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A meta-analysis of 1,119 manipulative experiments 
on terrestrial carbon-cycling responses to global 
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J. Adam Langley20, Jakob Zscheischler   21,22, Jeffrey S. Dukes   23, Jianwu Tang24, Jiquan Chen25, 
Kirsten S. Hofmockel   26,27, Lara M. Kueppers28,29, Lindsey Rustad30, Lingli Liu   31, Melinda D. Smith   6,7, 
Pamela H. Templer   32, R. Quinn Thomas33, Richard J. Norby   34, Richard P. Phillips   35, Shuli Niu36, 
Simone Fatichi   37, Yingping Wang   38, Pengshuai Shao39, Hongyan Han39, Dandan Wang2, 
Lingjie Lei2, Jiali Wang2, Xiaona Li2, Qian Zhang2, Xiaoming Li2, Fanglong Su2, Bin Liu2, Fan Yang2, 
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Mengjun Hu2, Chuang Yan2, Ang Zhang2, Mingxing Zhong2, Yan Hui2, Ying Li2 and Mengmei Zheng2

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in 
Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past 
four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of 
the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the 
USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future pro-
jections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global 
change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (includ-
ing synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded 
negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The 
sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condi-
tion, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. 
Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in under-
represented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting 
future terrestrial carbon-climate feedback.

Over the past four decades, numerous experiments have 
explored how terrestrial ecosystems respond to climate 
warming, changing precipitation regimes, elevated CO2 

(eCO2) and nitrogen (N) enrichment1–5. These extensive experi-
mental results are scattered across many publications, and thus it 
is impractical to compare the outcome of experiments among dif-
ferent ecosystems6,7 and to assess possible nonlinear effects between 
global change drivers8,9. Although great efforts have been devoted to 
comparing model outputs against experimental observations with 
an attempt to reduce uncertainties on future projections of coupled 
carbon-climate system (for example, refs. 10–12), the global models 
used in the upcoming IPCC (Intergovernmental Panel on Climate 
Change) AR6 (the Sixth Assessment Report) have not been tested 
against a large set of experiments.

Here, we synthesized 2,230 peer-reviewed studies with 1,119 
experiments published during 1973–2016 to compare the magni-
tudes of treatments achieved by experimental manipulations with 

the changes in global change drivers projected by the end of this 
century, and to quantify the responses and sensitivities of key ter-
restrial carbon-cycle variables, including net primary productivity 
and biomass as well as their above- and belowground components, 
root-to-shoot ratios, litter mass, gross and net ecosystem produc-
tivity, and ecosystem and soil respiration, to warming, increased 
or decreased precipitation, eCO2, N deposition and their combi-
nations. Finally, data of multifactor experiments which factorially 
performed both multiple single-factor treatments and their com-
binations were pooled to examine whether multiple global change 
drivers cause multiplicative, synergistic or antagonistic responses.

Overview of global change manipulative experiments
The 2,230 publications collected in our literature search included 
850 single-factor and 269 multifactor experiments across all major 
terrestrial ecosystems of the world (Supplementary Dataset 1), albeit 
with uneven spatial coverage (Fig. 1a; see Supplementary Table 1 
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and Supplementary Text 1 for the distribution of experiments across 
countries and publication list, respectively). The majority of single-
factor (73.2%) and multifactor (76.6%) experiments were conducted 
in temperate ecosystems of the Northern Hemisphere (~30–60° N), 
in the USA, Europe and China. The climate space sampled by all the 
experiments ranges from 110 mm to 2,301 mm in mean annual pre-
cipitation and from −7.6 °C to 22.3 °C in mean annual temperature 
(Supplementary Fig. 1). This climate space domain covers 96% of 
the northern temperate lands, but only 50% of the Earth’s land area. 
Regions with scarce experiments are semi-arid ecosystems, forests 
in the tropics and subtropics, and Arctic tundra, despite the sensi-
tivity of these ecosystems to climate variability and climate change 
being highlighted by recent studies of modelling and analyses of 
Earth observation data13–15.

The magnitudes of temperature increase experimentally applied 
at more than 60% of the mid-latitude warming experiments are 
within the projected warming range in the same latitude band by the 
end of the twenty-first century (Fig. 1b). However, the experimen-
tal warming magnitudes at the high latitudes were generally lower 
than those projected in all the IPCC Representative Concentration 
Pathway scenarios (RCPs)16. More importantly, the majority of the 
experiments imposed greater changes in precipitation amount and 
N input than the global mean rates of changes projected under dif-
ferent RCPs (Fig. 1c,e)17. By contrast, eCO2 levels were within the 
projected range of RCP2.6 (475 ppm) and RCP6.0 (800 ppm), but 
the highest levels from RCP8.5 have not been covered by any experi-
ment (1,313 ppm; Fig. 1d).

Local climate mediating warming effects on ecosystem 
carbon cycling
Across all the terrestrial ecosystems, experimental warming 
enhanced total, aboveground and root biomass, as well as soil res-
piration (Fig. 2a). Although belowground net primary productivity 
slightly increased under warming (P = 0.066), net primary produc-
tivity and its aboveground component remained unaltered. The 
root-to-shoot ratios showed a neutral warming response (Fig. 2f). 
Hence, carbon allocation patterns appeared to be largely unaffected 
by warming. In addition, gross and net fluxes of CO2 exchange 
between terrestrial ecosystems and the atmosphere (gross and net 
ecosystem productivity, and ecosystem respiration) did not show 
significant changes under warming, partly due to the use of multi-
ple sites and the considerable response variations among the experi-
ments. The observations suggest that the slight enhancement of 
belowground carbon input could be offset by increased soil carbon 
release (enhanced decomposition of soil organic matter, accelerated 
root turnover or stimulated root respiration)18,19.

