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Abstract
Modeling has become an indispensable tool for scientific research. However, models 
generate great uncertainty when they are used to predict or forecast ecosystem re-
sponses to global change. This uncertainty is partly due to parameterization, which 
is an essential procedure for model specification via defining parameter values for 
a model. The classic doctrine of parameterization is that a parameter is constant. 
However, it is commonly known from modeling practice that a model that is well 
calibrated for its parameters at one site may not simulate well at another site un-
less its parameters are tuned again. This common practice implies that parameter 
values have to vary with sites. Indeed, parameter values that are estimated using a 
statistically rigorous approach, that is, data assimilation, vary with time, space, and 
treatments in global change experiments. This paper illustrates that varying param-
eters is to account for both processes at unresolved scales and changing properties 
of evolving systems. A model, no matter how complex it is, could not represent all 
the processes of one system at resolved scales. Interactions of processes at unre-
solved scales with those at resolved scales should be reflected in model parameters. 
Meanwhile, it is pervasively observed that properties of ecosystems change over 
time, space, and environmental conditions. Parameters, which represent properties 
of a system under study, should change as well. Tuning has been practiced for many 
decades to change parameter values. Yet this activity, unfortunately, did not con-
tribute to our knowledge on model parameterization at all. Data assimilation makes 
it possible to rigorously estimate parameter values and, consequently, offers an ap-
proach to understand which, how, how much, and why parameters vary. To fully un-
derstand those issues, extensive research is required. Nonetheless, it is clear that 
changes in parameter values lead to different model predictions even if the model 
structure is the same.
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1  | INTRODUC TION

Simulation modeling is traditionally designed to examine interac-
tions of systems components (Forrester, 1961). Nowadays, models 
have been widely used to predict and forecast states of ecologi-
cal systems at individual sites, over regions and the globe (Bonan, 
2019; Ciais et al., 2013). In this case, parameterization becomes 
equally important as model structure and external forcing to pre-
dict a state of an ecological system. Model structure determines 
general patterns of a system behavior, whereas parameter values 
represent properties of a specific system whose state at a given 
time and location is also influenced by external forcing (Luo et al., 
2016; Figure 1).

However, when simulation outputs do not match with ob-
servations, we mostly look into changing model structures but 
often ignore the roles of parameterization and forcing in de-
termining a state of an ecosystem. While many of the model 
intercomparison projects often use common protocols as one 
method to control uncertainty arising from environmental 
forcing, how a model should be parameterized has not been 
carefully discussed in the literature. This paper first reviews a 
classic doctrine of parameters being constant, which is in con-
tradiction with knowledge learned by modeling practitioners. 
Then, we will present two cases: processes at unresolved 
scales and changing properties of evolving systems, in which 
parameter values may have to change over time and space to 
represent system dynamics. Although this paper argues for 
spatiotemporally changing parameters, understanding how 
parameter values change still requires extensive research in 
the future.

2  | ARE PAR AMETERS CONSTANT OR 
VARYING?

Numerical values of parameters are usually considered constant, 
at least for the duration of computation of a single model run 
according to the seminal book on system dynamics (Forrester, 
1961). This concept of constant parameter values may work very 
well for some physics systems, such as those based on fluid dy-
namics used in atmospheric sciences. Models of fluid dynamics 
represent natural systems through fundamental, physical equa-
tions that do rely on constant parameter values, such as grav-
ity. In comparison, ecosystem models rarely can draw upon such 
fundamental equations, but rather rely on empirical relationships 
and approximations to describe interactions among system com-
ponents. However, the issue of how well this concept of param-
eters being constant can be applied to ecosystem modeling has 
not been examined.

