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Understanding how photosynthesis responds to warming has 
been a focus in plant research in recent decades, and most of the 
existing knowledge comes from leaf-scale measurements1–4.  

Most leaf-scale temperature response curves show that photosyn-
thetic capacity increases with temperature up to an optimum tem-
perature (Topt

leaf), which typically occurs in the 30–40 °C temperature 
range5,6. Above this optimum temperature, foliar photosynthetic 
capacity sharply declines as electron-transport and Rubisco enzy-
matic capacities become impaired7. Field et al.8 suggested that 
ecosystem-scale optimum temperature Topt

eco may differ from Topt
leaf. 

At the ecosystem scale, elevated air temperatures do limit canopy 
photosynthesis by processes other than leaf carboxylation rates. For 
instance, elevated air temperatures may accelerate leaf ageing and 
increase leaf thickness (phenology; for example, ref. 9) and control 
stomatal closure because a higher temperature usually comes with 
a higher vapour pressure deficit (VPD)10. In a more extreme case, 
warming-induced water stress could suppress canopy photosyn-
thesis through partial hydraulic failure (hydraulics) by cavitation  
(for example, ref. 11).

Empirical leaf-scale photosynthesis–temperature relationships12 
have been directly incorporated into global ecosystem models, with 
variants to account for acclimation, that is, a temporal adjustment 
of optimum photosynthetic temperature to air temperature dur-
ing growth5,13,14. This direct scaling of temperature responses from 

leaves to ecosystems partly determines model projections of gross 
primary productivity (GPP) and CO2 uptake by terrestrial ecosys-
tems in climatic scenarios. Verifying the existence of Topt

eco in real-
world ecosystems, defining its spatial distribution across and within 
biomes, and understanding the relationships between Topt

eco, prevail-
ing air temperature and Topt

leaf are important for evaluating models 
and understanding the impacts of various climatic warming targets 
on ecosystem productivity.

In this study, we formulate and test the following hypotheses: 
(1) Topt

eco is higher for biomes when air temperature during growth is 
warmer, (2) Topt

eco is lower than Topt
leaf for any given ecosystem because 

the limitations mentioned earlier of stomatal conductance and  
phenology emerge before temperature begins to impair foliar pho-
tosynthetic capacity, and (3) tropical forests already operate near a 
high Topt

eco, above which canopy photosynthesis may decrease with 
even moderate air temperature warming15,16. Here, we defined Topt

eco 
as the daytime air temperature at which GPP is highest over a period 
of several years, and thus Topt

eco can be empirically determined from 
productivity observations and proxies (see Methods).

Results and discussion
We first applied this approach on time series of daily GPP derived 
from CO2 flux measurements at 153 globally distributed eddy cova-
riance sites and found that a robust estimate of Topt

eco could be derived 
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The global distribution of the optimum air temperature for ecosystem-level gross primary productivity (Topt
eco) is poorly under-

stood, despite its importance for ecosystem carbon uptake under future warming. We provide empirical evidence for the exis-
tence of such an optimum, using measurements of in situ eddy covariance and satellite-derived proxies, and report its global 
distribution. Topt

eco is consistently lower than the physiological optimum temperature of leaf-level photosynthetic capacity, which 
typically exceeds 30 °C. The global average Topt

eco is estimated to be 23 ± 6 °C, with warmer regions having higher Topt
eco values than 

colder regions. In tropical forests in particular, Topt
eco is close to growing-season air temperature and is projected to fall below it 

under all scenarios of future climate, suggesting a limited safe operating space for these ecosystems under future warming.
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at 125 out of 153 sites (see Methods). Topt
eco values derived from the 

FLUXNET data range from 8.2 °C to 35.8 °C (Fig. 1a, Supplementary 
Table 1). Tropical sites have higher Topt

eco values than temperate and 
boreal sites (Supplementary Fig. 1), implying a dependency of Topt

eco 
on background climate. The FLUXNET multi-site analysis further 
indicates that Topt

eco values across sites are positively correlated with 
daily maximum air temperature averaged over the growing sea-
son (Tmax gs

air , see calculation in Methods) (R = 0.46, P < 0.01, t-test), 
with a spatial linear regression slope of 0.61 °C per °C across sites  
(Fig. 1a). Overall, these results confirm our first hypothesis, which 
stated that higher Topt

eco values occur when higher growth tempera-
tures prevail, in support of findings in refs. 17,18.

Since eddy covariance measurements do not have a continu-
ous spatial coverage, we also used satellite observations known to 
be highly correlated with photosynthetic activity19, that is, GPP 
proxies. The first proxy used is NIRV, the product of total scene 
NIR reflectance (NIRT) by the NDVI. NIRV was proven to have a 
high temporal correlation with GPP at flux-tower sites19. Satellite 
observations of NIRT and NDVI from the terra MODIS were used 
to calculate NIRV between 2001 and 2013 (see Methods). NIRV-
derived Topt

eco is comparable to that estimated from eddy covariance 
flux-tower measurements (Fig. 1b), which gives support to using 
the NIRV proxy for a global mapping of Topt

eco. The average Topt
eco over 

the global vegetated areas is estimated to be 23 ± 6 °C (mean ± 1 s.d.) 
with large spatial gradients in latitude. As shown in Fig. 1c, maxi-
mum values close to 30 °C mainly appear over tropical forests, 
savannas and drylands and minimum values near 10 °C prevail at 
high latitudes and in mountainous regions (Fig. 1c). This spatial 
pattern of Topt

