

To understand whether and how climate warming affects STR 
and/or PTR in soil microbial communities, we examined the tem-
poral scaling of soil microbial communities in a multifactorial 
global change experiment in a tall grass prairie ecosystem of the US 
Great Plains in central Oklahoma (34° 59′ N, 97° 31′ W)34. Our main 
objectives were to answer the following: (1) whether STRs and PTRs 
exist in soil microbial communities and if they are universally appli-
cable to different organismal groups (that is, bacteria and fungi); 
(2) whether and how key climate change factors, that is, warming, 
alter precipitation and clipping influence in microbial STRs and 
PTRs?; (3) whether soil microbial STR and PTR w values are like 
those for plants and animals. We hypothesize that STRs and PTRs 
exist in both bacterial and fungal communities, that climate warm-
ing accelerates the scaling rates of both taxonomic and phylogenetic 
diversity and that soil microbial temporal scaling rates are in general 
larger than those for plants and animals.

Results and discussion
Site characteristics and sequencing statistics. We used a long-
term climate change experiment established in July 2009, with a 
blocked split-plot design, where warming (+3 °C), half precipita-
tion (−50% precipitation) and double precipitation (+100% precip-
itation) are primary factors nested with clipping (annual removal  
of above-ground biomass) as a secondary factor (Supplementary 
Fig. 1). Previous analyses showed that above-ground plants, ecosys-
tem processes and soil conditions were significantly changed under 
warming and other treatment conditions34–36. Temporal altera-
tions in soil variables and plant–soil feedbacks are expected to lead 
to changes in the temporal scaling of soil microbial diversity37,38.  
To discern whether climate warming and other treatments affect 
STRs or PTRs in soil bacteria and fungi, a total of 264 soil surface 
samples (0–15 cm) from 2009 to 2014 were analysed with two dif-
ferent phylogenetic markers: (1) the V3-V4 region of 16S ribosomal 
RNA (rRNA) gene for bacteria and archaea; and (2) the internal tran-
scribed spacer (ITS) between the 5.8S and 28S rRNA genes for fungi. 
An average of 53,000 ± 26,000 and 23,000 ± 11,000 sequence reads 
per sample were obtained for 16S rRNA gene and ITS, respectively  

(Supplementary Table 1). Rarefaction curves approached saturation 
at a 97% identity cut-off, indicating that this level of sequencing 
effort was sufficient to estimate the diversity of these soil microbial 
communities (Supplementary Fig. 2).

Microbial STRs and PTRs under different climate change treat-
ments. In ecology, the relationship between species richness 
and time is often described by the power-law equation =S cT ws, 
or its logarithmic equation, which is analogous to the power law 
of SAR3,16. S is the number of observed species within the length 
of time T, c is an empirically derived constant, and ws is the STR 
exponent, that is, a measure of the temporal scaling rate of species 
richness17,18. Similarly, PTR analogues of STR are described by the 
power-law equation =PD cT wp or its logarithmic equation, where 
PD is phylogenetic diversity and wp is the PTR exponent. Our 
results revealed that the data from soil bacteria and fungi fitted the 
logarithmic equation very well under both warming and control 
conditions based on species (r2 = 0.844–0.923, P < 0.001) and phylo-
genetic (r2 = 0.829–0.919, P < 0.001; Fig. 1) diversity, suggesting that 
there are strong STRs and PTRs in soil bacteria and fungi under 
both warming and control conditions. More interestingly, permuta-
tion tests indicated that both ws and wp values under warming were 
significantly (P < 0.001) higher than those under control conditions 
(Fig. 1a,b and Supplementary Tables 2 and 3). In addition, in general 
wp values were smaller than ws values (Fig. 1a,b), indicating that the 
divergence of these communities in taxonomy is faster than that in 
phylogeny. This is most likely due to the short experimental period 
(6 years), which was insufficient to allow rapid phylogenetic change, 
and/or due to the regional species pool, which has low phylogenetic 
diversity2. Taken together, these results suggest that experimental 
warming significantly promoted the temporal scaling rates of soil 
bacterial and fungal diversity, consistent with the MTE prediction 
that or ganisms have faster rates of ecological and evolutionary pro-
cesses at higher environmental temperatures29–31.