Soil moisture plays a predominant role in regulating plant photo-
synthesis and carbon allocation20 as well as ecosystem respiration21 
under warming. In water-limited ecosystems, warming usually 
decreases carbon-cycle variables by exacerbating water limita-
tion22. To test such indirect warming effects, we conducted meta-
regressions between carbon-cycle variable changes under warming 
and wetness indices, which are proxies of the water available for 
plants23. Results demonstrated that the warming responses of net 
primary productivity (Fig. 3a; R2 = 0.20, P = 0.027) and its below-
ground component (Fig. 3b; R2 = 0.44, P = 0.001), aboveground bio-
mass (Fig. 3c; R2 = 0.13, P = 0.004) and ecosystem (Fig. 3d; R2 = 0.24, 
P = 0.009) and soil respiration (Fig. 3e; R2 = 0.59, P < 0.001) shifted 
from negative to positive with increasing wetness indices, suggest-
ing negative and positive warming effects under dry and wet cli-
mate conditions, respectively. In contrast, the warming effects on 
plant root-to-shoot ratios changed from positive to negative with 
increasing wetness (Fig. 3f; R2 = 0.23, P = 0.003), indicating that 
when exposed to warming, plants growing in dry areas tend to 
prioritize carbon allocation to roots at the expense of allocation  
to shoots. Alternatively, decreased root turnover in order to adjust to  

warming-induced drought may also contribute to this response. 
Together, these findings indicate that water limitations emerge as a 
likely indirect response to higher evaporative demand, counterbal-
ancing the direct warming effects on plant growth and productivity21.

Finally, we estimated temperature sensitivities (percentage 
change of carbon variable per 1 °C temperature increase) for all 
observed variables with the exception of net ecosystem productivity. 
Net ecosystem productivity is the transient response of altered gross 
ecosystem productivity followed by lagged and warming-dependent 
ecosystem respiration. Theoretically, if warming duration exceeds 
carbon residence time in an ecosystem, gross ecosystem productiv-
ity and ecosystem respiration should balance each other, defining a 
new equilibrium state where net ecosystem productivity approaches 
zero. Across all the terrestrial ecosystems, root biomass showed the 
highest temperature sensitivity with an enhancement of 19.8% °C−1 
(Table 1). Despite the huge variability among the sites, our analy-
ses suggest that the temperature sensitivity of aboveground biomass 
becomes negative at sites with higher mean annual temperature 
(Fig. 3g; R2 = 0.10, P = 0.007). Nevertheless, the temperature sensi-
tivities of the other nine carbon-cycle variables were independent 
of mean annual temperature (Supplementary Fig. 2). This is partly 
supported by an ecosystem-level study which has revealed that tem-
perature sensitivity of ecosystem respiration is converging globally 
but is not mediated by mean annual temperature24. These observa-
tions are inconsistent with the findings of a recent study on global 
drylands where temperature sensitivity of soil heterotrophic respi-
ration declines with increasing mean annual temperature25.

Non-uniform influences of precipitation anomalies
Increased precipitation stimulated all ecosystem carbon-cycle vari-
ables except litter mass, whereas decreased precipitation generally 
reduced carbon-cycle variables (Fig. 2b,c)5. At the ecosystem scale, 
we tested the first hypothesis (H1) that semi-arid and temperate 
grasslands are more sensitive to increased precipitation than for-
ests and deserts26. The responses to increased precipitation were 
normalized to 33% above the mean annual precipitation of each 
experiment (the median absolute value of precipitation treatments; 
see Methods for details). In contrast to the H1, the responses of net 
primary productivity and its belowground component as well as 
plant biomass (total, aboveground and root biomass) under a 33% 
precipitation increase were comparable between forests and grass-
lands (Fig. 2g), although the enhancements of these variables were 
statistically significant in grasslands only. In addition, the signifi-
cant stimulations of aboveground net primary productivity under a 
33% precipitation increase did not differ among forests, grasslands 
and deserts (between-group heterogeneity (QB) = 2.30, P = 0.31). 
However, increased precipitation enhanced soil respiration more 
in grasslands than in forests (QB = 7.90, P = 0.02), but comparably 
between grasslands and deserts, which partly supported our H1.

We also proposed a second hypothesis (H2), that arid ecosystems 
would be more sensitive to increased precipitation and less sensi-
tive to decreased precipitation than humid ecosystems23. To test H2, 
we conducted meta-regressions of carbon-cycle variable responses 
to normalized increased and decreased precipitation (33% above 
and below the mean annual precipitation) to examine whether the 
changes of carbon-cycle variables are related to wetness indices. We 
found that the positive responses of aboveground net primary pro-
ductivity (Fig. 3h; R2 = 0.04, P = 0.013) and soil respiration (Fig. 3i;  
R2 = 0.30, P < 0.001) under a 33% precipitation increase declined 
with increasing wetness and the negative impacts of a 33% pre-
cipitation decrease on ecosystem respiration were exacerbated with 
increasing wetness (Fig. 3j; R2 = 0.53, P = 0.010). The results suggest 
that the effects of increased precipitation on aboveground net pri-
mary productivity and soil respiration were lower, but the impacts 
of decreased precipitation on ecosystem respiration were higher 
in humid areas—a result supporting our H2. No relationship of  
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precipitation-induced changes in any other carbon-cycle variables 
with wetness was detected (Supplementary Figs. 3 and 4). The 
non-uniform patterns in the dependence of changing precipitation 
effects upon wetness indices, which are proxies for the current mois-
ture conditions at given sites, among carbon-cycle variables pose a 

great challenge for robust projections of carbon-cycle responses to 
changing precipitation regimes in global models27,28.