eco is robust to the choice of a particular climate-forc-
ing dataset or to the method used to estimate Topt

eco (Supplementary 
Fig. 2, see also Methods). Similar results are also found for other 
GPP proxies (vegetation greenness (NDVI)20, Enhanced Vegetation 
Index (EVI)21, solar-induced vegetation fluorescence (solar-induced  
chlorophyll fluorescence, SIF)22), or when daily mean air tempera-
ture (Tmean

air ) is used instead of daily maximum air temperature (Tmax
air )  

to calculate Topt
eco (Supplementary Figs. 3–6; see also Methods). Note 

that although the covariance between air temperature, atmospheric 
VPD and solar radiation may confuse the direct effect of air tem-
perature on vegetation productivity, we verified that neither VPD 
nor radiation is the dominant factor determining the pattern of Topt

eco 
at the global scale (see Methods).

To test the second hypothesis, we compared satellite-derived Topt
eco 

with Topt
leaf from the responses of maximum Rubisco-limited carbox-

ylation rates (Vcmax) to temperature from leaf-scale measurements 
for 36 species5. Note that the Topt

leafhere refers to the temperature 
optima for leaf-scale (gross) photosynthetic capacity rather than for 

leaf net photosynthesis, which equals gross photosynthesis minus 
photorespiration and minus dark respiration (for more details, see 
Methods). We found that Topt

eco is lower than Topt
leaf (Supplementary 

Fig. 7). This difference may originate from Topt
eco being additionally 

limited by high VPD during hot and dry periods6 and by soil-mois-
ture deficits during extensive dry episodes23, under real-world con-
ditions. Under conditions of high temperature, atmospheric VPD 
increases while soil moisture decreases. Stomatal conductance, and 
hence carbon assimilation rates (GPP at ecosystem scale), decrease 
to prevent exceedingly low leaf-water potentials and any resulting 
plant tissue damage from cavitation24. In contrast, leaf-level photo-
synthesis measurements that determine the temperature response 
curve of Vcmax are usually performed in absence of water stress by 
maintaining relatively low VPD conditions (for example, refs. 25–30), 
unless the research objective is to investigate drought effect on leaf 
photosynthetic parameters (as in refs. 31,32). In addition, plant phe-
nology controls leaf age, vitality (photosynthetic rates) and foliar 
density (for example, Leaf Area Index, LAI)33, and may therefore 
co-determine ecosystem-level temperature limitations and the opti-
mum temperature for canopy photosynthesis34. It is also important 
to note when comparing Topt

leaf with Topt
eco that leaf-scale measurements 

are often limited to sunlit leaves, which could lead to a positive bias 
of existing in situ Topt

leaf measurements. Furthermore, the tree spe-
cies database used by Kattge and Knorr5 from which Topt

leaf data were 
collected does not include any tropical species. This may explain 
why global models prescribed with Topt

leafgive divergent results for  
tropical biomes.

The relationship between Topt
eco and background climate is shown 

in Fig. 1d. The sampling of leaf-scale studies does not provide consis-
tent evidence about the dependence of Topt

leaf on climate, and there are 
positive correlations between Topt

leaf and growing-season air tempera-
ture in a set of studies1,5,35–37 attributed to evolutionary adaptation38, 
but no clear relationship between Topt

leaf and growth temperature39–41. 
In contrast, Topt

eco inferred from satellite GPP proxies in our study 
increases with Tmax gs

air  across the globe. In temperature–precipita-
tion space, the spatial sensitivity of Topt

eco to Tmax gs
air  (the slope of the  

linear regression between these two variables) is lower than 1 for 
any precipitation bin (Fig. 1d), suggesting that spatial gradients of 
Topt

eco are smaller than those of Tmax gs
air , possibly because hydraulic and 

phenological limitations further limit Topt
eco across spatial gradients. 

In fact, the spatial sensitivity of Topt
eco to Tmax gs

air  generally increases 
with increasing mean annual precipitation (Fig. 1d), even though 
Topt

eco is not significantly correlated with precipitation after control-
ling for the effect of Tmax gs

air  (Fig. 1d). This thermal adaptation of Topt
eco,  

suggested by the positive spatial slope of the Topt
eco–air temperature 

relation, is also observed across biomes. As shown in Fig. 2, there 

Fig. 1 | Distribution of Topt
eco for vegetation productivity derived from flux-tower sites and satellite-based data for near-infrared reflectance of vegetation 

(NIRV). a, Relationship between mean annual daily maximum air temperature averaged over the growing season (Tmax gs
air ) and Topt

eco derived from daily 
measurements of photosynthesis across eddy covariance sites. Flux-derived Tmax gs

air  and Topt
eco were both obtained using observations from flux towers. 