Bacterial and fungal STRs and PTRs under all other treat-
ment conditions besides single warming were also determined 
(Supplementary Fig. 3). Very strong logarithmic correlations 
were observed for all single and combined treatment conditions 
between time and species richness (r2 = 0.739–0.948, P < 0.001; 
Supplementary Table 2), or phylogenetic diversity (r2 = 0.604–0.941, 
P < 0.001; Supplementary Table 3), indicating that STRs and PTRs 
exist in soil bacteria and fungi under various treatment condi-
tions. Also, the ws values varied slightly for bacteria (0.495 ± 0.012) 
and for fungi (0.656 ± 0.023) across all single and combined treat-
ments (Supplementary Fig. 3a). Similar patterns were obtained for 
the wp values of bacteria (0.403 ± 0.017) and fungi (0.502 ± 0.029; 
Supplementary Fig. 3b). Furthermore, most single and combined 
treatments significantly (P < 0.05) altered the STRs and PTRs of soil 
bacteria and fungi (Supplementary Tables 2 and 3). For instance, 
clipping significantly (P < 0.050) increased the wp values of fungi; 
however, it decreased the wp values of bacteria. Interestingly, the 
temporal scaling rates (ws and wp) of bacteria and fungi under most 
of treatment conditions with warming were significantly (P < 0.010) 
larger than those under the corresponding treatment conditions 
without warming, with two exceptions: fungi under clipping; and 
fungi under half precipitation and clipping (Supplementary Fig. 3). 
In addition, wp values were significantly (P < 0.001) lower than the 
ws values of the corresponding treatments (17.1–43.5%) for all other 
single and combined treatments (Supplementary Fig. 3). These 
findings support the hypothesis that STRs and PTRs exist in soil 
bacteria and fungi and that their exponents (w values) are signifi-
cantly changed by various climate change factors.

Warming predominantly accelerates microbial STRs and PTRs. 
Most climate change studies have focused on single factors; however,  
realistic scenarios present multifactorial changes to environments, 
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such as warming with land use changes26,39. The influence of mul-
tiple anthropogenic disturbances has primarily been reported in 
research focused on plants and soil geochemistry, but fewer detailed 
studies on soil microbial communities34–36,40. It is not clear if ecosys-
tem responses to multiple factors can be represented by single-factor 
studies, wherein the influence of factors is additive (no interaction). 
Multifactorial ecosystem responses may instead have synergistic 
(the observed effect is greater than the predicted effect of com-
bined treatments assessed independently) and/or antagonistic (the 
observed effect is smaller than the predicted effect) behaviours41. 
To further determine how different climate change factors interact 
with each other to affect the temporal scaling rates of soil microbial 
communities, the effect size of different treatments was estimated 
with Cohen’s d23,24. This effect size represents the mean difference of 
the temporal scaling rates between treatment and control conditions 
divided by the s.d. Hence, it provides a quantitative measure of the 
strength of the treatment. In our study, effect sizes were calculated 
based on the ws or wp values from the individual treatments or their 
combinations against a common control without any treatment (see 

Methods). Substantial variations in effect sizes were observed across 
different treatments for both bacteria and fungi (Table 1 and Fig. 2).  
Interestingly, the warming treatment had a large positive effect size 
in terms of both ws and wp for both bacteria and fungi (Table 1). 
In contrast, the half precipitation, double precipitation and clipping 
treatments, and their combinations, showed negative or relatively 
small positive effect sizes (Table 1). Most importantly, when the 
other treatments (that is, half precipitation, double precipitation and 
clipping) and their combinations were combined with the warming 
treatment, their effect sizes became larger or shifted from nega-
tive to positive for both bacteria and fungi for both STR (Fig. 2a)  
and PTR (Fig. 2b). For instance, the negative effect sizes of the 
double precipitation and clipping treatment were observed for 
fungal STR and PTR, whereas the warming and double precipita-
tion and clipping treatment had positive effect sizes on fungal STR 
and PTR exponents (Fig. 2a,b). When comparing the effect sizes 
of all precipitation combined treatments on bacterial and fungal 
ws/wp, some interesting features were observed. For example, most  
of the precipitation combined treatments (regardless of whether half 
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Fig. 1 | STR and PTR of bacteria and fungi under warming (red) and control (blue) treatment conditions. a,b, With consideration of the repeated-
measures design, the logarithmic OTU number (a) or phylogenetic diversity (b) in each plot were fitted to an LMM with a fixed effect of logarithmic time, 
a random intercept and a slope effect among four plots. The shaded areas represent the 95% confidence intervals. The slopes of the STR (ws) and PTR 
(wp) are presented as coefficients in the fixed effect ± s.e.m. in the random effect. The r2 values were calculated and reflect the variance explained by the 
whole LMM model. The P values of each STR or PTR were based on the permutation test. Further permutation tests indicated that the ws and wp of both 
bacteria and fungi were significantly different (P < 0.001) between warming and control treatment conditions.
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precipitation or double precipitation) had larger effect sizes on fun-
gal ws/wp than on bacterial ws/wp. This result suggested that fungi 
may be more sensitive to changes in soil water availability than bac-
teria, which is consistent with our previous study32. Furthermore, 
the effect sizes of the warming and double precipitation treatment 
and the warming and double precipitation and clipping treat-
ment on bacterial ws/wp were much smaller than those recorded 
with all of the other warming combined treatments (Table 1 and  
Fig. 2), suggesting that higher soil water availability induced by 
double precipitation may partly offset the effect of warming on the 
temporal scaling rates of bacteria. Collectively, these results indi-
cated that different climate change factors have differential impacts 
on the temporal scaling rates of soil bacteria and fungi. However, 