We calculated the relative precipitation sensitivity as the per-
centage change of carbon-cycle variables per 10 mm precipitation 
increase or decrease. All carbon-cycle variables except litter mass 
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were more sensitive to increased than to decreased precipitation 
across all ecosystems (Table 1). The results generalize previous 
observations on ANPP responses to inter-annual rainfall varia-
tion at the Long Term Ecological Research Network sites26 to all the 
carbon-cycle processes analysed here and the larger range of pre-
cipitation changes applied in manipulative experiments. All these 
findings indicate that most terrestrial ecosystems have resistance 
to drought, which might arise from intrinsic plant physiological 
adaptation, enhanced water-use efficiency and/or shifts in plant 
community composition5,26,29–31. Increased mortality and decreased 
vegetation cover in response to water stress under decreased pre-
cipitation could help to explain the greater sensitivity of litter mass 
to decreased rather than increased precipitation. These patterns 
indicate a temporary mismatch of litter mass and aboveground net 
primary productivity in response to reduced precipitation, high-
lighting the non-uniform influences of precipitation anomalies on 
different carbon-cycle variables and the large variability in the anal-
ysed studies27, precluding specific interpretations. The potential dis-
connection between production and decomposition processes also  

suggests avenues for future comparative research, which would  
reveal novel mechanisms for ecosystem carbon cycling. Furthermore, 
the sensitivities of gross ecosystem productivity and ecosystem res-
piration to changing precipitation were generally greater than those 
of plant productivity, biomass and litter mass.

The greater sensitivity of aboveground than belowground net 
primary productivity in response to increased precipitation sug-
gests that plants invest less carbon in water acquisition structures 
when relieved from water stress (Table 1), leading to reduced 
root-to-shoot ratios (Fig. 2f). Our observations are supported by 
the finding from a previous review revealing greater carbon allo-
cation to aboveground wood production than to belowground 
carbon fluxes in forest ecosystems in response to increasing 
resource (for example, water and nutrient) supply32. In contrast, 
the enhanced root-to-shoot ratios under decreased precipitation 
indicate that plants allocate more carbon to water- and nutrient-
acquiring structures to resist drought, and thus there is a higher 
sensitivity of above- (aboveground net primary productivity and 
biomass, and litter mass) than belowground carbon-cycle variables  
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Fig. 3 | Local climate conditions and plant traits affecting carbon-cycle responses to global change drivers. a–f, h–j, n–p, Bubble plots of the meta-
regression results between the response ratio (RR) of NPP (a), BNPP (b), AGB (c), ER (d), SR (e) and R/S (f) under W and the wetness indices, between 
the RR of ANPP (h) and SR (i) under NIP and the wetness indices, between the RR of ER (j) under normalized DP (NDP) and the wetness indices, between 
the RR of litter mass (n) and ER (o) under eCO2 and the wetness indices, and between the RR of R/S under eCO2 and root sampling depths (p). Linear 
meta-regressions are shown as black solid lines and grey dashed lines represent 95% CIs. g,k–m, Single linear regressions showing dependences of W 
sensitivity (sen) of AGB on mean annual temperature (MAT; g), and of IP sen of NPP (k), ANPP (l) and SR (m) on the wetness indices. Linear regression is 
shown as a black solid line and 95% CIs are in the shaded area. Each point represents the effect size of an individual study. Greater wetness index values 
correspond to more humid climate conditions. See Figs. 1 and 2 for abbreviations.

Table 1 | Relative sensitivity of ecosystem carbon-cycle variables in response to global change drivers

W IP DP eCO2 eN

Whole-plant NPP −7.2 [−30.8, 16.5] 1.5 [0.7, 2.3] −1.1 [−2.3, 0.1] 7.8 [1.4, 14.2] 1.3 [0.6, 2.1]

TB 16.4 [2.5, 30.2] 2.1 [−0.1, 4.3] −1.0 [−2.4, 0.3] 11.7 [8.1, 15.2] 5.5 [3.1, 7.9]

Aboveground ANPP −1.9 [−13.2, 9.5] 5.4 [1.5, 9.3] −1.7 [−3.0, −0.3] 13.0 [6.1, 19.9] 4.0 [1.5, 6.5]

AGB 9.2 [4.4, 14.1] 1.9 [0.6, 3.2] −1.0 [−1.7, −0.3] 8.2 [5.9, 10.6]102 4.0 [3.1, 4.9]206

Litter 1.4 [−12.4, 15.2] −0.02 [−0.9, 0.8] −2.0 [−3.7, −0.2] 8.7 [4.2, 13.1] 7.2 [2.0, 12.4]

Belowground BNPP 7.1 [−20.9, 35.0] 2.0 [−0.4, 4.5] −1.6 [−2.5, −0.7] 23.6 [12.9, 34.3] 1.5 [−1.5, 4.6]

RB 19.8 [−1.9, 41.4] 2.1 [−0.01, 4.1] −0.3 [−1.2, 0.6] 17.9 [10.6, 25.1]98 3.1 [1.6, 4.7]

SR 5.0 [0.4, 9.6] 8.4 [3.8, 12.9] −1.1 [−1.5, −0.7] 15.1 [10.6, 19.6] 0.6 [−1.1, 2.2]91

Carbon fluxes GEP 8.9 [−3.6, 21.3] 8.0 [2.1, 13.9] −2.0 [−2.5, −1.6] 5.0 [1.2, 8.8] 41.5 [−14.2, 97.2]

ER 10.8 [1.9, 19.6] 5.9 [2.1, 9.7] −2.4 [−3.6, −1.2] 7.7 [1.6, 13.7] 25.6 [−4.9, 56.2]