Almost all the text books of biological and ecological modeling 
define parameters to be constant (Bonan, 2019; Haefner, 1996). 
The concept of constant parameters has been prevailing and thus 
becomes a classic doctrine from the birth of simulation modeling. 
As a consequence, most ecosystem models set parameter values 
to be constant over time and space. With constant parameters, 
spatial and temporal variations in modeled system behaviors are 
expected to be fully represented by environmental scalars. For 
example, photosynthetic capacity, which represents a property 
of a photosynthesis system and usually is represented by carbox-
ylation capacity, is set to be a constant in many models (Rogers  
et al., 2017). Another example is the baseline decomposition rates 
of litter and soil organic matter that are set constants (Lawrence 

F I G U R E  1   Three elements required 
for model realistic prediction of 
ecosystem responses to global change. 
Parameterization is equally important as 
model structure and forcing in predicting 
states of ecosystems under global change. 
Data assimilation offers a statistically 
rigorous approach not only to fit model 
better with data but also enable to 
evaluate which, how, how much, and why 
parameters change
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et al., 2020). The litter decomposition rate is usually derived from 
litter decomposition studies and often inappropriately called 
decay constant in the literature (i.e., a misnomer; Zhang, Hui, Luo, 
& Zhou, 2008). Changing decomposition rates over time and space 
are expected to be represented by temperature, moisture and 
other scalars in models.

However, when we apply a model that was well calibrated for 
its parameters at one site to another site for simulation, we usually 
have to recalibrate parameters in order to fit observations well at 
the other site (Weng & Luo, 2011). This issue of parameter recalibra-
tion is commonly known among modelers who apply their models 
to different sites but may rarely occur to those modelers who only 
use models for simulation and prediction without much data–model 
comparison. This recalibration (or tuning, as commonly called among 
model practitioners) practically changes parameter values from one 
site to another site and thus makes parameters not necessarily con-
stants as often taught by traditional simulation modeling books. This 
concept of varying parameters is also implicitly acknowledged when 
different vegetation types have different parameter values in global 
land models (Lawrence et al., 2020). When dynamic vegetation has 
been incorporated into a model, many parameters, such as coeffi-
cients of plant allocation and litter decomposition, all vary with time 
as vegetation changes (Weng et al., 2015).

To better parameterize photosynthesis models, Medlyn et al. 
(1999) examined variability in model parameters from 19 gas ex-
change studies on tree and crop species. Values of two key parame-
ters, the maximum rate of Rubisco activity, and the potential rate of 
electron transport at a reference temperature of 25°C, vary consid-
erably among species, particularly between crop and tree species. 
Their results suggest that alternative parameter values are required 
for modeling photosynthesis of different plant types. Other reviews 
and syntheses have also shown that model parameters and plant 

traits often change with time, vary across sites of measurements, 
and are better represented as probability distributions (Kattge et al., 
2011; Lebauer, Wang, Ritcher, Davidson, & Dietze, 2013; Saugier, 
Roy, & Mooney, 2001).

Data assimilation, a statistically rigorous method to estimate 
parameter values, not only can better calibrate models against 
data but also offers great opportunities to understand model pa-
rameterization. When data assimilation is applied to integrate data 
from global change experiments with models, two or more sets 
of parameters are estimated, each at one treatment level (Luo  
et al., 2003). Comparison of posterior probability density functions 
shows that estimated carbon turnovers in foliage and fine root 
pools are much higher at elevated than ambient CO2 at the Duke 
forest CO2 enrichment experimental site (Luo et al., 2003; Xu, 
White, Hui, & Luo, 2006). Elevated CO2 alters parameters values 
for C:N ratios in foliage, fine roots and litter; plant N uptake; and 
carbon exit rates (i.e., inverse of C residence times) in foliage, fine 
root, woody biomass, structural litter, and passive soil organic mat-
ter in a carbon–nitrogen coupled model (Figure 2; Shi, Yang, et al., 
2015). Experimental warming also alters model parameters. For ex-
ample, the 9 year warming treatment in a tallgrass prairie in Great 
Plains of USA decreases allocation of gross primary production to 
shoot, and turnover rates of both shoot and root carbon pools but 
increases the turnover rates of litter and fast soil carbon pools (Shi, 
Xu, et al., 2015). Experimental warming in Alaska tundra signifi-
cantly changes three out of the 16 parameters: light use efficiency 
(LUE), baseline (i.e., environment-corrected) turnover rates of the 
fast and slow soil organic carbon (SOC) pools (Liang et al., 2018). 
When different sets of parameter values are used in model pre-
dictions, predicted carbon sequestration in terrestrial ecosystems 
is substantially different in response to global change (Liang et al., 
2018; Xu et al., 2006).