warming has predominant influences on the temporal scaling rates 
of both species richness and phylogenetic diversity.

Several previous studies demonstrated that the responses of 
microbial communities to climate change varied greatly among 
different microbial lineages or functional groups28,42. Similarly, we 
observed substantial variations in temporal scaling rates based on 
species richness and phylogenetic diversity among different bacte-
rial and fungal lineages across the different treatments (Fig. 3 and 
Supplementary Tables 4 and 5). Also, like the patterns observed at 
the community level, we observed lower wp values compared to 
ws values for almost all phyla and all treatments (Supplementary 
Tables 4 and 5). In addition, overall, there were more fungal phyla 
(64–68%) with significantly (P < 0.050) increased ws and wp values  
than bacterial phyla (41–44%) across all treatments, indicating 
that the temporal scaling of fungal lineages could be more sensi-
tive to climate change factors. Interestingly, most of the bacterial 
and fungal phyla exhibited significantly (P < 0.001) larger ws and wp 
values under treatments that included warming than the common 
control (Fig. 3a,b); more fungal phyla (79–88%) exhibited signifi-
cantly (P < 0.050) increased ws and wp values than bacterial phyla 
(60–73%) under all combined treatments that included warming 
(Fig. 3a,b). These results suggest that warming could have a bigger 
impact on the temporal scaling of fungi than that of bacteria.

Comparison of STRs and PTRs across different groups of organ-
isms. To obtain general insights into the temporal scaling of biodi-
versity across different organisms, the microbial ws and wp values 
from this study were compared with all available published data 
(1,201 data sets; Supplementary Fig. 4 and Supplementary Table 6).  
Due to differences in the unique biology of microorganisms, sam-
pling approaches and/or analytical methods, it would be inap-
propriate to make exact comparisons across different studies4,11.  
Thus, only coarse-level comparisons are made. First, the temporal 
scaling rates (ws values) between plants and animals were similar 
(0.21–0.38; Fig. 4). The species temporal scaling rates (ws) of bacteria 
and fungi were between 0.39 and 0.64 (Fig. 4) and are considerably 
higher than those for plants and animals. This result is consistent 
with the MTE prediction that organisms with higher metabolic 
rates will have faster rates of ecological and evolutionary processes29. 
Second, phylogenetic temporal scaling rates (wp) were considerably 
lower than species temporal scaling rates (ws) for soil microorgan-
isms (Fig. 4); this is consistent with one study on tropical tree com-
munities19. However, very few to no studies have examined PTR in 
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Table 1 | Effect size of different treatments on STR ws and PTR 
wp in bacteria and fungi

Treatment Effect on STR ws Effect on PTR wp

Bacteriaa Fungi Bacteriaa Fungi

Warming 1.546 0.385 1.169 1.119

Half precipitation −0.008 0.084 −0.915 −0.938

Double precipitation −0.531 0.282 −0.807 −0.721

Clipping 0.182 0.106 −0.298 1.170

Warming and half 
precipitation

1.346 0.954 1.047 2.117

Warming and double 
precipitation

0.776 1.174 0.248 1.193

Warming and clipping 0.960 0.319 0.409 0.497

Half precipitation and clipping −0.056 0.100 −0.355 0.243

Double precipitation and 
clipping

−0.947 −1.009 −1.281 −0.849

Warming and half 
precipitation and clipping

1.359 0.673 0.662 0.105

Warming and double 
precipitation and clipping

0.252 0.619 −0.321 1.782

 aVery small percentages (<1%) of sequences from archaea were included. Effect size is estimated 
with Cohen’s d, comparing each treatment with the control treatment. d > 0.20, small effect; 
d > 0.50, medium effect; d > 0.80, large effect. A positive effect indicates a larger ws/wp value 
compared to the control treatment, with the reciprocal being true for negative effects.
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plants, animals and microbial organisms. In addition, considerable 
variations in species or phylogenetic temporal scaling rates, rang-
ing from 0.20 to 0.91, were observed among different lineages of 
bacteria and fungi, which could be related to differences in lifestyle 
strategies. For instance, Acidobacteria, typical oligotrophs with slow 
growth rates in soil43, had considerably lower species or phylogenetic 
temporal scaling rates than Bacteriodetes or Proteobacteria (Fig. 4), 
typical soil copiotrophs with faster growth rates43.

