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A B S T R A C T

Soil microorganisms participate in almost all soil organic carbon (SOC) transformations, but they are not re-
presented explicitly in the current generation of earth system models. This study used a data-driven approach to
incorporate extracellular enzyme activity into the Terrestrial ECOsystem (TECO) model, and the updated version
was named the Data-driven ENZYme (DENZY) model. DENZY is based on results from an extensive data
synthesis, which show that the CN ratio is positively correlated with ligninase activity (R2= 0.50). The latter is
inversely correlated to soil organic carbon storage. The DENZY model was parameterized using the revise da-
tabase to information from a recent meta-analysis and tested for its ability to simulate SOC dynamics at Duke
Forest (North Carolina, USA) from 1996 to 2007. DENZY can well simulate the observed negative relationship
between ligninase activity and SOC under N deposition conditions (R2 ranges from 0.61 to 0.89). Moreover,
outputs from DENZY better matched the observed SOC than its prototype model with the same parameterization.
This study provides a simple and straightforward approach to effectively use real-world observations to improve
SOC projections in terrestrial biogeochemical models.

1. Introduction

Soil is the largest carbon (C) reservoir in the biosphere, and it stores
more C than the vegetation and atmosphere combined (Falkowski et al.,
2000). However, the difficulties associated with quantifying soil C
storage and its long-term dynamics largely impede accurate projections
of the global C cycle (Todd-Brown et al., 2013; Luo et al., 2015). The
microbial-mediated decomposition process is usually assumed to be a
first-order kinetic reaction in earth system models (ESMs). This as-
sumption is suitable to estimate SOC storage across spatio-temporal
scales, when models are properly calibrated and validated (Parton
et al., 1993; Luo et al., 2016). Nevertheless, a first-order kinetic reac-
tion may be too simplistic to represent decomposer-mediated processes
in systems experiencing climate change (Blankinship et al., 2018). In-
creasing evidence across a range of scales (e.g., laboratory, cross-sites,
and global) supports the notion that incorporating the microbial-
mediated processes could potentially improve the SOC estimation
(Fujita et al., 2014; Wieder et al., 2015; Bradford et al., 2017).

Many new models have been developed to explicitly integrate the
microbial process into the terrestrial biogeochemical model (Schimel
and Weintraub, 2003; Manzoni and Porporato, 2009; Wang et al., 2013;
Wieder et al., 2013). A general approach is to consider the explicit
microbial or enzymatic pools and fluxes in soil organic C modelling.
Using this approach, a majority of microbial-mediated processes can be
represented (Sulman et al., 2018), but challenges still exist in this
model approach. For instance, it is unclear whether the response of
microbial communities to specific climate change would function in the
same way from the observational scale to the ecosystem or global scale
(Bradford et al., 2017). Parameters related to microbial physiology are
typically measured in laboratory studies and are difficult to interpret
properly in ESMs (Wieder et al., 2015; Blankinship et al., 2018). The
currently utilized models can exhibit unrealistic oscillatory behaviour
due to the influence of small perturbations, illustrating the instability of
the models (Wang et al., 2014; Hararuk et al., 2015). These issues re-
flect the gaps in both the theoretical understanding and observational
limits of the C cycle and demonstrate the need to develop new models
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(Blankinship et al., 2018). Alternative approaches have been utilized to
represent the microbial-mediated processes, including the multi-
plication of decomposition coefficients by microbial biomass (Fujita
et al., 2014) or making decomposition a function of substrate chemistry
(Moorhead and Sinsabaugh, 2006). These approaches can be calibrated,
validated, and benchmarked under the same framework as the first-
order models (Luo et al., 2016). However, the proper method of

representation of the microbial processes in terrestrial models is still
under debate.