F I G U R E  2   Maximum likelihood 
estimators of carbon–nitrogen coupling 
parameters under ambient and elevated 
CO2. Error bars represent standard 
deviations of parameters. CN1–CN8 are 
carbon (C):nitrogen (N) ratio, respectively, 
in foliage, woody tissues, fine roots, 
metabolic litter, structural litter, fast soil 
organic matter (SOM), slow SOM, and 
passive SOM. κu, rate of nitrogen uptake. 
Letters show significant differences at 
the level of p < .05 (from Shi, Yang, et al., 
2015)



1112  |     LUO and SCHUUR

Parameter values not only vary with treatments in global change 
experiments but also across space. Data at 12 eddy-covariance tow-
ers across continental USA were used to estimate parameters of a 
flux-based ecosystem model (Li et al., 2016). Estimated parameters 
have different degrees of variation across sites. The estimated pa-
rameters related to stomatal conductance exhibit high cross-site vari-
ation while the ratio of internal to air CO2 concentration and canopy 
light extinction coefficient vary little among these sites. Variations of 
some parameters (e.g., activation energy of carboxylation, tempera-
ture sensitivity of respiration, and stomatal conductance coefficient) 
are highly correlated with environmental conditions. In another 
study, 25,444 vertical soil profiles in US continent are assimilated 
into Community Land Model (CLM) version 5 (Tao et al., submitted ).  
Optimally estimated parameters that are kept constant across the 
whole continent explain for 36% variation in the observed SOC con-
tent. When a deep learning method is applied to estimate spatially 
heterogenous parameter values, the optimized model can explain 
for 62% variation in the observed SOC content. Data assimilation of 
both eddy-flux data and soil carbon profile data indicates that param-
eter values vary over space in order to match data well.

Many other studies have also indicated that the predictive skills of 
models have been greatly improved if parameter values are linked to 
climate, vegetation, and edaphic properties. For example, the maximum 
rate of Rubisco activity varies with mean climate (Smith et al., 2019), 
leaf chlorophyll content (Luo et al., 2018), and leaf nitrogen (Walker  
et al., 2017). Similarly, global variation in inherent water use efficiency 
is significantly correlated with mean precipitation (Franks et al., 2018).

No matter which models or what data sets are used, all the data 
assimilation studies suggest that some of the optimally estimated 
parameters vary over space, with time, at different treatments of 

global change experiments, and across vegetation types, whereas 
other estimated parameters change little. It is not understood 
whether the degree of parameter variations over time and space is 
related to model structures, differences in data sets used, or inher-
ent properties of parameters themselves. Nevertheless, it is very 
clear that the differences in estimated parameters can propagate 
through models, leading to differences in model predictions.

3  | PROCESSES AT RESOLVED VERSUS 
UNRESOLVED SC ALES FOR A MODEL

Parameter variation is partly due to processes at unresolved scales 
of model. A model is an abstraction of real-world processes. Those 
processes that are explicitly described in a model are considered 
processes at resolved scales. Those processes at the resolved scales 
for a given model are often influenced by many processes that are 
not explicitly described in the model (i.e., processes at unresolved 
scales). For example, classic soil carbon dynamics models, such as 
CENTURY or RothC, explicitly represent decomposition of SOC in 
multiple pools (Coleman & Jenkinson, 1996; Parton, Stewart, & Cole, 
1988). The decomposition process is influenced by many processes 
and factors, such as environmental variables, litter quality, orga-
nomineral properties of SOC, microbial attributes, soil erosion, min-
eralogy topography, land management, land use change, and other 
disturbances (Doetterl et al., 2015; Dümig, Smittenberg, & Kögel-
Knabner, 2011; Egli et al., 2008; Sistla & Schimel, 2013) (Figure 3). 
Environmental variables alone that influence SOC decomposition 
could include temperature, moisture, oxygen, and acidity, all varying 
with soil profile, space, and time. None of the models can explicitly 

F I G U R E  3   Major processes and 
factors that determine soil organic carbon 
(SOC) dynamics. The complex behaviors 
of SOC dynamics primarily arise from 
carbon input and SOC transformations 
being regulated by environmental 
and biological variables. Among those 
processes and factors, only a few are 
explicitly represented in models whereas 
many others are not represented at the 
resolved scales (from Luo et al., 2016)
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include all those processes and factors. Most soil models have ex-
plicitly incorporated influences of temperature, moisture, litter qual-
ity, and soil clay content on decomposition of soil organic matters 
(Parton et al., 1988). But many other processes and factors, such as 
soil acidity and physiochemical binding, are not explicitly resolved 
in the models. Those processes at unresolved scales can potentially 
interact with the processes at resolved scales to influence soil car-
bon dynamics.