Error bars indicate ± s.d. The dotted grey line represents y = x and the dotted red line is y = 0.61x + 10.65, which is derived by linear regression with the 
statistical significance of the slope, or its P-value, given by Student’s t-test. b, Relationship between Topt

eco derived from flux data and Topt
eco derived from 

NIRV data. For each site, we extracted and averaged Topt
eco values within a 3 × 3 pixel window around the site from NIRV-derived Topt

eco map and calculated 
the s.d. of nine Topt

eco values within the window. Error bars indicate ± s.d. The dotted grey line represents y = x and the dotted red line is y = 0.74x + 7.10, 
which is derived by linear regression with the statistical significance of the slope, or its P-value, given by Student’s t-test. c, Spatial distribution of Topt

eco 
for vegetation productivity (left panel) and Topt

eco averaged by latitude (right panel). Topt
eco is determined using NIRV data calculated on the basis of satellite 

observations from moderate resolution imaging spectroradiometer (MODIS). Note that only gridded pixels with annual mean normalized difference 
vegetation index (NDVI) value larger than 0.1 and detectable Topt

eco are shown here. Areas of tropical forests based on current vegetation distribution are 
indicated by hatching. The circles on the map are coloured according to the local value of Topt

eco retrieved from GPP at the location of each flux site. The solid 
line and shaded area in the right panel indicate the mean and s.d., respectively, of Topt

eco summarized by latitude. d, Topt
eco in the climate space (left panel) 

and the temperature sensitivity of Topt
eco along the precipitation gradient (right panel). Each climate bin is defined by 1-oC intervals of Tmax gs

air  and 100-mm 
intervals of mean annual precipitation, based on current climate conditions averaged between 2001 and 2013. The solid line in the right panel represents 
the temperature sensitivity of Topt

eco along the precipitation gradient, calculated as the slope of the linear regression between Topt
eco and Tmax gs

air  for a given 
precipitation level. The shaded area indicates the s.d. of temperature sensitivity of Topt

eco estimated by bootstrapping. The s.d. of temperature sensitivity of 
Topt

eco is smaller than or equal to 0.02 °C per °C when mean annual precipitation is below 3,000 mm. 

Nature Ecology & Evolution | VOL 3 | MAY 2019 | 772–779 | www.nature.com/natecolevol 773



Articles Nature Ecology & Evolution

is a significant positive correlation between Topt
eco and Tmax gs

air  with a 
slope of 0.76 across different biomes. Among biomes, the largest 
mean Topt

eco is found in tropical evergreen broadleaved forest (EBF) 
(29 ± 3 °C), and the smallest mean Topt

eco (13 ± 3 °C) in cold grasslands 
covering the Tibetan Plateau (Fig. 2 and Supplementary Fig. 8).

Results from both model simulations and very limited obser-
vational studies suggest a decrease in canopy photosynthesis of 
tropical forests at high temperature15,42–45, which led us to for-
mulate the third hypothesis of tropical forests already operating 
at Topt

eco close to Tmax gs
air , implying that canopy photosynthesis may 

decrease under future warming15,16. This hypothesis is verified 
from the data shown in Fig. 3 (see also Supplementary Fig. 9).  
Topt

eco is indeed slightly lower (1.4 °C) than Tmax gs
air  over tropical ever-

green forests, suggesting a small safety margin for canopy photo-
synthesis under future warming. Note that the safety margin could 
become larger than that suggested by the air temperature data if 
leaf thermal regulation acclimatises to the warming air tempera-
ture (see Methods). In contrast, arctic (north of 65° N) and boreal 
(50° N–65° N) ecosystems exhibit substantially larger safety mar-
gins, that is, a larger positive difference between Topt

eco and Tmax gs
air  

30° S

120° W 60° W 60° E 120° E0°

0°

30° N

60° N

c

10 20 30

T eco (°C)

0 10 20 30 40

Mean annual Tmax gs (°C)

0

1,000

2,000

3,000

4,000

M
ea

n 
an

nu
al

 p
re

ci
pi

ta
tio

n 
(m

m
)

d

5 10 15 20 25 30

0.5 1

Slope (�T eco /�Tmax gs)

5 10 15 20 25 30 35 40

Mean annual Tmax gs (°C)

5

10

15

20

25

30

35

40

F
lu

x-
de

riv
ed

 T
ec

o  (
°C

)

R2 = 0.46

P < 0.01

Slope = 0.61

RMSE = 5.37

a

5 10 15 20 25 30 35 40

Flux-derived T eco (°C)

5

10

15

20

25

30

35

40

N
IR

V
-d

er
iv

ed
 T

ec
o  (

°C
)

R2 = 0.57
P < 0.01

Slope = 0.74

RMSE = 3.86

b

op
t

air
opt

op
t

opt

air
opt

air

T eco (°C)opt

Nature Ecology & Evolution | VOL 3 | MAY 2019 | 772–779 | www.nature.com/natecolevol774



ArticlesNature Ecology & Evolution

(Fig. 3a and Supplementary Fig. 9). Analyses of the 16-day aver-
aged Tmax

air  distribution during the period when Topt
eco is observed 

show that the rank of Topt
eco in the Tmax

air  distribution is already near 
the highest quantile of Tmax

air  (>70%) for tropical evergreen forests 
(Supplementary Fig. 10). Based on this result, one may expect that 
rising air temperature in the future, irrespective of the indirect 
effect of increasing VPD, may limit or decrease vegetation produc-
tivity in tropical forests, but not in temperate or boreal ecosystems.