Global observations from various ecosystems offer important em-
pirical evidence that can be used to interpret the responses of microbial
communities to multiple global change variables and their underlying
mechanisms. Global data synthesis or meta-analysis can reveal the
general features of litter decomposition, N mineralization, CN interac-
tions, and their potential environmental determiners (Knorr et al.,
2005; Luo et al., 2006; Cornwell et al., 2008; Manzoni et al., 2012).
These studies provide valuable empirical information to help determine
which suitable microbial processes should be incorporated into SOC
modelling. To date, observations and empirical data from these ex-
periments have rarely been implemented in the development of models.

The unprecedented reactive N deposition processes and the N-re-
lated control of SOC dynamics are regarded as major mechanisms that
drive future soil C dynamics (Reay et al., 2008; Liu and Greaver, 2010).
Generally, N addition can benefit terrestrial C sequestration through
two effects: enhancing NPP and repressing C decomposition. The un-
derlying mechanisms and their relative contributions, however, are
poorly understood and have not been well characterized (Nadelhoffer
et al., 1999; Bragazza et al., 2006). Based on a global data synthesis,
Chen et al. (2018) recently found that N deposition-mediated repressed
ligninase activity rather than enhanced NPP plays the dominant role in
driving soil C sequestration. This finding emphasizes the importance of
incorporating this notable microbial feature in SOC predictions under N
addition.

In this study, we proposed a data-driven microbial model for pre-
dicting SOC dynamics. Specifically, we developed the Data-driven
ENZYmatic model (DENZY) based on the following: we incorporated
the numerical relationships between ligninase activity and CN ratios

Fig. 1. The model structure of DENZY. Black
arrows show carbon cycling processes and the
green arrows show nitrogen cycling processes.
The variable k represents the potential decom-
position rates for each carbon pool; the variable
f represents the coefficient of ligninase activity.
(For interpretation of the references to color in
this figure legend, the reader is referred to the
Web version of this article.)

Fig. 2. The relationship between CN ratio and the response ratio of ligninase
activity under N deposition. The blue color represents the data density of all the
collected datasets. The color becomes deeper with higher data density. The
black points represent the binned dataset. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this
article.)
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from a global data synthesis based on experiments in Duke Forest from
1996 to 2007; we compared the SOC predictions from DENZY and its
prototype model, TECO-CN, against the observations. The aims of this
study were to test: (1) if DENZY could well project the observed re-
lationship between ligninase activity and SOC under N deposition; and
(2) if DENZY could enhance the prediction accuracy of SOC dynamics
under N deposition.

2. Materials and methods

2.1. Study site

We used data from the Duke Forest at Blackwood Division, Duke
Forest, Orange County, NC (35°58′N, 79°5′W). The site is a loblolly pine
forest planted in 1983 after the harvest of similar vegetation and has
not been managed since planting. Daily climate variables from ob-
servations at Duke Forest were used to drive the model, including air
temperature, soil temperature, vapor-pressure deficits, relative hu-
midity, precipitation, and incident photosynthetically active radiation.
Data used in this study was collected from 1996 to 2007.

2.2. DENZY development

2.2.1. TECO-CN
The prototype model we used in this study was the Terrestrial

ECOsystem model with CN coupling (TECO-CN) (Fig. 1). The model had
a multi-pool structure with eight C and N pools and a mineral N pool. It
had been widely applied to study the responses of ecosystems to various
global change phenomena, including CO2 elevation, warming, dis-
turbances, and N deposition (Zhou et al., 2008; Weng et al., 2012; Shi
et al., 2015; Du et al., 2017).

TECO-CN employs a donor pool-dominated transfer and first-order
decay scheme (Luo et al., 2003):

= −
dX t

dt
BU t A CX t( ) ( ) ξ ( )

(1)

The left side of the equation represents the change in each C pool
per unit time, t. In TECO-CN, there were 8 pools (3 vegetation pools:
foliage, woody, and root; 2 litter pools: metabolic and structural litter;
and 3 soil pools: fast, slow, and passive SOM); therefore, X(t) =(x1, x2,
x3, x4, x5, x6, x7,x8) T is a 8×1 vector that represents one pool size at
a specific time. BU(t) represents the C influx into the system and its
allocation per unit time.