The weighted mean sensitivity (means [−95% CI, + 95% CI]sample size) of whole-plant production (NPP and TB), aboveground (ANPP, AGB and LM) and belowground carbon-cycle variables (BNPP, RB and 
SR), and ecosystem carbon fluxes (GEP and ER) under W (% + 1 °C−1), IP (% + 10 mm−1), DP (% −10 mm−1), eCO2 (% + 100 ppm−1) and eN (% + 1 g N m−2 yr−1) across all the manipulative experiments. See 
Figs. 1 and 2 for abbreviations.
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(belowground net primary productivity, root biomass and soil res-
piration) under decreased precipitation (Table 1). However, a previ-
ous study on carbon allocation of 14 mature forest stands has found 
a decreased root-to-leaf biomass ratio under drought, largely due to 
accelerated root turnover in a drier climate33. Therefore, it should 
be noted that changing precipitation regimes may have differential 
effects on carbon cycling, depending on other local climate condi-
tions (for example, existing moisture conditions and precipitation 
timing and intensity). For example, precipitation increase at a dry 
or mesic site could stimulate biological activity, as opposed to a 
moist site where responses may be neutral and even negative6,27,34,35. 
Our observations that the sensitivities of net primary productiv-
ity (Fig. 3k; R2 = 0.19, P = 0.042) and its aboveground component 
(Fig. 3l; R2 = 0.29, P < 0.001), and soil respiration (Fig. 3m; R2 = 0.13, 
P = 0.005) to increased precipitation shifted from positive to nega-
tive with increasing wetness indices provided direct evidence sup-
porting this conclusion. Nevertheless, caution should be taken 
when extrapolating our findings to generate regional and global 
effects of changing precipitation amount, because rainfall frequency 
and intensity may be potentially important confounding factors in 
this meta-analysis.

More carbon allocated to plant belowground tissues  
under eCO2
This synthesis demonstrated that, despite large variations among 
ecosystems, eCO2 significantly stimulated plant productivity, bio-
mass, litter mass and ecosystem carbon fluxes, with the exception 
of net ecosystem productivity which appeared highly uncertain 
(Fig. 2d). The observations could have been primarily attributed to 
increased leaf photosynthesis and water-use efficiency associated 
with CO2 fertilization effects and water-saving mechanisms under 
eCO2 (for example, decreased stomatal conductance and conse-
quent evapotranspiration)36. We expected (H3) that positive eCO2 
effects would be greater in drier than humid ecosystems37,38 because 
enhanced water-use efficiency under eCO2 would benefit plants 
especially under water limitation. However, results of meta-regres-
sions to explore the correlations of the eCO2 effects with mean annual 
precipitation and wetness indices showed no clear trends of the 12 
carbon-cycle variables along mean annual precipitation. Higher wet-
ness did not affect most of the carbon-cycle variables either, but was 
associated with a larger eCO2 effect on litter mass (Fig. 3n; R2 = 0.53, 
P = 0.001), contradicting our hypothesis H3. Nevertheless, ecosystem 
respiration responses to eCO2 significantly declined with increasing 
wetness indices (Fig. 3o; R2 = 0.40, P = 0.048), partly supporting our 
hypothesis H3. These observations suggest that CO2 fertilization 
effects may be mediated by not only wetness expressed with a simple 
average index, but also other factors such as precipitation seasonal 
distributions39,40 and extreme climate events41.

Further analyses indicate that ecosystem type also explains a 
fraction of variations in the eCO2 effects among sites. For example, 
grasslands with low net primary productivity and aboveground bio-
mass responded more weakly to eCO2 than forests (Fig. 2h). The 
stronger responses of forests may be attributable to the fact that 
the ‘forests’ label in our analyses included tree seedlings with expo-
nential growth over multiple growing seasons, which can greatly 
exaggerate the responses of older trees in a linear growth phase42. 
In addition, different mycorrhizal types associated with temperate 
forests, grasslands and tundra may help to explain variations among 
ecosystems in the response to eCO2

43. Unfortunately, mycorrhizal 
information was not reported in most studies.

Based on statistically significant changes in carbon-cycle vari-
ables under eCO2 (Fig. 2d), we calculated the eCO2 sensitivity as 
percentage change per 100 ppm CO2 increase44. Across all eCO2 
experiments, gross ecosystem productivity and net primary pro-
ductivity showed strongly positive CO2 sensitivity (Table 1). Plants 
under eCO2 allocated more carbon to roots for uptake of water and 

N for sustaining growth, at least in young forest/seedling experi-
ments where an increase in plant root-to-shoot ratios was observed 
across ecosystems (Fig. 2f)—an observation supported by findings 
of a previous meta-analysis45. Nevertheless, another experimental 
study has demonstrated that enhanced root carbon allocation in 
a high CO2 atmosphere generally occurs in a field (free-air CO2 
enrichment) but not in a controlled (growth chamber) environ-
ment46. In addition, we found that the positive effects of eCO2 on 
root-to-shoot ratios declined with increasing depths of root sam-
pling (Fig. 3p; R2 = 0.21, P = 0.035)—a result more consistent with 
the proliferation of shallow fine roots for harvesting nutrients rather 
than of deep roots for water uptake47. In contrast, a previous synthe-
sis on forest ecosystems has revealed that eCO2 stimulates root pro-
liferation in deep soil, likely because the limited resource of topsoil 
cannot meet the increased demand for production enhancements 
under CO2 enrichment48. Given that the depths of root sampling are 
usually greater in forests than grasslands, these observations sug-
gest that root-to-shoot ratios may respond to eCO2 more strongly 
in grasslands than forests, as shown by our meta-analysis results 
(Fig. 2h; QB = 5.70, P = 0.02). Similar to the observed increases in 
gross ecosystem productivity, ecosystem and soil respiration were 
also enhanced under eCO2, indicating that eCO2 accelerates ecosys-
tem carbon turnover through belowground processes (for example, 
microbial decomposition and soil CO2 efflux)49–51. Root exudation 
and possibly root litter and organic matter decomposition might be 
stimulated under eCO2, thus a considerable fraction of increased 
net primary productivity is in fast-turnover pools that do not lead to 
carbon sequestration but are released back to the atmosphere. The 
coupling between net primary productivity and heterotrophic res-
piration under eCO2 likely depends on the experimental duration. 
Under long-term exposure to eCO2, the two processes are expected 
to be closely coupled and net ecosystem productivity should 
approach zero after a new equilibrium is reached52, although none 
of the experiments were long enough to verify this assumption.