Global terrestrial daily maximum air temperature is projected 
to rise by 1.9 °C under the representative concentration pathway 

(RCP)2.6 low-warming climate scenario and by 5.6 °C under the 
RCP8.5 scenario by 210046. We compared these Tmax gs

air  projections 
with the present-day distribution of Topt

eco with a focus on tropical 
evergreen forests, where optimum temperature is currently just 
below the limit of Tmax gs

air  (see Methods; Figs. 3b,c). The key uncer-
tainty in this discussion is, however, whether or not Topt

eco will accli-
mate and follow the increase in Tmax gs

air . We therefore looked at 
possible acclimation from time series of Topt

eco retrieved from the 
advanced very high resolution radiometer (AVHRR) NDVI, which 
spans the last 30 years and comprises almost a 1 °C temperature 
range. NDVI-derived Topt

eco did not have a significant trend over the 
last three decades except for the northern lands (north of 60° N) 
where warming is more pronounced47 (Supplementary Fig. 11). 
This suggests that the recent 1 °C warming is not large enough to 
elicit an acclimation response from some ecosystems, given decadal 
variability48. In addition, the annual Topt

eco derived from flux sites esti-
mates of GPP did not exhibit a positive trend and was not signifi-
cantly correlated with annual variations of Tmax gs

air , although the flux 
time series are probably too short to properly evaluate trends of Topt

eco 
related to possible acclimation processes (Supplementary Fig. 12). 
Because we detected no indication for its existence, we first assumed 
no acclimation in the comparison of future Tmax gs

air  projections from 
climate models with the current distribution of Topt

eco. Under this 
assumption, the average Tmax gs

air  of tropical evergreen forests will 
exceed the current value of Topt

eco for RCP2.6 by 2.6 °C, and by 5.7 °C 
for RCP8.5 (Fig. 3c). On the other hand, boreal and arctic biomes 
will still remain within the safety margin, with Topt

eco staying above 
Tmax gs

air , except under the RCP8.5 high-warming scenario (Fig. 3b 
and Supplementary Fig. 13).

Despite the lack of in situ observational evidence for GPP 
acclimation to the ongoing warming trend, we tested a simple 
future acclimation scenario based on the space-for-time substitu-
tion approach49, as applied in several studies using observed spa-
tial gradients to hindcast temporal changes50,51. Here, we assume 
that temporal change of Topt

eco will evolve proportionally to Tmax gs
air ,  

following the spatial temperature sensitivity of Topt
eco to Tmax gs

air  in  
Fig. 1d and the indirect effects of temperature increase (for exam-
ple, by increasing VPD) are excluded. We took the differences in  

10 15 20 25 30 35

10

15

20

25

30

35

Mean annual T max gs
air

 (°C)

O
pt

im
um

 te
m

pe
ra

tu
re

 (
T

op
t

ec
o , °

C
)

Percentage of the vegetated area

<3%
3%−10%
>10%

Slope = 0.76

ENF
EBF
DNF
DBF
MF
Shrub (temperate)
Shrub (boreal and arctic)
Savannas
Grasslands (temperate)
Tundra (boreal and arctic)
Tundra (Tibetan plateau)
Croplands

Fig. 2 | Relationship between Tmax gs
air  and Topt

eco across vegetation types. The 
error bars indicate the s.d. of Topt

eco/Tmax gs
air  for each vegetation type: ENF, 

evergreen needle-leaved forest; EBF, evergreen broad-leaved forest; DNF, 
deciduous needle-leaved forest; DBF, deciduous broadleaved forest; MF, 
mixed forest; Shrub, closed and open shrublands. The light grey dotted line 
represents y = x. The dark-grey dotted line is y = 0.76x + 6.48 derived by 
linear regression, with the slope value (estimated using Student’s t-test) 
shown in the bottom right. The red dotted line is the flux-tower derived 
slope (0.61) from Fig. 1a. The size of each symbol corresponds to the three 
categories (<3%, 3–10% and >10%) of occupied vegetated area on land.

10

20

30

a
2001–2013

T max gs
air

30° S 0° 30° N 60° N
Latitude

10

20

30

b 2091–2100

T
em

pe
ra

tu
re

 (
°C

)

T
em

pe
ra

tu
re

 (
°C

)

RCP2.6 RCP4.5 RCP8.5

25

30

35

** ** ** ** ** **

c

T eco
opt

without acclimationT eco
opt

with acclimationT eco
opt

T max gs
air

without acclimationT eco
opt

with acclimationT eco
opt

during 2091–2100T max gs
air

Fig. 3 | Change with latitude in Topt
eco and TTmax gs

air . a, Current Topt
eco versus current Tmax gs

air . b, Future Topt
eco versus future Tmax gs

air . Current Topt
eco and Tmax gs

air  are 
calculated using current temperature for 2001–2013, whereas acclimated Topt

eco and future Tmax gs
air  are first calculated pixel by pixel using temperature for 

2091–2100, projected by general circulation models (GCM) under the RCP4.5 scenario and then averaged by latitude. Acclimated Topt
eco is determined 

based on the projected temperature and temperature sensitivity of Topt
eco using the annual precipitation level predicted for 2091–2100. The solid line and 

shaded area in each panel indicate the mean and s.d., respectively, of Topt
eco or Tmax gs

air  summarized by latitude. c, Future Topt
eco versus future Tmax gs

air  for tropical 
evergreen forests. ** indicates that Topt

eco is significantly lower than Tmax gs
air  at P < 0.01 in a paired t-test. Error bars indicate ± s.d.