A CX tξ ( ) represents the C outflow from the system. Matrix A is the C
transfer matrix among different pools. Matrix ξ is an 8×8 diagonal
matrix that quantifies the environmental scalars for the carbon de-
composition of each pool. Matrix C is an 8× 8 diagonal matrix with
diagonal input by vector c = (c1,c2,c3,c4,c5,c6,c7,c8)T, which defines
the potential turnover rate for each pool.

A more detailed introduction of TECO-CN can be found in the
Supplementary Material.

2.2.2. Meta-analysis of soil extracellular enzyme activities (EEAs) and soil
C storage

To incorporate the concept of enzyme-mediated soil C dynamics
into model simulations, we performed a meta-analysis to investigate
how soil C-degrading EEAs related to soil C dynamics with enhanced N
deposition. The dataset was firstly limited to studies that simulta-
neously reported soil C-degrading EEAs and soil C storage. Our results
indicated that the suppression of ligninase activity was closely related
to an increase in soil C sequestration under N deposition (i.e., the sig-
nificant negative correlation between ligninase activity and SOC) over a

Fig. 3. Relationships between the response ratios of soil organic carbon and the response ratios of ligninase activity under N deposition with static CN ratios from
site-based sampling. The sensitivity of ligninase activity is represented separately: (a) full, (b) high, (c) medium, and (d) low.
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wide range of climate conditions, ecosystem types, and N addition
methods (Chen et al., 2018).

Based on the published dataset (https://figshare.com/s/
37aa98b76a7ef51da2e2) by Chen et al. (2018), we updated almost all
journal articles that reported the effects of N addition on ligninase ac-
tivity. In this study, we focused on how the soil CN ratio influenced
ligninase activity. The effects of N addition on ligninase activity were
evaluated by meta-analysis following the method outline by Chen et al.
(2018). The datasets were binned intervals of every 2 CN ratios. All data
associated with the soil CN ratio and SOC are available from the pub-
lished dataset mentioned above.

2.2.3. Incorporation of ligninase activity into TECO-CN
To incorporate enzymatic factors into the SOC modelling, we used

the relationship between the CN ratio and ligninase activity derived
from the meta-analysis and considered the effect of ligninase activity as
an adjusted coefficient of the potential decomposition rate (ci) in each
carbon pool. A function representing the relationship from the meta-
analysis, f(CNi), was added to represent the influence of ligninase ac-
tivity on the decomposition in the carbon pool i, where CNi is the CN
ratio in the carbon pool i (Fig. 1).

Another coefficient, p, was explicitly added to represent the pro-
portion of lignin-related decomposition in each C pool. In this study, we
assumed four sensitivity levels of ligninase activity in each C pool (i.e.,
Low, Medium, High, Full) (Table S1).

Therefore, in DENZY, the vector c = (c1,c2,c3,c4× f
(CN4)× p4,c5× f(CN5)× p5,c6× f(CN6)× p6,c7× f
(CN7)× p7,c8× f(CN8)× p8)T was used.

2.3. Model experiments

Three experiments were designed to test the performance of DENZY.
The first two experiments were used to test if the model was able to
reproduce the relationship between ligninase activity and SOC dy-
namics and to determine if results were consistent and robust given
various conditions (e.g., different sensitivity levels of ligninase activity
and wider ranges of CN ratios). All model simulations used the same
site-based climate data from 1996 to 2007.

2.3.1. Simulations based on CN ratios from the site-based parameterization
The site-based CN ratios were calibrated by Shi et al. (2015) using a

data assimilation approach. First, we applied the results of the CN ratio
parameterization from Shi et al. (2015) (i.e., mean values and standard
deviations, Table S2). Thereafter, we used Monte Carlo sampling to
generate groups of CN ratios by assuming normal distributions of the
parameters (Xu et al., 2006). The algorithm was repeated 30,000 times,
and we discarded the first 10,000 groups and accepted 2000 groups of
parameters by interval sampling (one accepted from each ten sampled,
Fig. S1).