Conclusions
Understanding temporal scaling and its underlying mechanisms 
within the context of climate change is a fundamental issue in ecology  
and global change biology; however, very few studies have examined  

the relationships between species number and time in microbial 
communities11,13. First, by examining the temporal scaling of soil 
bacteria and fungi in a multifactorial global change experiment, 
this study provides explicit evidence that STRs exist for bacteria and 
fungi and their lineages. Hence, similar to SARs, the claim that STRs 
represent a universal law in ecology is reasonable and experimen-
tally supported17. Importantly, our results showed that the temporal 
scaling rates of soil bacteria and fungi (ws values) were consider-
ably higher than those of plants and animals. Second, in contrast to 
STRs, almost nothing is known about PTRs in ecological communi-
ties, even for plants and animals19. This is the first study showing 
that soil microbes (bacteria and fungi) exhibit strong PTRs, with 
the overall rates (wp values) being significantly lower than those of 
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STRs. Third, since temperature is a primary driver of all biologi-
cal processes, it is reasonable to anticipate that climate warming 
has important effects on ecological patterns and processes28,42. As 
expected, our results showed that climate warming significantly 
accelerated both the taxonomic and phylogenetic temporal scal-
ing rates of soil bacteria and fungi. These results are consistent with 
the MTE predictions that higher temperatures should increase the 
rates of ecological and evolutionary processes30. In addition, global 
change involves simultaneous alterations in multiple environmental 
factors besides warming, especially altered precipitation and land 
use change (that is, clipping); however, their interactive effects on 
ecosystems remain elusive, particularly in microbial ecology28. This 
is also the first time a study demonstrates that warming plays a pre-
dominant role in accelerating both the taxonomic and phylogenetic 
temporal scaling rates of soil microbial communities.

Our findings have important implications for understanding and 
predicting the ecological consequences of climate change and for eco-
system management. First, microbial biodiversity depends on both 
timescale and the size of the area sampled4,12, suggesting that deter-
mining the appropriate timescale for biodiversity assessment is an 
important goal for ecosystem management16,17. Specifically: (1) the 
different temporal scaling (STRs, PTRs) rates of species suggest that 
different periods can be selected for the conservation of any species or 
an evolutionary history in a spatial context2,17; (2) different restoration 
times can be predicted for species with different STR or PTR rates in 
the same reservation2,17,33; and (3) ecosystem conservation strategies 
(that is, areas and timescales) should be adjusted in the future because 
of increased temporal scaling rates under climate warming. Second, 
the patterns of temporal scaling (STRs, PTRs) follow similar power 
law and/or logarithmic relationships with SARs and PARs, suggest-
ing an equivalence of the underlying processes16. If so, space-for-time 
substitutions16,44 could be a valid and efficient approach for the long-
term prediction of climate change effects on biodiversity. In addition, 
because warming and other climate change factors stimulate both 
taxonomic and phylogenetic temporal scaling, biodiversity is pre-
dicted to change more quickly under future climate change scenarios. 
Along with faster biodiversity changes, linked ecosystem functions 
and services may become more vulnerable in a warmer world42.

Methods
Site description and sampling. The long-term multifactorial global change 
experiment site was established in July 2009 at the Kessler Atmospheric and 
Ecological Field Station at the US Great Plain in McClain County, Oklahoma, USA 
(34° 59′ N, 97° 31′ W)34. The Kessler Atmospheric and Ecological Field Station is 
an old-field tall grass prairie abandoned from cropping 40 years ago, with light 
grazing until 2008. Dominant plants in this field site are C3 forbs (Ambrosia 
trifida, Solanum carolinense and Euphorbia dentata) and C4 grasses (Tridens flavus, 
Sporobolus compositus and Sorghum halepense)34. From 1948 to 1999, the monthly 
mean temperature in the field ranged from 3.3 °C in January to 28.1 °C in July, 
with an annual mean temperature of 16.3 °C. The average annual precipitation was 
914 mm. In the experiment plots, the soil type was Port–Pulaski–Keokuk complex, 
which is loam with 51% sand, 35% silt and 13% clay45. The soil has a high available 
water holding capacity (37%), neutral pH and a deep (approximately 70 cm), 
moderately penetrable root zone34. The concentrations of soil organic matter and 
total nitrogen are 1.9 and 0.1%, respectively, and soil bulk density is 1.2 g cm−3.