Nature Ecology & Evolution | VOL 3 | MAY 2019 | 772–779 | www.nature.com/natecolevol 775



Articles Nature Ecology & Evolution

precipitation levels into account, so that areas that become wetter 
also exhibit faster acclimation. Even with this assumed acclima-
tion law, Tmax gs

air  will still surpass Topt
eco by 1.7 °C under RCP2.6 and 

by 2.5 °C under RCP8.5 for tropical evergreen forests (Fig. 3c). Not 
accounting for precipitation levels in the acclimation rates produced 
similar results (Supplementary Figs. 14 and 15).

Our global-scale analysis of Topt
eco derived from globally distributed 

point measurements of eddy covariance and space-borne observa-
tions of proxies of vegetation productivity is an attempt to diagnose 
the global distribution of ecosystem-scale temperature optima of 
photosynthesis. It should be noted, however, that hypotheses about 
thermal acclimation of Topt

eco are still highly uncertain because eco-
system adjustments can lag substantially behind the rate of future 
warming, particularly for forests. More studies using datasets with 
longer time spans are needed in the future to more accurately detect 
eventual thermal acclimation of Topt

eco. Furthermore, the acclima-
tion of plants to increasing atmospheric CO2 concentration and to 
changes in other environmental factors (for example, VPD) was also 
not considered in the current analyses. Constraining the spatially 
observed temperature sensitivity of Topt

eco over time is a priority for 
future studies. Continuous monitoring and dedicated manipulative 
experiments could improve our understanding on the features of 
Topt

eco and thermal acclimation in earth system models52.

Methods
FLUXNET data. The half-hourly eddy covariance GPP data were obtained from 
FLUXNET datasets, and were quality-controlled, filtered against low turbulence, 
and gap-filled using consistent methods, as described in ref. 53 Only freely 
available FLUXNET data were used in this study. All the half-hourly GPP data 
were aggregated into daily-accumulated GPP for further estimates of the optimal 
temperature for vegetation productivity. Daily maximum air temperature (Tmax

air ) 
was determined as the maximum air temperature value from all the half-hourly air 
temperature observations. We included only site-years with more than 80% of half-
hourly data available. A total of 153 individual FLUXNET sites with 663 site-years 
of GPP data were used in this study.

NIRV. An approach was recently proposed for estimating vegetation photosynthetic 
capacity by remote sensing, that is, the NIRV, which can differentiate between the 
confounding effects of background brightness, leaf area and the distribution of 
photosynthetic capacity with depth in canopies19. NIRV is calculated as the product 
of NIRT and NDVI19. As a proxy of photosynthesis, NIRV is suggested to be strongly 
correlated with solar-induced chlorophyll fluorescence (SIF), a direct index of 
photons intercepted by chlorophyll, and shows higher correlation with observed 
GPP than NDVI19. We used satellite-derived NIRV to calculate and map the optimal 
air temperature for vegetation productivity at an ecosystem scale (Topt

eco). Following 
ref. 19, we calculated 16-day NIRV for 2001–2013 as the product of MODIS 16-day 
NIR reflectance and MODIS 16-day NDVI, both of which were derived from 
the MOD13A2 Vegetation Index Product with a spatial revolution of 1 km. Only 
positive NIRV values were used in the analysis.

NDVI. The NDVI is a vegetation index defined as the ratio of the difference 
between NIR and red visible reflectance to their sum, and is widely used to 
represent vegetation greenness54. To account for uncertainties from different 
satellite datasets, three independent NDVI datasets were used, including bi-weekly 
NDVI data from Global Inventory Modeling and Mapping Studies (GIMMS) 
AVHRR, 16-day NDVI data from terra MODIS and 10-day NDVI data from 
Satellite Pour l’Observation de la Terre Vegetation (SPOT Vegetation). The three 
NDVI datasets spanned three decades: 1982–2009 for AVHRR NDVI datasets, 
2000–2009 for MODIS NDVI datasets and 1999–2009 for SPOT NDVI datasets, 
with the spatial resolutions of 8 km, 1 km, and 1 km, respectively. All NDVI 
datasets have been corrected to reduce the effects of volcanic aerosols, solar angle 
and sensor errors20,55,56. Pixels with a mean annual NDVI >0.1 were defined as the 
vegetated area for each dataset.

EVI. EVI is another vegetation index designed to enhance the vegetation signal by 
minimizing canopy–soil variations and to improve sensitivity over dense vegetation 
conditions21, and is found to correlate well with estimated GPP on a site-by-site 
basis57. We used a 16-day EVI dataset for 2000–2009 with a spatial resolution of 
1 km from the MOD12A1 Vegetation Index Product. Effects from aerosols, solar 
angle and sensor error have all been corrected21.

SIF. Chlorophylls in plants absorbs short-wave radiation and dissipates excess 
energy as light or heat. The long-wave radiation re-emitted by chlorophylls is 
referred as chlorophyll fluorescence. Recent studies have reported that remotely 

sensed SIF could serve as an indicator of photosynthesis rate and it is correlated 
with model-simulated GPP58. Following previous studies58,59, we retrieved SIF from 
two different retrieval windows, 757 nm and 771 nm, as well as two polarization 
states, S and P, using a Fourier transform spectrometer on the Japanese Greenhouse 
gases Observing SATellite (GOSAT)20. These diverse SIF samples were then 
aggregated into monthly gridded data at a spatial resolution of 2° from June 2009 
to June 2012.