Each group of CN ratios was used to drive the model. Simulations
with and without N deposition were performed to calculate the re-
sponse ratio of SOC. Both conditions with static and varied CN ratios
were tested.

2.3.2. Simulation based on CN ratios from the global observed dataset
The observed CN ratios from the global synthesis were calculated as

the weighted average of CN ratios of each litter and soil C pool:

Fig. 4. Relationships between the response ratios of soil organic carbon and the response ratios of ligninase activity under N deposition with varied CN ratios
generated from site-based sampling. The sensitivity of ligninase activity is represented separately: (a) full, (b) high, (c) medium, and (d) low.
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=
∑ ×

∑
CN

CN C
Cobserved
i i

i (2)

where CNi was the CN ratio in the i pool and Ci was the soil organic C in
pool i. The range of soil CN ratios were much larger due to the global
CN ratio, so we varied the CN ratio of each pool to a wider scope than
the local CN experiment (See Table S2). We generated 200 groups of CN
ratio samples for each CNobserved. The same simulations as in 2.3.1 were
performed in this section.

2.3.3. Model-data comparison
In this section of the model experiment, both the DENZY and its

prototype model, TECO-CN, were run to simulate real-time SOC dy-
namics. Different sensitivities of ligninase activity were also considered
in this model section. The model outputs were compared against site
observations of litter, soil microbial C pools, and mineral C pools (Allen
et al., 2000; Lichter et al., 2008).

The information about the site observations are listed in
Supplementary Material, Table S3.

3. Results

3.1. Relationship between soil CN ratios and ligninase activity

The correlation between CN ratios and the response ratio of lig-
ninase activity under N deposition (RR-Lig) can be seen in Fig. 2. The
results suggest a two-stage response pattern of ligninase activity to N
deposition with varying CN ratios. With lower CN ratios, the RR-Lig
ratio was negative. However, with higher CN ratios, the RR-Lig ratio

was positive. Overall, the RR-Lig ratio was positively correlated with
the soil CN ratio (y= 0.0052x −0.19, R2= 0.50) (Fig. 2). This equa-
tion was further used in the model simulations.

3.2. Model simulations

3.2.1. Simulations with the site-based parameterization
By linking the CN ratios to ligninase activity, DENZY was able to

reproduce well the strong control of ligninase activity over SOC under N
deposition. Both the results from static and varied CN ratios showed
significant negative correlations (p < 0.001) between the response
ratio of ligninase activity (RR-Lig) and the response ratio of SOC (RR-
SOC) (Fig. 3 and Fig. 4). With different inputs for the sensitivity of
ligninase acitivity, the outputs exhibited similar response patterns. The
mean R2 values were higher for the static CN results than for the varied
CN results (mean R2= 0.86 vs. 0. 69). The R2 value from the CN varied
experiment, which simulated the real site situation, was closer to the
results from the global synthesis reported by Chen et al. (2018)
(R2= 0.404).

3.2.2. Simulations based on the observed CN ratios from global synthesis
The CN ratios from the global synthesis showed a much larger range

than the site-based CN ratios and better represented various soil quality
conditions. Similar negative correlations between RR-Lig and RR-SOC
were observed in both static and varied CN experiments (Fig. 5 and
Fig. 6). With the minimized impact from the ligninase activity, the
patterns became more consistent with the increasing of slopes. Never-
theless, significant negative correlations between RR-Lig and RR-SOC
persisted (p < 0.001).