The experimental design and site description have been described in detail 
previously34. Briefly, the site has four experimental blocks, each containing six 
2.5 × 3.5 m2 plots, which were further divided into one 2.5 × 1.75 m2 clipped 
subplot and one 2.5 × 1.75 m2 unclipped subplot. The six plots within each 
block were under one of six randomly distributed treatments: (1) control 
(ambient temperature and precipitation); (2) ambient temperature and double 
precipitation; (3) ambient temperature and half precipitation; (4) warming and 
ambient precipitation; (5) warming and double precipitation; and (6) warming 
and half precipitation34. Two infrared heaters (Kalglo Electronics) were suspended 
approximately 1.5 m above the ground in each warmed plot to achieve a whole 
ecosystem warming of 3 °C. Two ‘dummy’ heaters were suspended in the control 
plot to mimic the shading effects of the heaters. Rainfall-collection-redistribution 
devices, which are angled catchments with the same size and shape as the plot40, 
were installed to collect and redirect precipitation into double precipitation 
plots; rainout shelters, as described in Yahdjian and Sala46, were used to halve 
precipitation. Plants in the southern subplots were clipped at a height of 10 cm 

above the ground and removed once every year at approximately the date of 
peak plant biomass in the autumn (September or October) to mimic the land use 
practice of mowing, while the northern subplots were not clipped34.

From 2009 to 2014, one surface (0–15 cm) soil sample was collected annually 
from each subplot one day before annual clipping. Each sample was mixed from 
three soil cores (2.5 cm diameter × 15 cm depth) by using a soil sampler tube. Since 
clipping was performed after soil sampling each year, soil samples from the clipped 
subplots can represent soil samples from unclipped subplots in the first year (2009). 
Thus, we only collected 24 soil samples from all southern subplots in 2009. As for 
the other years, a total of 48 annual soil samples were collected from all subplots 
in each year. A total of 264 annual soil samples from 2009 to 2014 were collected 
in this study and stored in a freezer at −80 °C. To rule out as much bias as possible 
from sampling handling, DNA extraction, PCR amplification and sequencing, all 
samples were randomly reordered and further analysed in this random order.

Soil DNA extraction. Soil total DNA was extracted from 1.5 g soil using 
cryogenic grinding and SDS-based lysis, as described previously47, and purified 
with a PowerSoil DNA Isolation Kit (MO BIO Laboratories) according to 
the manufacturer’s protocol but without the bead-beating step. DNA quality 
was assessed based on spectrometry absorbance at the 230, 260 and 280 nm 
wavelengths (absorbance ratios: 260/280 nm, ~1.8; 260/230 nm, >1.8) detected by 
an NanoDrop 1000 Spectrophotometer (NanoDrop Technologies). The final DNA 
concentrations were quantified by PicoGreen (Invitrogen, Carlsbad, CA, USA) 
using a FLUOstar Optima microplate reader (BMG Labtech). Finally, all DNA 
samples were stored at −80°C until sequencing analysis.

Gene amplicon sequencing. The library construction and sequencing 
of the 16S rRNA gene and ITS between the 5.8S and 28S rRNA genes 
were performed as described previously48. The universal primer 
sets 515 forward (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806 
reverse (5′-GGACTACHVGGGTWTCTAAT-3ʹ) targeting the V3-V4 
hypervariable regions of the bacterial and archaeal 16S rRNA gene49, and 
gITS7 forward (5′-GTGARTCATCGARTCTTTG-3′) and ITS4 reverse 
(5′-TCCTCCGCTTATTGATATGC-3′) for the fungal ITS between the 5.8S and 
28S rRNA genes30, were used in this study.

Library preparation was carried out by using a two-step PCR to avoid 
additional PCR bias that could be introduced by the added components in the 
long primers48. In the two-step PCR, soil DNA was firstly diluted to 2.5 ng μl−1 
with nuclease-free water to be used as the template in the PCR reaction. The first-
step PCR was performed in a 25 μl reaction containing 2.5 μl 10× PCR buffer II 
(including deoxyribonucleotide triphosphates), 0.25 U DNA polymerase, 0.4 μM 
of both forward and reverse target-only primers and 4 μl diluted soil DNA. The 
reactions of 16S rRNA gene amplification were performed in triplicate and the 
thermal cycling conditions were as follows: initial denaturation at 94 °C for 3 min, 
followed by 10 cycles of 94 °C for 25 s, 53 °C for 25 s and 68 °C for 45 s, with a final 
extension at 68 °C for 10 min. The amplification programme described was also 
used for the amplification of ITS, except that 12 cycles were performed and the 
annealing temperature was 52 °C. The triplicate products from the first-step PCR 
were combined together, purified with Agencourt AMPure XP beads (Beckman 
Coulter) according to the manufacturer’s protocol, eluted by 50 μl water and 
aliquoted into three new PCR reactions. The second-step PCR was carried out 
in triplicate in a 25 μl reaction containing 2.5 μl 10× PCR buffer II (including 
deoxyribonucleotide triphosphates), 0.25 U DNA polymerase, 0.4 μM of both 
forward and reverse phasing primers and 15 μl aliquot of the first-step purified 
PCR product. Amplifications were cycled 20 times following this programme. PCR 
products from the triplicate reactions were combined, visualized using 1% agarose 
gel electrophoresis and quantified using PicoGreen with a FLUOstar Optima 
microplate reader. The reverse primer in the second-step PCR had a barcode of 12 
bases to identify different samples.