Vegetation distribution. We used MODIS land cover with the classification 
scheme of the International Geosphere-Biosphere Programme (IGBP). The 
MODIS IGBP land cover data were derived from the MOD12Q1 Land Cover 
Science Data Product at a spatial resolution of 1 km and an updated digital 
Köppen–Geiger world map of climatic classification60. Within the vegetated 
area defined by NDVI thresholds, the 17 land cover types were reclassified into 
9 vegetation types: ENF, EBF, DNF, DBF, MF, savannas, cropland, grassland 
and shrubland. Based on the main climates in the world map of the Köppen–
Geiger climatic classification60, grassland was further subdivided into temperate 
grasslands, boreal and arctic tundra, and shrubland was further subdivided into 
temperate and boreal shrubland. The grassland over the Tibetan Plateau was 
considered separately because the Tibetan Plateau has an average altitude higher 
than 4,000 m above sea level61, and thus a unique alpine climate. In contrast to 
temperate grasslands and shrubland, where water is a major limiting factor for 
vegetation productivity, alpine ecosystems on the Tibetan Plateau are mainly 
limited by thermal conditions62.

Climate dataset. The gridded air temperature and precipitation data for 1982 
to 2013 were obtained from the Climatic Research Unit/National Centers for 
Environmental Protection (CRU/NCEP) 6-hourly dataset with a spatial resolution 
of 0.5°. Note that the purpose of this study is to investigate the optimal air 
temperature for photosynthesis. Optimal leaf temperature is also of interest; 
however, it was not addressed in this study because accurate canopy-integrated 
measurements of leaf temperatures are not available at the eddy covariance sites 
and at a global scale as gridded datasets. For a discussion about calculation of 
temperature optimum from air temperature and from surface temperature, we 
used remotely sensed land surface temperature (LST), which is inversed from 
infrared emissivity measured by MODIS (MYD11A2 version 6). This dataset 
had an original spatial resolution of 1 km, spanning from July 2002 to December 
2014. The error of the MODIS LST product, which primarily stems from cloud 
contamination and emissivity uncertainties, was reported to be less than 3 °C63. 
Generally, the occurrence time of Tmax

surface (14:00–16:00) is relatively close to the 
Aqua overpass time (13:30), and thus we assumed that Tmax

surface from MODIS-
Aqua is comparable with the daily maximum leaf surface temperature (Tmax

leaf). 
Corresponding to the temporal resolutions of MODIS, AVHRR and SPOT datasets, 
the 6-hourly climate data were aggregated into 16-day, biweekly and 10-day values, 
repsectively, before further analyses. Given the different spatial resolutions of 
satellite observations and climate data, we extracted time series of daily maximum 
air temperature and precipitation from the aggregated CRU/NCEP data for each 
pixel of the sets of remotely sensed data. The daily maximum air temperature (Tmax

air )  
of the growing season averaged from 2001 to 2013 was calculated as the current 
mean growing-season daily maximum air temperature (Tmax gs

air ). Information on 
the growing season was derived from the study by ref. 64, which was determined 
from the GIMMS Leaf Area Index dataset (GIMMS LAI3g) using a Savitzky–Golay 
filter and then refined by excluding the ground-freeze period identified by the 
freeze/thaw earth system data record (see details in ref. 64). We also documented 
the temperature thresholds at which the growing season begins and ends for 
each year. Temperature thresholds were averaged from 2001 to 2013 for the onset 
and end of the growing season, respectively. We also applied Water and Global 
Change(WATCH) Forcing Data (WFD) methodology to ERA-interim (WFDEI) 
data with a temporal resolution of 3 hours 65.

We used climate projections for the end of the twenty-first century  
(2091–2100) using 20 models that participated in the phase five of coupled 
model intercomparison project (CMIP5) under the RCP2.6, RCP4.5 and RCP8.5 
scenarios46 to determine the impact of future warming on vegetation productivity 
(see model list in Supplementary Table 2). Considering the mismatch between 
CRU/NCEP datasets and outputs from GCM for current climate conditions, 
we generated future temperature and precipitation maps by adding the relative 
changes in GCM-derived climate projections to the current climate for each pixel. 
Tmax gs

air  for the late twenty-first century was estimated using the same temperature 
thresholds as for the current Tmax gs

air . All GCM projections were resampled to a 
resolution of 1° using a first-order conservative interpolation method66.

Analysis. We estimated local Topt
eco by examining the temperature response curve 

of MODIS NIRV. Following refs. 37,18, NIRV time series throughout the entire 
monitoring period and the corresponding temperature data were grouped into 
1 °C temperature bins for each pixel within vegetated areas, which were defined 
as regions with a mean annual NDVI value larger than 0.1. We used the 90% 
quantile of the NIRV data as the response of NIRV within each temperature bin due 
to the potential influences of other environmental constraints such as clouds and 
droughts. We then calculated the running means of every three temperature bins 
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to develop the temperature response curve of NIRV. The Topt
eco was determined from 

the response curve at which NIRV was maximized (Supplementary Fig. 16). Note 
that Topt

eco may not be detected for some pixels where the maximum NIRV was only 
attained at either end of the response curve, accounting for 3.5% of the vegetated 
areas. Only vegetated areas with detectable Topt

eco were shown when mapping the 
spatial pattern of Topt

eco. The derivation of Topt
eco is robust to the choice of a particular 

climate-forcing dataset (Supplementary Fig. 2). Instead of using the temperature 
corresponding to the maximum 90th quantile NIRV to calculate Topt

eco, we also applied 
nonlinear regression of the photosynthetic temperature response data (equation (1)) 
to estimate Topt

eco, which produced similar results (Supplementary Fig. 2):