One attempt to deal with processes at unresolved scales is to add 
more processes into models as the modeling community tends to do 
at present. For example, major efforts have been made to explicitly 
represent microbes in Earth system models (Allison, Wallenstein, 
& Bradford, 2010; Wang, Post, & Mayes, 2013; Wieder, Bonan, & 
Allison, 2013). Many microbial processes, such as enzymatic depo-
lymerization, microbial dormancy, and microbial functional groups, 
have been incorporated into a variety of microbial models (Sulman  
et al., 2018). No matter how many microbial processes are incorpo-
rated into models, there are still lots more that cannot be included 
(note that discussion on what are the criteria for including or not 
including a process in one model is beyond the scope of this paper). 
There are always processes at unresolved scales that potentially in-
teract with processes at resolved scales to influence model results. 
Thus, it is essential to vary parameter values to represent the in-
teractions of processes at unresolved scales with processes at the 
resolved scales as commonly practiced in atmosphere modeling 
(Bauer, Thorpe, & Brunet, 2015).

The notion of using varying parameters to represent processes 
at unresolved scales can be further illustrated from both experimen-
tal and modeling studies in an Alaska permafrost ecosystem. A field 
experimental warming has been conducted in upland moist acidic 
tundra in the Eight Mile Lake Watershed, Alaska, USA, since 2009 
(Natali et al., 2011). Experimental warming is implemented with six 
snow fences to accumulate snow that insulates the ground so as 
to increase surface and deep soil temperatures during the winter. 
The experimental warming has induced a suite of changes in abo-
veground biomass (Deane-Coe et al., 2015; Salmon et al., 2016), 
nitrogen availability (Salmon et al., 2016), vegetation phenology 
(Natali, Schuur, & Rubin, 2012), gaseous carbon fluxes (Mauritz et al., 
2017; Natali, Schuur, Webb, Pries, & Crummer, 2014), and microbial 
attributes (Xue et al., 2016).

When two versions of CLM (CLM4.5 and 5.0) are applied to 
the field experiment, predicted gross primary productivity (GPP), 
ecosystem respiration (Reco), and net ecosystem C exchange (NEE) 
linearly increase with warming over 8 years from 2009 to 2016 
(Schädel et al., 2018). In contrast, the field observation showed ini-
tial increases in growing season GPP, Reco, and NEE in response to 
warming-induced permafrost thaw, resulting in a higher carbon sink 
capacity in the first 5 years, followed by a strong carbon source in 
years 6–8. Field observations and model simulations showed sim-
ilar increasing trends in soil temperatures and thaw depths with 
warming. However, warming effects on water table depth differ 
between the field observations and model simulations; warming 
created wetter soils in the field and drier soils in the models. The 

divergence of model results from field experiments was attributed 
by authors of that modeling study to structural deficiency of the 
models to predict complex ecosystem responses, such as subsid-
ence, hydrology, and nutrient cycling, to experimental warming 
(Schädel et al., 2018).

Community Land Model 4.5 and 5.0 are among the most com-
prehensive models. Those two versions of CLM have incorporated 
enough processes to simulate subsidence, hydrological changes, and 
nutrient dynamics in response to experimental warming. For exam-
ple, warming-induced subsidence can be simulated by varying thick-
ness of soil layers in the multilayer model. Changes in soil moisture 
and water table in association with warming-induced subsidence can 
be simulated by varying the field water holding capacity and water 
table depth. In other words, observed subsidence and its associated 
changes in hydrology, nutrient cycling, and carbon processes in re-
sponse to experimental warming can be well represented by varying 
parameters instead of adding more processes in the already complex 
model.