PCR products from different samples were pooled at equal molality (generally 
300 samples) to be sequenced in the same MiSeq run. The pooled mixture was 
purified with a QIAquick Gel Extraction Kit (QIAGEN) and re-quantified with 
PicoGreen. Sample libraries for sequencing were prepared according to the MiSeq 
Reagent Kit Preparation Guide (Illumina) as described previously48,50. First, the 
combined sample library was diluted to 2 nM. Then, it was denatured by mixing 
10 μl of it with 10 μl of 0.2 N fresh NaOH; it was then incubated for 5 min at room 
temperature. A measure of 980 μl of chilled Illumina HT1 buffer was added to 
the denatured DNA and mixed to make a 20 pM library. Finally, the library was 
further adjusted to the desired concentration (approximately 12 pM) for sequencing 
using chilled HT1 buffer. The library to be sequenced was mixed with a 12 pM 
PhiX library to achieve a 10% PhiX spike. A 500-cycle MiSeq reagent cartridge v2 
(Illumina) was thawed for 1 h in a water bath, inverted 10 times to mix the thawed 
reagents and stored at 4 °C for a short time until needed. Sequencing was performed 
for 251, 12 and 251 cycles for forward, index and reverse reads, respectively.

Sequencing preprocessing. The raw reads of the 16S rRNA gene and ITS were 
collected by the MiSeq in FASTQ format and then submitted to our sequence 
analysis pipeline (http://zhoulab5.rccc.ou.edu:8080) built on the Galaxy platform 
for further analysis51. First, the spiked PhiX reads were removed using BLAST 
against the PhiX genome sequence in the Expect (E) value <10−5. Second, the 
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reads were assigned to different sample libraries based on the barcodes. Before 
combining the forward and reverse reads, the primer sequences at the end of each 
read were trimmed and the Btrim program52, with a quality control threshold >20 
over a 5 base pair (bp) window size, was used to filter the reads. For the 16S rRNA 
gene and ITS, the forward and reverse reads of the same sequence with at least a 
20 bp overlap and <5% mismatches were combined using FLASH53. Any joined 
sequences with an ambiguous base, or a length of <245 bp for the 16S rRNA gene 
or <220 bp for the ITS were discarded. Thereafter, operational taxonomic units 
(OTUs) were clustered using UPARSE54 at 97% identity; singletons were removed 
from the remaining sequences for both the 16S rRNA gene and ITS. In UPARSE, 
the green reference data set55 for the 16S data and the released UNITE/QIIME ITS 
reference data set (https://unite.ut.ee/repository.php) for the ITS data were used as 
the reference database to remove chimeras. To normalize samples to the same total 
read abundance, 30,000 sequences for the 16S rRNA gene and 10,000 sequences 
for the ITS were randomly selected (resampled) for each sample. OTU taxonomic 
classification of the 16S rRNA gene and ITS sequences was performed using 
representative sequences from each OTU through the Ribosomal Database Project 
Classifier with 50% confidence estimates56. Approximately-maximum-likelihood 
phylogenetic trees for the 16S rRNA gene and ITS were individually constructed 
based on the representative sequences for each OTU using FastTree v.2.0 (ref. 57). 
Faith’s phylogenetic diversity was calculated based on the phylogenetic trees and 
OTU tables using the R package picante58.

STR and PTR estimation and other statistical analyses. STRs can be estimated 
using the power-law equation (equation (1)) or the logarithmic equation 
(equation (2)). PTRs, the phylogenetic analogues of STRs, can also be estimated 
using a similar power-law (equation (3)) or logarithmic equation (equation (4)):

=S cT (1)ws

= + ×S c w Tln( ) ln( ) ln( ) (2)s

= cTPD (3)wp

= + ×c w Tln(PD) ln( ) ln( ) (4)p

S and PD are the numbers of species or phylogenetic diversity observed within the 
length of time T; c is an empirically derived taxon- and time-specific constant; ws 
is the STR exponent, that is, a measure of the rate of temporal scaling of species 
richness13,17,18; and wp is the PTR exponent, that is, a measure of the rate of temporal 
scaling of phylogenetic diversity. These equations are theoretically obtained by 
substituting time (T) for area (A) in the SAR power law S = cAz18.