More carbon allocated to plant aboveground than 
belowground tissues under N addition
Nitrogen addition significantly stimulated plant productivity, 
biomass, litter mass and ecosystem carbon fluxes, but not below-
ground net primary productivity or net ecosystem productivity 
(Fig. 2e). In contrast, N addition reduced soil respiration across all 
the experiments assessed. Presumably, N availability limits net pri-
mary productivity in many ecosystems53. In contrast to the effects of 
eCO2, more carbon appeared to be allocated to above- than below-
ground tissues under N addition. Decreased root-to-shoot ratios in 
response to N addition across ecosystems suggest that the sensitivi-
ties of aboveground carbon-cycle variables to N addition are higher 
than those of belowground carbon-cycle variables (Fig. 2f and 
Table 1). The results are consistent with the general observations 
that plants invest less carbon in constructing nutrient-acquiring 
structures (that is, roots) when more nutrients are available32,54–56. 
Our findings of substantial variability of plant carbon allocation in 
responses to different global change drivers are critical in evaluating 
Earth system models57,58.

The large number of N addition experiments compiled in this 
study (429) provides a unique opportunity to further analyse the 
effects of N addition on aboveground biomass, root biomass and soil 
respiration. Aboveground biomass increased with increasing levels 
of N addition rates (≤5, 5–10 and >10 g N m−2 yr−1; Fig. 2i; QB = 7.20, 
P = 0.03). The stimulation of aboveground biomass was greater at N 
addition rates >10 g N m−2 yr−1 (32.1%) than ≤5 g N m−2 yr−1 (13.6%). 
However, there was no difference in root biomass responses among 
the three N addition levels, likely due to the lower sensitivity of 
below- than aboveground biomass and productivity in response to 
N addition (Table 1). By contrast, soil respiration did not respond to 
the low or medium levels of N addition but decreased by 10.2% at 
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the high N addition rates of >10 g N m−2 yr−1, which is partly incon-
sistent with the findings of a previous meta-analysis that both low 
(<5) and high (>5) N m−2 yr−1 additions suppressed soil CO2 efflux 
in forest ecosystems54. The inclusion of grasslands and tundra in 
this study makes the conclusions more convincing. High N addition 
rates may reduce soil heterotrophic respiration due to acidification-
induced reduction in microbial activity, and thus suppress soil res-
piration54,59. Indeed, the decrease in soil pH was exacerbated with 
higher rates of N addition (Fig. 2i). Clearly, N addition rate is criti-
cal in estimating ecosystem carbon-cycle responses to atmospheric 
N deposition. Yet, given that manipulative experiments generally 
imposed greater amounts of N than the current global mean rates 
of atmospheric N deposition (Fig. 1e), the responses of ecosystem 
carbon cycling in these experiments are likely stronger than those 
caused by the forecasted levels of atmospheric N deposition.

Nonlinear effects of two-driver pairs were rare
Under current and future conditions, ecosystems will be exposed to 
concurrently multiple global change drivers (Fig. 1b–e). Nonlinear 
effects of co-occurring drivers pose challenges for understanding and 
projecting terrestrial carbon-climate feedbacks8. Two previous syn-
theses demonstrated that multiplicative influences were rare and eco-
system responses declined with increasing numbers of manipulated 
factors60,61, suggesting that antagonistic mechanisms are widespread 
when global change drivers are altered simultaneously. In contrast, 
other meta-analyses found that multiplicative, rather than synergistic 
or antagonistic, effects on woody plant biomass, ecosystem carbon 
storage and soil CO2 efflux were more common62–64. These contrast-
ing conclusions leave model predictions of such interactions in ques-
tion60, especially given that three- and four-factor studies are too 
scarce to draw general conclusions. We analysed data from 80 two-
factor experiments to examine whether the influence of one driver 
on carbon-cycle variables was modified by a second driver.

Our results showed that nonlinear effects (that is, synergistic or 
antagonistic) of two-driver pairs—including warming and increased 
precipitation, warming and decreased precipitation, warming and 
eCO2, warming and N addition, increased precipitation and N 
addition, decreased precipitation and eCO2, as well as eCO2 and 
N addition—on all carbon-cycle variables were rare (Fig. 4a–g).  
These observations differ from the findings of Leuzinger et  al.60 
and Dieleman et  al.61—a discrepancy that probably resulted from 
the different analytical methods. For example, Dieleman et  al.61 
assessed interactions between warming and eCO2 on plant biomass 
and soil process variables (for example, soil respiration, soil carbon 
content and net N mineralization) by comparing the slopes of the 
linear correlations of the combined warming and eCO2 influences 
with the sum of individual effects with 1:1 line. Leuzinger et  al.60 
pooled plant biomass and soil process variables together to explore 
the differences in the response magnitudes under one, two and 
three global change drivers. When compared with the two previ-
ous reviews using Hedges’ d method that concluded predominantly 
multiplicative effects on ecosystem carbon storage and soil CO2 
emissions63,64, our results, obtained with different analytical meth-
ods and database, confirm that the nonlinear effects of multiple 
global change drivers on the carbon-cycle processes analysed are 
relatively infrequent. Another study using the same methodologi-
cal approach as ours found that warming and eCO2 multiplicatively 
affected aboveground biomass of woody plants62, further support-
ing our conclusion. Moreover, a most recent study reporting a four-
factor (temperature, precipitation, CO2 and N) experiment revealed 
predominantly multiplicative influences among the four global 
change drivers on ecosystem carbon cycling in a temperate grass-
land51, providing other lines of supporting evidence. All the above 
findings indicate that changes in carbon-cycle variables under 
multiple global change drivers can be under- or overestimated 
if more antagonistic60,61,65 or synergistic44,66 effects are assumed. 