Fig. 5. Relationships between the response ratios of soil organic carbon and the response ratios of ligninase activity under N deposition with static CN ratios based on
the global synthesis. The sensitivity of ligninase activity is represented separately: (a) full, (b) high, (c) medium, (d) low.
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3.2.3. Model-data comparisons
All of the model simulations were able to generate the temporal

pattern of SOC dynamics, such as the increasing and decreasing trends
in forest floor and mineral soil C pools (Fig. 7). DENZY was able to
produce better predictions than TECO-CN over all three major C pools
(i.e., forest floor, soil microbial and mineral C pools); tt decreased the
over-estimation of litter C content and largely compensated for the
under-estimations of soil microbial and mineral C contents from TECO-
CN. Since both models were well parameterized, the overall R2 was
0.92 for TECO-CN and 0.97 for all simulations of DENZY. The results
indicated that enhanced prediction capability was gained from the
improved parametrization and process incorporation. However, the
magnitudes of some observed variations were still not picked up by
DENZY, such as the fast accumulation of mineral soil C from ~1900 gC/
m2 yr to ~2400 gC/m2 yr during the period from 2000 to 2003. The fast
increase of C input to SOC without a comparable input of extra soil
organic N at the site is a possible reason for the model data mismatch
(Lichter et al., 2008).

4. Discussion

DENZY was able to capture the significant response of ligninase
activity to SOC through incorporation of a ligninase-CN ratio response
pattern. More importantly, DENZY further improved the well-para-
meterized TECO-CN model to better fit observations, indicating this
data driven incorporation was able to source extra useful information.
Both results support the effectiveness of model development by in-
troducing the data based process from the global synthesis into an
ecosystem model. Based on our knowledge, DENZY is among the first

attempts to incorporate quantitative information from a meta-analysis
into a land model to improve the prediction of SOC dynamics.

4.1. Ligninase activity regulated by soil CN ratio

The CN ratio is the key stoichiometry in soil and the indicator of
substrate quality. Based on the output of our data synthesis, a two-stage
relationship between ligninase activity and substrate quality was illu-
strated under N deposition (Fig. 2). Ligninase activity is closely related
to N-containing molecules that are protected and cannot be accessed
without specific types of extracellular enzyme (Jilling et al., 2018).
With additional N input, the ligninase activity tends to be more active
under conditions of soil organic matter (SOM) with low quality but less
active in high quality SOM sites (Carreiro et al., 2000; Janssens et al.,
2010). This mechanism helps explain the response pattern of ligninase
activity to N additions over a wide range of CN ratios. Under conditions
of significant nutrient deficiency, additional N promotes the growth of
soil decomposer communities by alleviating the overall nutrient lim-
itation (Grandy et al., 2013). With the increasing N availability in SOC,
N addition further compensates the nutrient deficiency and reduces
ligninase activity due to the diminished need for the release of nutrients
protected by recalcitrant substrates (Manzoni et al., 2008). With further
increased N availability, N addition can become a negative factor for
ligninase activity, which has been extensively reported by previous
studies (FOG, 1988; Higuchi, 1990; Zak et al., 2008). Under the situa-
tion of SOM with sufficient N sources, the effect of N addition further
minimized. This mechanism also explained the high variability of the
response pattern of ligninase activity to N addition at the end of high N
availability (Fig. 2). Our results further suggest that the latter effect

Fig. 6. Relationships between the response ratios of soil organic carbon and the response ratios of ligninase activity under N deposition with varied CN ratios based
on the global synthesis. The sensitivity of ligninase activity is represented separately: (a) full, (b)high, (c)medium, (d)low.
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should dominate in this two-stage control pattern as the turning point
of the CN ratio (37.2) was markedly higher than the soil CN ratio from
this site observation (Shi et al., 2015) and the global scale average
(Cleveland and Liptzin, 2007).

By incorporating this explicit relationship into the TECO-CN model,
we were able to capture the significant response of SOC to ligninase
activity under N deposition without creating additional pools and
parameters. Similar responses from different impact fractions and dif-
ferent model protocols (i.e., static and varied CN ratios, site-based and
global data-based CN ratios) also suggested the effectiveness and gen-
erality of the model performance under various conditions. Moreover,
DENZY compensated for the under- or over-estimations of its first-order
predecessor and better matched observations, indicating its potential
for improving SOC predictions. We propose that the model can be
further improved if local data based relationships can be used in future
applications.