In this study, OTU richness and phylogenetic diversity were calculated by using 
the complete-nested approach, as previously described11,17,18. This approach can 
remove systematic trends in total richness by averaging richness across periods; 
it is currently the dominant approach for STRs at ecological scales11,17,18. This 
approach defines the length of time T as the average of every possible window 
subset of consecutive sample periods of length of time T. In our annual survey 
data, window subset 1 is the average of all single years; window subset 2 is the 
average of all combinations of two consecutive years; and window subset 3 is the 
average of all combinations of three consecutive years, and so on. In our six-year 
record, there are six one-year, five two-year, four three-year and one six-year 
samples. Each window subset represents the mean number of species across all 
samples of consecutive periods of length of time T, with time defined only as an 
interval18. For this complete-nested approach, we can use the following equation 
(equation (5)) to calculate how the number of species sampled depends on the 
length of time T over which sampling occurs, S(T), as suggested by Carey et al.18:
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In this equation, c[t1, t2] is the number of species colonization events occurring 
between t1 and t2, e[t1, t2] is the number of species disappearing between t1 and t2, 
and n[t1, t2] is the number of new species that enter the community between t1 and 
t2, where ‘new species’ is defined with regard to the species present at time t1. NT 
is the number of sample periods of length of time T used in the complete-nested 
approach, and ti is the time at which the ith sample period begins.

In general, STR and PTR models can be constructed using a linear regression 
between logarithmic OTU richness/phylogenetic diversity and logarithmic time 
duration for different microbial groups and phyla (equations (2) and (4)). However, 
our experimental design has repeated measures at different time points in the same 

plot, and different plots under the same treatment do not necessarily have the same 
STR or PTR. Thus, we fitted the logarithmic data of each treatment using a linear 
mixed model (LMM) with a fixed effect of time and a random effect and exponent 
among plots. The significance of each LMM was calculated using a permutation test, 
and the P value was calculated by comparing the Akaike information criterion of 
the observed LMM with the permuted ones. We also tested whether the ws values in 
the STRs or the wp values in the PTRs were significantly different between any two 
treatments using a permutation test59,60. Furthermore, we calculated Cohen’s d27,28 as 
an estimate of multiple-treatment effect sizes on the STR ws and PTR wp values from 
different treatments by comparing them against the common control without any 
treatment. In Cohen’s d, positive d values indicate that the response variables  
(ws and wp in this case) in the treatment have a larger value than in the control, and 
vice versa. Based on Cohen’s suggestion23,24, the effect sizes between 0.2 and 0.5 are 
small, between 0.5 and 0.8 are medium and >0.8 are large. All the analyses were 
performed in the R software v.3.1.1 with the packages vegan, nlme and effsize61.

Comparison of STRs and PTRs across different groups of organisms. To obtain 
general insights into the temporal scaling of biodiversity across different organisms, 
the ws and wp values in this study were compared with all available published STR 
data (1,201 data sets) including macroorganisms17 and microorganisms11. The 
analysis workflow of published data sets is shown as Supplementary Fig. 4. Briefly, 
STRs or PTRs were used as keywords to search all the available literature with 
regard to plants, animals and microorganisms. After duplicates were removed, data 
sets were selected according to the description in the literature or were directly 
provided by the authors. In this step, some unobtainable data sets were excluded 
from further analysis. All data sets were classified into different taxonomic groups. 
Finally, the STR and PTR w values obtained from all 1,201 published data sets 
were compared with those from our study. However, because species definition, 
generation time and diversity of microbial communities are greatly different from 
the communities of plants and animals11,62,63, detailed exact comparisons would be 
especially difficult across different studies11,64. Therefore, in this study, only coarse-
level comparisons were made among different types of organism.

Data accessibility. The DNA sequences of the 16S rRNA gene and ITS amplicons 
were deposited in the National Center for Biotechnology Information under 
project accession no. PRJNA331185. All other relevant data are available from the 
corresponding author upon request.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Sequencing reads were undertaken with MiSeq platform(Illumina, SanDiego, CA, USA); Some species-time relationships of 
macroorganisms and bacterial communities was obtained from the published references as shown in supplementary table S6.