Nevertheless, two experimental studies on N cycling and net pri-
mary productivity by manipulating three65 and four67 factors dem-
onstrated that the majority of interactions among multiple factors 
are antagonistic rather than multiplicative or synergistic, thereby 
dampening the net effects. From a global perspective, more direct 
evidence on whether multiplicative effects among global change 
drivers hold for experimental studies manipulating three or four 
factors is crucial for convincing projections of future global change 
terrestrial carbon-cycling feedbacks.

The future of global change manipulative experiments
During the past two decades, meta-analyses have reported eco-
system carbon-cycle responses to warming2,4,5,68,69, changing pre-
cipitation amount5,23, eCO2 (refs. 1,45,70–73) and N addition3,54,73,74, but 
relatively few have examined the combined effects (but see refs. 61–64).  
The data synthesis presented in this study, encompassing all global 
change manipulative experiments published to date, revealed 
global-scale general patterns of the responses and sensitivity of 
all the terrestrial carbon-cycle processes to multiple global change 
drivers and their interactions. Further discussion on the discrep-
ancy between our findings and those from previous meta-analyses 
is provided in Supplementary Text 2. In addition, sensitivity analy-
ses were developed to inform model validation, thus caution should 
be taken when using our findings to predict the impact magni-
tudes of global change drivers on carbon-cycle variables at given 
experiments (Supplementary Fig. 5). While global change research 
has made tremendous progress in developing manipulative experi-
ments to better simulate climate change scenarios7,75, our synthe-
sis highlights three key issues that need to be addressed in future 
experimental studies to better facilitate and assess model projection 
on terrestrial carbon cycling and its feedback to climate change.

First, although the existing manipulative experiments are critical 
to understand and disentangle mechanisms (for example, ref. 76), 
identify thresholds and tipping points of ecosystem responses to 
global change drivers77, and provide necessary information (input 
data and process understanding) for the modelling community11, 
the majority of the experiments have done a poor job of simulat-
ing the more complex climate change scenarios. For example, the 
stochastic nature of precipitation events causes substantial uncer-
tainty in predicting future scenarios and great challenges in design-
ing experiments to capture the full breadth of possibilities inherent 
in these scenarios. This is made even more difficult if experiments 
also attempt to capture the impacts of extreme events and exceeded 
thresholds6,7,78–80.

Second, the majority of existing studies focused on single-fac-
tor effects and thus precluded the analysis of nonlinear influences 
on carbon-cycle feedbacks among multiple global change drivers8. 
Although the combined treatment effects of two-driver pairs on 
carbon cycling were mostly multiplicative (Fig. 4), three- and four-
factor experiments are still urgently needed to generate multidimen-
sional (that is, multiple factors) response surfaces for carbon-cycle 
variables aiming to accurately quantify terrestrial carbon-global 
change feedbacks81. More specifically, changing plant community 
composition over a long-term scale may also lead to the occur-
rence of nonlinear effects among multiple factors82,83, indicating the 
importance of plant competition in regulating ecosystem responses 
to concurrent global change drivers30.

Finally, the influences of global change on carbon cycling are 
ecosystem- and climate-specific, suggesting that more experimen-
tal data from several hotspot regions are necessary to improve 
the global perspective. Semi-arid regions, forest ecosystems in the 
subtropics and tropics, and Arctic tundra are underrepresented in 
experiments, although they store large quantities of organic car-
bon and thus have a disproportionate impact on global carbon-
cycling and climate change-carbon feedbacks (Fig. 1a)6,13–15. In sum, 
forecasting terrestrial carbon-cycle responses to ongoing global 
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change requires future manipulative experiments aiming at knowl-
edge useful to inform mechanistic models (for example, gradient 
treatments)84, to include multiple driving factors, and to focus  
on underrepresented arid/semi-arid, subtropical/tropical and  
tundra ecosystems.

Methods
Data compilation and analysis. Peer-reviewed publications that reported 
ecosystem manipulative experiments in global change research were collected 
by searching Web of Science (WoS; 1 January 1900 to 13 December 2016) to 
construct the dataset of the synthesis during January–May 2017. Databases used 
for the search in WoS included (1) WoS Core Collection, (2) Inspec, (3) KCI-
Korean Journal Database, (4) BIOSIS Previews, (5) Derwent Innovations Index, 
(6) Russian Science Citation Index, (7) Data Citation Index, (8) Chinese Science 
Citation Database, (9) MEDLINE and (10) SciELO Citation Index. Global change 
drivers considered were climate warming (W), changing precipitation regimes 

(P), atmospheric CO2 enrichment (eCO2), enriched atmospheric nitrogen (N) 
deposition (eN), and their combinations, including WP, WeCO2, WeN, PeCO2, 
PeN, eCO2eN, WPeCO2, WPeN, PeCO2eN and WPeCO2eN. Therefore, the 
keywords for title search used in WoS were: (1) global change (13,053 records), 
(2) climate change (49,540 records), (3) free-air carbon dioxide enrichment (88 
records), (4) free-air CO2 enrichment (282 records), (5) elevated carbon dioxide 
(1,228 records), (6) elevated CO2 (4,169 records), (7) elevated atmospheric CO2 
(681 records), (8) CO2 enrichment (1,274 records), (9) eCO2 (14 records), (10) 
[CO2] (113,089 records), (11) warming (90,699 records), (12) elevated temperature 
(18,336 records), (13) changing precipitation (2,433 records), (14) increased 
precipitation (434 records), (15) decreased precipitation (93 records), (16) nitrogen 
deposition (3,777 records), (17) nitrogen addition (2,367 records) and (18) 
nitrogen application (8,620 records).