Indeed, varying parameters is another modeling approach that 
acknowledges the notion that a model needs not explicitly incorpo-
rate all processes at resolved scales. Rather, parameter values are 
to vary for a given model structure to represent interactions of pro-
cesses at unresolved scales with those processes explicitly modeled 
as long as the model adequately incorporates major processes. For 
example, warming-induced soil subsidence is largely due to melting 
of excess ice within the soil that causes the soil surface to collapse 
and subside with warming. It may not be necessary to explicitly 
simulate the process of ice melting in the model. Instead, we can 
vary the parameters related to thickness of soil layers to represent 
subsidence if our research objective is to simulate the carbon cycle 
reasonably well.

To represent observations from the warming experiment at the 
Eight Mile Lake, Alaska, Liang et al. (2018) assimilated six data sets 
into Terrestrial ECOsystem (TECO) model to optimally estimate 16 
parameters. The TECO model uses multiple soil layers to track dy-
namics of thawed soil under different warming treatments. Results 
of data assimilation indicate that experimental warming increased 
LUE of vegetation photosynthesis but decreased baseline (i.e., en-
vironment-corrected) turnover rates of SOC in both the fast and 
slow pools in comparison with those under control. The warming- 
induced changes in baseline turnover rates of fast and slow SOC 
may reflect changes in microbial community composition and ac-
tivity, which has been observed to change in response to warm-
ing and permafrost thaw in Arctic ecosystems (Hale et al., 2019; 
Johnston et al., 2019; Xue et al., 2016). These microbial changes 
likely are the mechanisms underlying the altered SOC turnover 
rates but have not been explicitly represented in the TECO or 
many other models. Those microbial changes at unresolved scales 
for the TECO model are implicitly represented by changes in pa-
rameter values before we develop the capability to explicitly rep-
resent them at resolved scales. Similarly, the estimated changes in 
LUE under the warming treatment also represent many processes 
at unresolved scales of the TECO model.
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4  | CHANGING PROPERTIES OF E VOLVING 
SYSTEMS

Parameters being not constant partially roots in the fact that eco-
logical systems are always evolving in the real world. Almost all 
ecological processes, either at resolved or unresolved scales for a 
given model, are evolving over time, leading to changing proper-
ties of ecological systems (i.e., time-dependent or time-varying 
properties). There are ample examples to show that properties of 
ecological systems commonly vary with time and space. For ex-
ample, the optimal temperature at which photosynthesis is maxi-
mized is a property of photosynthetic systems. This property has 
been documented to ubiquitously vary at leaf, plant, and ecosys-
tem scales as temperature changes through photosynthetic ac-
climation and adaptation (Berry & Bjorkman, 1980; Huang et al., 
2019; Mooney, Björkman, & Collatz, 1978; Niu et al., 2012). Data 
synthesis from 169 globally distributed sites of eddy covariance 
shows that the optimum temperature of net ecosystem exchange 
is positively correlated with annual mean temperature over years 
and across sites (Niu et al., 2012). Shifts of the optimum tempera-
ture of net ecosystem exchange are mostly due to temperature 
acclimation of GPP. The optimum temperature for ecosystem-
level GPP, however, is consistently lower than the physiological 
optimal temperature of leaf-level photosynthesis (Huang et al., 
2019).

Acclimation and adaption of plant and soil respiration have also 
been widely observed (Atkin, Holly, & Ball, 2000; Luo, Wan, Hui, 
& Wallace, 2001). Changes in the temperature sensitivity of root 
respiration, or Q10 values, differ between and within plant species, 
partly due to temperature-dependent changes in adenylate con-
trol and substrate supply (Atkin et al., 2000). Field experiments 
also show that temperature sensitivity of soil respiration declines 
in response to warming treatments (Luo et al., 2001; Melillo et al., 
2002). The acclimation in temperature sensitivity of soil respiration 
may be due to several mechanisms, such as plant carbon supply, 
altered root and microbial activity, and substrate limitation. Water 
table has been found to change over time and with warming treat-
ments at the Eight Mile Lake (Mauritz et al., 2017). Water table is a 

very important property that influences many processes of Alaska 
tundra ecosystems.