Data analysis Sequencing preprocessing: Galaxy platform (http://zhoulab5.rccc.ou.edu:8080); OTU taxonomic classification: Ribosomal Database 
Project (RDP) Classifier; phylogenetic tree: FastTree 2.0; Faith’s phylogenetic diversity: R package picante 2.5-2; Statistics: R with 
packages vegan 2.2-1, nlme 3.1-173, effsize 0.7.1. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

We have included a data availability statement in the manuscript. The amplicon sequencing data sets generated have been deposited in the National Center for 
Biotechnology Information (NCBI) under the project accession: no. PRJNA331185. 
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For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Our study presented taxonomic and phylogenetic temporal scaling of soil bacteria and fungi in a long-term multifactor global change 
experiment with warming (+3 °C), half precipitation (-50%), double precipitation (+100%) and clipping (annual biomass removal) by 
determining species-time relationship （STR) and phylogenetic-time reationship (PTR).

Research sample A total of 264 soil surface (0-15cm) samples from 2009 to 2014 were used to examine taxonomic and phylogenetic temporal scaling 
of soil bacteria and fungi under multifactor global change conditions.  Soil bacterial and fungal community structures were 
determined by sequencing of 16S rRNA gene and ITS amplicons . The temporal scalings in this study were compared with all available 
published STR data (1201 datasets) including macroorganisms and bacterial communities.

Sampling strategy When examining temporal scaling of microbial communities under multifactor global change conditions, it is fundamental to obtain 
annual samples in a long-term scale. In our study,  we collected surface (0-15 cm) soil samples in 48 subplots annually (September or 
October)  from 2009 to 2014. Each sample was mixed from three soil cores (2.5 cm diameter × 15 cm depth) by using a soil sampler 
tube. Since clipping was performed after soil sampling in each year, soil samples from clipped subplots can represent soil samples 
from unclipped subplots in the first year (2009).  Thus, we only collected 24 soil samples from all southern subplots in 2009. As for 
the other years, a total of 48 annual soil samples were collected from all subplots in each year. A total of 264 annual soil samples 
from 2009 to 2014 were analyzed in this study.

Data collection Sampling collections, DNA preparation and MiSeq sequencing analysis were carried out by Xishu Zhou, Xue Guo, Jiajie Feng, Mengting 
Yuan, Ying Fu, and Lauren Hale. Soil chemical analysis was carried out by Xishu Zhou, Xue Guo, and Mengting Yuan.

Timing and spatial scale In this study, a total of 264 annual soil samples was collected annually from each subplot one day before annual clipping (September 
or October)  from 2009 to 2014 in this long-term multifactor global change experiment site (34̊ 59ʹ N, 97̊ 31ʹW). 

Data exclusions No data were excluded from the analyses.

Reproducibility 16S rRNA gene and ITS amplicons were sequenced by MiSeq platform(Illumina, SanDiego, CA, USA) using a 500-cycle v2 MiSeq 
reagent cartridge (Illumina). 

Randomization In order to rule out as many biases by the following sampling handling, DNA extraction, PCR amplification and sequencing as possible, 
all samples were randomly reordered and further analyzed in this random order.

Blinding Blinding was not relevant to this study. No blinding is done in temporal scaling of biodiversity more broadly.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions This study was conducted in an old-field tallgrass prairie abandoned from cropping 40 years ago with light grazing until 2008. 

Dominant plants in this field site are C3 forbs (Ambrosia trifida, Solanum carolinense and Euphorbia dentate) and C4 grasses 
(Tridens flavus, Sporobolus compositus and Sorghum halapense). Mean monthly temperature in the field ranged from 3.3 °C in 
January to 28.1 °C in July, with an annual mean temperature of 16.3 °C. The average annual precipitation was 914 mm. In the 
experiment plots, the soil is Port-Pulaski-Keokuk complex, which is loam with 51% of sand, 35% of silt and 13% of clay. The soil 
has a high available water holding capacity (37%), neutral pH, and a deep (ca. 70 cm), moderately penetrable root zone. The 
concentrations of soil organic matter and total nitrogen (N) are 1.9% and 0.1%, respectively.
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Location The long-term multifactor global change experiment site was located at the Kessler Atmospheric and Ecological Field Station 
(KAEFS) at the US Great Plain in McClain County, Oklahoma, USA (34̊ 59ʹ N, 97̊ 31ʹW)

Access and import/export Project and class site use requests were completed for our study. Liability waivers were completed hard copies provided to 
KAEFS.

Disturbance Infrared heaters and rainfall-collection-redistribution devices may disturb the grassland ecosystem. To minimize these 
disturbances, 'dummy' heaters and rainfall-collection-redistribution devices were used in this study.
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