First, we identified publications from all 310,177 records through reading each 
title. In this step, we excluded 202,257 records whose titles showed that these studies 
were reviews/meta-analyses or conducted in non-terrestrial ecosystems (for example, 
oceans; Supplementary Fig. 6). The remaining 107,920 publications that might be 
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Fig. 4 | Interaction types of two-driver pairs. a–g, Forest plots on the effect sizes (means ± 95% CIs) of the interaction terms including W × IP (a), W × DP 
(b), W × eCO2 (c), W × eN (d), IP × eN (e), DP × eCO2 (f) and eCO2 × eN (g). The sample sizes are given along the y axis. The vertical dashed lines are zero 
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the interactive effects were positive (filled blue circles) or negative interactions (filled red circles). See Figs. 1 and 2 for abbreviations. (AT, ambient 
temperature; AP, ambient precipitation; aCO2, ambient CO2; aN, ambient N deposition.)
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relevant to our topic were included. Second, we further screened publications that 
may have reported global change effects on terrestrial ecosystems by reading the 
abstracts of all the 107,920 publications collected in the first step. Similar to the first 
step, we excluded 89,179 publications whose abstracts indicated that these studies 
were reviews/meta-analyses or conducted in non-terrestrial ecosystems. The PDF 
versions of the remaining 18,741 publications that might be relevant to the synthesis 
were downloaded. Third, we selected publications by reading the methods of the 
18,741 studies to identify which of them met the following inclusion criteria:
•	 Studies reported results of manipulative experiments conducted in the out-

door environment and having both control and treatment groups. Each group 
had at least three plots as replicates. In addition, the area of each plot was 
larger than 1 m2. The treatment groups were manipulated artificially to simu-
late global change drivers. For example, grassland plots of treatment groups 
were warmed using infrared radiators51.

•	 Experiments were conducted in terrestrial ecosystems. However, cropland and 
lab incubation studies were not included in this synthesis.

•	 Studies examined effects of simulated global change drivers on ecological 
processes, including carbon (for example, net primary productivity and its 
above- and belowground components, total, aboveground and root biomass, 
root-to-shoot ratios, litter mass, gross and net ecosystem productivity, and 
ecosystem and soil respiration, and so on), nitrogen (for example, soil N 
content and N mineralization rates) and water-cycle variables (for example, 
evapotranspiration and water-use efficiency) as well as plant (for example, 
plant cover, species richness and community temporal stability) and microbial 
parameters (for example, microbial biomass and microbial community com-
position and structure).

In the third step, we excluded 17,451 publications which did not meet the 
above inclusion criteria. After screening this huge number of publications, 1,290 
studies met the defined criteria. This list of 1,290 publications was subsequently 
cross-checked with references cited in the previous review/meta-analysis 
articles that studied global change influences on ecological processes, as well as 
publications used in this list to ensure that our publication survey was as inclusive 
as possible, and 756 additional publications were found. Finally, by searching the 
websites of ecology laboratories and experiment networks—for example, http://
www2.nau.edu/luo-lab/, https://mnspruce.ornl.gov/, http://www.nutnet.org/, 
https://www.ars.usda.gov/plains-area/fort-collins-co/center-for-agricultural-
resources-research/rangeland-resources-systems-research/docs/range/prairie-
heating-and-co2-enrichment-phace-experiment/research/, http://www.biocon.
umn.edu/, http://www.utas.edu.au/profiles/staff/plant-science/Mark-Hovenden 
and http://web.ics.purdue.edu/~jsdukes/Dukes.html—and checking the references 
of the papers downloaded from these websites, another 184 studies were collected. 
In total, 2,230 publications were included in the synthesis.

Information including publication year, simulated global change drivers, 
experimental duration, site locations and altitudes, site climate conditions (mean 
annual temperature (MAT) and precipitation (MAP)), vegetation types and the 
manipulation magnitudes of global change drivers was extracted from each of the 
2,230 publications collected in our literature search to demonstrate the state-of-
the-art and analyse the future challenges of ecosystem manipulative experiments 
in global change research. Based on this information, the 2,230 publications were 
classified into two groups: (1) publications reporting single-factor experiments 
having a single control and at least one single-factor treatment (for example, eCO2 
or eN) and (2) publications reporting multifactor experiments using factorial 
designs having a single control, multiple single-factor treatments (for example, 
eCO2 and eN), and combinations of factors (for example, eCO2 + eN). In addition, 
we identified how many single- and multifactor experiments were documented in 
the 2,230 publications. If a publication reported several experiments conducted at 
different sites or in different plant communities, it would be considered as several 
independent experiments. If a single-factor experiment manipulated several 
different global change drivers with a same control at the same site, it would be 
broken up into several independent control-treatment pairs and thus considered as 
several independent experiments. Values of MAT and MAP were downloaded from 
Climate Model Intercomparison Project phase 5 (CMIP5; https://esgf-node.llnl.
gov/projects/cmip5/) based on the site locations if individual studies did not report 
these values for their sites. Ecosystems subjected to manipulative experiments 
were classified into five typical types: forests (including mature forests and tree 
seedlings), grasslands (including grasslands, meadows, short- and tall-grass 
prairies, temperate/semi-arid steppes, shrublands, savannas, pastures and old-
fields), tundra, wetlands (including peatlands, bogs, marshes and fens) and deserts. 
In this study, 86.5% and 59.6% of single- and multifactor forest experiments were 
conducted in mature forests, respectively.

We plotted the distributions of MAT and MAP against latitude, and calculated 
the De Martonne wetness index85 of each experimental site using the data of MAT 
and MAP as

Wetness index ¼ MAP
MATþ 10

ð1Þ

In addition, the spatial distributions of single- and multifactor experiments 
were mapped in ArcMAP v.10.0. Moreover, to compare the differences between 

the manipulation magnitudes of global change drivers extracted from the 2,230 
publications and realistic climate change scenarios, we calculated the changes 
in MAT, MAP and atmospheric CO2 concentrations at each experimental site as 
the differences between the periods of 2081–2100 and 1986–2005 using the data 
reported in the IPCC RCP2.6, 4.5, 6.0 and 8.5. Maximum average N deposition 
over the world projected in RCP2.6 (1.55 g N m−2 yr−1), RCP4.5 (1.02 g N m−2 yr−1) 
and RCP8.5 (1.32 g N m−2 yr−1) by the end of the twenty-first century used in the 
synthesis were reported in Lamarque et al.17.