Much effort has been made to incorporate the time-varying prop-
erties of ecological systems into models. For example, plant photosyn-
thetic and respiratory acclimation to temperature has been integrated 
into an ecosystem model (Friend, 2010). This model allows the opti-
mum temperature for electron transport to respond to changes in plant 
growth temperature by assuming that the optimum leaf temperature 
linearly decays toward an equilibrium temperature. CLM4.5 incorpo-
rates representations of photosynthetic and leaf respiratory tempera-
ture acclimation by linking various parameters, such as maximum rate 
of carboxylation, maximum potential rate of electron transport, dark 
respiration, and CO2 compensation point, to leaf temperature 
(Lombardozzi, Bonan, Smith, Dukes, & Fisher, 2015). Other studies 
have also incorporated plant photosynthetic and/or respiratory accli-
mation into land biogeochemical models (Arneth, Mercado, Kattge, & 
Booth, 2012; Atkin et al., 2008; Ziehn, Kattge, Knorr, & Scholze, 2011). 
Those studies fundamentally use model parameterization to account 
for acclimation of photosynthesis and respiration as suggested from 
empirical evidence (Atkin et al., 2008; Kattge & Knorr, 2007).

Parameters can also be directly estimated from site-specific data 
to represent changing properties of a given ecosystem. When six 
data sets in each year were assimilated to TECO model to estimate 
yearly values of its parameters, changes in those parameters varied 
with treatment years (Figure 4). The warming effect on LUE gradually 
increases over the 5 years since the experiment starts (Figure 4a). In 
contrast, the baseline turnover rates of the fast and slow SOC pools 
decrease with amplifying magnitudes over time (Figure 4b,c). With 
changing parameter values over time, the TECO model predictions 
match with observations much better than that with fixed parameter 
values. The dependence of parameter changes on treatment time 
suggests that warming-induced changes in ecosystem properties 
are gradual as exposure time to environmental stimuli can affect 
the extent to which acclimation occurs (Smith & Dukes, 2013). This 
site-specific parameterization is not only essential for forecasting 
ecosystem state changes under experimental treatments but also 
contributes to our general understanding of parameter variation, 
especially when parameters are estimated from many experiments.

F I G U R E  4   Warming-induced parameter change over treatment time. (a) Light use efficiency; (b) baseline turnover rate of the fast soil 
organic carbon (SOC) pool (kfast); (c) baseline turnover rate of the slow SOC pool (kslow; from Liang et al., 2018)
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5  | CONCLUDING REMARKS

Model parameterization plays an equally important role as do model 
structure and environmental forcings in predicting the state of an eco-
logical system. When prediction of a model does not match with obser-
vations well, it may not be productive to look only at model structure 
and ignore parameterization and forcing. Parameter tuning is a com-
mon practice for simulation modeling and, unfortunately, is a skeleton 
in closet for modelers for several decades. Tuning parameter values is 
one of the most tedious and laborious work, but we did not learn much 
from it as no way to record the process of tuning until parameters can 
be rigorously estimated from a statistically rigorous method—data 
assimilation.

Limited studies on model parameterization using data assimila-
tion and other methods have shown that parameter values need to 
vary over space, with time, at different treatments of global change 
experiments, and across vegetation types in order to fit model pre-
dictions well with observations. Although there is ample empirical 
evidence that properties of ecological systems, which parameters 
are supposed to represent, vary with time and space, we have 
very limited understanding on which, how, how much, and why 
parameters vary. Some of the parameters that represent changing 
properties of ecological systems, such as photosynthetic capacity, 
optimal temperature of photosynthesis, and temperature sensitiv-
ities of plant and soil respiration, should be changing, regardless of 
model structures, in order to fit observations well. Changes in some 
other parameters may depend on model structure. For example, 
stomata conductance is represented in different ways in different 
models. Estimated parameter values from the same data sets are 
likely different with different stomata model structures. Moreover, 
estimated parameter values from data assimilation are surely con-
ditional upon data availability. In the future, we need to conduct 
extensive research to understand how much and why parameters 
vary over space and time; what are the patterns, the causes or 
mechanisms underlying parameter variations; and how data avail-
ability and model structure influence changes in parameters.
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