4.2. Data-driven modelling for SOC dynamics

Soil is a complex system and contains various biological, physical,
and chemical processes, many of which influence SOC decomposition.
However, different processes could only be detected or effective over
certain scales. The response of microbe communities to specific climate
change signals at the ecosystem level is, in fact, the result of various
interactions among the microbial communities (so called emergent
properties) (Gilbert and Henry, 2015). These properties can hardly be
quantified as numerical sums of isolated components in the system
(Casadevall et al., 2011). For example, the oscillations of microbial
biomass from the microbial-substrate interactions would only be

detected on small spatiotemporal scales (Semenov et al., 1999; Zelenev
et al., 2006). Although key features of emergent properties at the
community level have been recently illustrated (Goldford et al., 2018),
our understanding of the link between microbial behaviour and eco-
system phenomena is severely lacking due to the large scale differences
and wide varieties of ecosystems involved. A determination of what
microbial processes are responsible for ecosystem phenomena is critical
for developing sufficient ecosystem level models.

To better project the responses of SOC to global changes, we need to
better understand how to quantify an emergent worldwide environ-
mental behaviour using a series of mathematical equations. Information
from global data synthesis is highly instructive and using observational
evidence from the global scale will help clarify which processes should
be explicitly considered in the global models. The data-driven approach
can help determine if a process should be considered and how to
properly incorporate an essential process into models.

DENZY was constructed on an ecosystem level model (i.e., a first-
order kinetic model), which was widely studied and applied over the
last several decades (Giardina and Ryan, 2000; Kirschbaum and Paul,
2002; Cornwell et al., 2008; Weedon et al., 2009). Important para-
meters, such as C transfer coefficients (Xu et al., 2006), CN ratios (Shi
et al., 2015), and environmental scalars (Williams et al., 2005; Zhou
et al., 2009), have been well calibrated and constrained over both local
and global scales. The model has been widely tested and validated for
long-term simulations (Kirschbaum and Paul, 2002; Corbeels et al.,
2005; Izaurralde et al., 2006; Stockmann et al., 2013). In this study, we
conducted a site-based study to demonstrate how DENZY was devel-
oped to reproduce ecological patterns and SOC dynamics based on
existing datasets.

Fig. 7. Comparisons of modeled vs. measured results in (a) forest floor, (b) soil microbial and (c) mineral soil C pools, and (d) the linear correlation between modeled
and measured results.
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4.3. Future improvements and perspective

Although DENZY showed its advantages and potential usage
through the site-based model tests, future research is largely needed for
its general application. Ligninase activity is the key variable in DENZY.
We developed the current model version mainly based on a single re-
lationship between substrate quality (i.e., CN ratios) and ligninase ac-
tivity. However, this condition can hardly improve the temporal trend
predictions due to the stability of soil stoichiometry (Cleveland and
Liptzin, 2007; Sinsabaugh et al., 2009). Other internal (e.g., system
properties and processes) and external factors (e.g., environmental
scalars) that are closely related to the ligninase activities are necessary
to be considered for the future improvement of the model. For example,
soil pH has long been regarded as a primary external driver for extra-
cellular enzyme production in the soil microbial communities. The
strong control of pH values for oxidative enzymatic potential has been
identified over the global scale (Sinsabaugh et al., 2008; Leifeld et al.,
2013; Min et al., 2014). The utilization of this factor into the prediction
model is regarded as a next task for the future development of DENZY.
The statistical derivation (Reth et al., 2005), parameterization (Wang
et al., 2013), and our data synthesis (Chen et al., 2018) may provide
insights for the inclusion of additional modelling factors.

In this study, we set four impact levels of ligninase activity in dif-
ferent litter and soil C pools to represent the contrast importance of
ligninase-mediated C (i.e., recalcitrant C) in different pools. As a result,
the changes in ligninase activity influence the magnitude of the dif-
ference from the original model (Fig. 7). Future studies will need to
explicitly consider the C composition of different chemical composi-
tions and decomposition stages.
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