= − −T NIR b T TNIR ( ) ( ) (1)V OPTV ( ) opt
eco 2

where NIRV(T) is the NIRV value at a daily maximum temperature T and b is a 
parameter describing the spread of the parabola48,67. Topt

eco is the vertex of each fit 
and NIRV(OPT) is the NIRV value at Topt

eco. Finally, we used daily mean air temperature 
(Tmean

air ) instead of Tmax
air  to calculate Topt

eco. In this test, Topt
eco derived from Tmean

air  is 
smaller than Topt

eco estimated from Tmax
air , but the two variables were strongly spatially 

correlated (Supplementary Fig. 6).
We investigated the relationship between Topt

eco and climate variables by 
averaging Topt

eco in the climate space with 1 °C intervals of mean annual Tmax
air  

averaged over the growing season (Tmax gs
air ) and 100 mm intervals of mean annual 

precipitation (MAP) (Fig. 1d). For each MAP interval, we calculated the apparent 
spatial sensitivity of Topt

eco in response to changes in Tmax gs
air  using bootstrapping 

method. We performed the linear regression analysis 1,000 times by randomly 
selecting a subset of 80% of the samples from pairs of Topt

eco and Tmax gs
air  within 

each MAP interval. The mean and s.d. of the temperature sensitivity of Topt
eco were 

subsequently estimated along the MAP gradient.
Air temperature, atmospheric VPD and solar radiation usually co-vary in 

time and space, so that the empirical observation of spatial patterns of Topt
ecoin this 

study cannot be unambiguously attributed to air temperature as a single explaining 
factor of Topt

eco. Under conditions of high temperature, atmospheric VPD increases, 
soil moisture decreases with a lag, and stomatal conductance and hence carbon 
assimilation rates (GPP at the ecosystem scale) decrease to prevent exceedingly low 
leaf-water potentials and resulting plant tissue damage from cavitation24. We show 
that across climatic gradients Topt

eco is systematically higher at high maximum air 
temperatures, but not systematically lower at high VPD conditions (Supplementary 
Fig. 17). We then calculated the variance inflation factor (VIF) between VPD and 
Tmax gs

air  under each VPD bin in the regression model of:

= + × + ×T k k T k VPD (2)opt
eco

0 1 max gs
air

2

where k1 and k2 is the apparent sensitivity of Topt
eco to Tmax gs

air  and VPD, respectively, 
with a constant term k0. As shown in Supplementary Fig. 18, we observed that 
the VIF value ranged only between 1.001 and 1.438, suggesting relatively low 
multicollinearity between VPD and temperature. Even so, to examine whether 
VPD can substantially affect the relationship between Topt

eco and Tmax gs
air , we further 

calculated the partial (intrinsic) sensitivity of Topt
eco to Tmax gs

air  in each grid point based 
on the following bilinear regression:

= + × + × + × ×T k k T k k TVPD VPD (3)opt
eco

0 1 max gs
air

2 3 max gs
air

where the partial sensitivity of Topt
eco to Tmax gs

air  is defined as k1 in equation (3) 
under each VPD bin. We then compared the partial sensitivity with the apparent 
sensitivity of Topt

eco to Tmax gs
air  estimated using the previously mentioned linear 

regression between Topt
eco and Tmax gs

air  for each VPD bin. As shown in Supplementary 
Fig. 19, although the apparent sensitivity of Topt

eco to Tmax gs
air  is generally lower than 

the partial (intrinsic) sensitivity of Topt
eco to Tmax gs

air  the apparent sensitivity to Tmax gs
air  

remains positive, even when VPD is taken into account, except under very high 
VPD bins (higher than ~4.5 kPa) representing less than 1% of the study area. These 
results indicate that the patterns of Topt

eco are not dominated by high VPD reducing 
canopy photosynthesis as an indirect effect of higher air temperature increasing 
VPD. Moreover, we also calculated the percentiles of downward short-wave solar 
radiation (Rad) at the time of year when Topt

eco is observed for the 16-day averaged 
Rad distribution. As shown in Supplementary Fig. 20, the Rad value when Topt

eco was 
retrieved from global observations was below the 95th percentile in the 16-day Rad 
distribution for ~80% of the study area, which is mainly in mid and low latitudes, 
such as Africa, India, Australia, eastern Brazil, and the south and southwest of 
North America. By comparison, for most boreal regions in parts of south China, 
southeast US, as well as in parts of South America, the timing of Topt

eco is consistent 
with the time of maximum solar radiation. This is because Topt

eco in these regions 
generally appears in summer, which is also the period when solar radiation is at its 
maximum during the year.

The NIRV-derived Topt
eco was compared with Topt

eco estimated using GPP data from 
153 eddy covariance sites. Flux-derived Topt

eco was determined for each site-year 
with daily-accumulated GPP and corresponding temperature data from flux-tower 
observations. The same method to estimate local Topt

eco using NIRV datasets was 

applied. A robust estimate of Topt
eco can be derived for 125 sites (Supplementary 

Table 1). For each site, we calculated the mean and s.d. of Topt
eco across different 

years. We then extracted and averaged Topt
eco values within a 3 × 3 pixel window 

around each site from the NIRV-derived Topt
eco map, and calculated the s.d. of the 

nine Topt
eco values within the window. The relationship between NIRV- and flux-

derived Topt
eco was reported using a least-square linear regression, and the statistical 

significance of the slope, or its P-value, given by Student’s t-test. The results 
show that NIRV-derived Topt

eco is comparable to that estimated independently from 
measurements of flux-tower eddy covariance (Fig. 1b).

We compared the spatial distribution of Topt
eco derived from NIRV with the one 

obtained from NDVI datasets. Consistent spatial patterns of Topt
eco are derived from 

each of the three NDVI datasets (Supplementary Fig. 21). A global composite map 
of Topt

eco (Supplementary Fig. 3) was then generated by averaging estimates derived 
from the three NDVI datasets. Given the inconsistent spatial resolutions of the 
different products, we resampled Topt

eco to a common grid of 8 km before averaging. 
Topt

eco from NDVI datasets generally show a spatial pattern similar to that from NIRV, 
but with smaller NDVI-derived Topt

eco values for central Australia and southern 
South America (Supplementary Fig. 3). We compared the spatial distribution of 
Topt

eco derived from NIRV with that from MODIS EVI data between 2001 and 2013, 
and found that the EVI-derived Topt

eco showed very similar spatial pattern to that of 
NIRV-derived Topt

eco (Supplementary Fig. 4). The distribution of Topt
eco derived from 

NIRV and from GOSAT SIF datasets also have similar spatial patterns, even though 
the NIRV-derived Topt

eco is higher in tropical regions, particularly in cultivated areas 
of southeast Brazil (Supplementary Fig. 5).

At leaf scale, the photosynthesis–temperature response is suggested to be 
primarily controlled by three sets of processes: biochemical, respiratory and 
stomatal processes68. Much of the effort to date to understand variability in the leaf-
level photosynthesis–temperature response has focused on biochemical processes68, 
with Vcmax and Jmax being two major parameters controlling the maximum rates of 
photosynthesis limited by CO2 and light, respectively69. Therefore, in this study, 
we compared Topt

eco derived using GPP proxies with leaf-scale optimal temperature 
of Vcmax, although GPP is, in theory, more comparable to net photosynthesis, that 
is, leaf gross photosynthesis minus photorespiration and minus dark respiration. 
Since photorespiration increases exponentially with temperature70, the optimum 
temperature of GPP (Topt

eco) should be lower than the optimal temperature of Vcmax. 
For this comparison to be made, we extracted and averaged Topt

eco values within a 3 × 
3 pixel window from the NIRV-derived Topt

eco map around the reported site location 
(longitude and latitude) of leaf-scale measurements. For leaf-scale measurements 
without the information of site location, we calculated the average NIRV-derived 
Topt

eco values across pixels with both the same growing-season mean temperature and 
the same plant functional type as the corresponding site.

Topt
eco is different from Topt

leaf  not only because of respiratory process, but also 
because air temperature can differ from leaf temperatures71, which are regulated 
by leaf traits affecting the leaf energy balance72. Because, to our knowledge, 
global gridded monthly leaf temperature data are not available, we used daily 
maximum LST (Tmax

surface) from MODIS to calculate _Topt LST
eco  to illustrate the potential 

differences between _Topt LST
eco  and Topt

eco. As shown in Supplementary Fig. 22, the 
_Topt LST

eco  is similar to Topt
eco over tropical savannas. However, over moist tropical 

forests _Topt LST
eco  is lower than Topt

eco, which can be explained by the lower daytime 
surface temperature than air temperature as a result of strong evapotranspiration 
effects71,73. This ecosystem-dependent difference between _Topt LST

eco  and Topt
eco 

suggests that the leaf thermal regulation mechanism through the physiological 
and morphological changes72 is an important ecosystem process that shapes 
spatial variations of Topt

eco. In addition, if the difference between leaf temperature 
and air temperature increases in response to warmer air temperatures (that is, if 
leaf thermal regulation acclimates to warmer temperature), the safety margin of 
tropical ecosystems would increase more than the air temperature data currently 
suggests. However, the long-term in situ leaf temperature data required to test this 
hypothesis independently are currently not available.

To account for potential changes in Topt
eco under future warming, we estimated 

the acclimated Topt
eco for vegetation productivity by the end of the twenty-first 

century (2091–2100) using recent IPCC climate projections46. To this end, we 
applied the space-for-time substitution approach49, assuming that temporally Topt

eco 
will evolve proportionally to Tmax gs

air  following the spatial temperature sensitivity of 
Topt

eco to Tmax gs
air . Given the relatively large uncertainties of precipitation projections, 

we considered two future precipitation scenarios. For the first scenario, we 
estimated acclimated Topt

eco pixel by pixel using the temperature sensitivity of Topt
eco 

under the present MAP level, assuming that MAP does not change before the end 
of the twenty-first century. For the second scenario, we accounted for MAP and the 
acclimated Topt

eco was calculated pixel by pixel using the temperature sensitivity of 
Topt

eco under the projected MAP level for 2091–2100. Acclimated Topt
eco was averaged 

across the GCMs under each scenario. Latitudinal variation of future Topt
eco was 

derived by averaging within 1°-latitude bins from future Topt
eco maps and then 

compared to future Tmax gs
air  summarized by latitude from future Tmax gs

air  maps.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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