Effects of individual global change drivers on ecosystem carbon-cycle variables: 
meta-analysis. This study focused on the responses of ecosystem carbon cycling 
to global change drivers. Data of mean values (�X

I
), standard deviations (s.d.) or 

standard errors (s.e.m.) and sample sizes (number of plot replication) of ecosystem 
carbon-cycle variables (net primary productivity and its above- and belowground 
components, total, aboveground and root biomass, root-to-shoot ratios, litter 
mass, gross and net ecosystem productivity, and ecosystem and soil respiration) 
in control and treatment groups were extracted from each publication when 
possible. SigmaScan 5.0 (SPSS, Inc.) was used to digitize the figures and extract 
the numerical values when a publication presented the data graphically. In our 
meta-analysis, experimental data were excluded if the experiments were conducted 
over less than one year/growing season, except for tundra studies for which most 
of measurements were performed during the growing season (July–August). In 
total, 4,010 observations from single-factor experiments and 1,013 observations 
from multifactor experiments were collected (Supplementary Table 2). In addition, 
experimental data of the last year/growing season were used in our analyses when 
multiple measurements were taken at different years/growing seasons in a study 
to meet the statistical assumption of independence among samples in the meta-
analysis86, based on the methods reported in several previous meta-analyses1,64,69. 
After checking for independence, that is, only keeping data of the last year/
growing season in the meta-analyses when multiple measurements were taken at 
different years/growing seasons in a study, 2,104 observations from single-factor 
experiments and 392 observations from multifactor experiments in total were used 
in our meta-analysis (Supplementary Table 3).

The natural log-transformed response ratio (RR) was used to estimate the effect 
size of global change treatments on ecosystem carbon-cycle variables as:

lnRR ¼ ln
�XT

�XC

� �
ð2Þ

with a variance of:

var RRð Þ ¼ s:d:2T
nT �X

2
T

þ s:d:2C
nC �X

2
C

ð3Þ

where �X
I

T, s:d:T
I

, and nT
I

 represent the mean, standard deviation and sample size 
of treatment (T) group, respectively, �XC

I
, s:d:C
I

 and nC
I

 are the mean, standard 
deviation and sample size of control (C) group, respectively. Based on the methods 
developed by a previous study87, the ln RR was calculated separately for each 
control-treatment pair and treated as independent data when data extracted from 
multifactor experiments which had multiple single-factor treatments and a single 
control.

The metafor88 package in R software89 was used to calculate the weighted 
response ratio (ln RR++) and bias-corrected 95% bootstrap-confidence interval (CI) 
using inverse-variance weighted regressions and random-effects models. Moreover, 
the publication bias was also evaluated by funnel plots (that is, the scatter plots 
of the treatment effect sizes against their standard errors)90. If the studies were 
distributed symmetrically in a ‘funnel’ shape around a mean effect size, it would 
indicate the absence of publication bias. Therefore, we further assessed the 
potential asymmetry of the funnel plots using Egger’s regression90. Results of funnel 
plots and Egger’s regressions under the W, increased precipitation (IP), decreased 
precipitation (DP), eCO2 and eN treatments are provided in Supplementary Figs. 
7–11, respectively. We found that publication bias in our meta-analyses was rare. 
However, there was also some evidence for publication bias: for example, the 
studies examining the eCO2 effects on GEP (Supplementary Fig. S10; z = 3.84, 
P < 0.01). Finally, percentage change (%) of treatment effects was evaluated as:

Percentage change ¼ elnRRþþ � 1
� �

´ 100 ð4Þ

If the 95% CIs of treatment effects did not cover zero, the responses of ecosystem 
carbon-cycle variables to global change drivers were statistically significant.  
In addition, responses of ecosystem carbon-cycle variables with different ecosystem 
types were considered to be significantly different if their 95% CI values did  
not overlap.

Furthermore, we standardized the effects of IP/DP across the studies 
that manipulated different levels of precipitation treatments to compare the 
differences in precipitation influences among ecosystems and wetness indices 
based on the methods developed by a previous study23. All of the levels of 
precipitation manipulations were converted into a percentage of MAP. Overall, 
the manipulations in the IP treatments ranged from 1.1% to 151.0% of the MAP, 
with a median of 35.1%, and the manipulations in the DP treatments ranged from 
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5.8% to 100% of the MAP, with a median of 32.3%. We pooled all the studies to 
determine the absolute values of their manipulation levels, and the median was 
32.9% of the MAP for the whole database. The meta-regressions conducted in the 
metafor package indicated that the RRs of net primary productivity and its above- 
and belowground components, total, aboveground and root biomass, root-to-shoot 
ratios, litter mass, gross and net ecosystem productivity, and ecosystem and soil 
respiration showed linear responses to precipitation manipulation levels across 
all of the precipitation studies (Supplementary Fig. 12). Therefore, we performed 
the following linear transformation to normalize the RRs of all the carbon-cycle 
variables under the different treatment/manipulation levels to 32.9% of the MAP:

�XNT ¼ �XC þ
�XT � �XC

P
´ 32:9 ð5Þ

where �XNT
I

 is the normalized value under 32.9% above or below the MAP, and 
P is the precipitation manipulation levels (% of the MAP), with positive values 
representing the IP treatments and negative values indicating the DP treatments. 
The normalized lnRR++ and 95% CIs for changing precipitation studies were also 
calculated using the metafor package in R software. Results of funnel plots and 
Egger’s regressions under the normalized IP and DP treatments are provided in 
Supplementary Figs. 13 and 14, respectively. In addition, meta-regressions were 
conducted to examine the correlations of the normalized lnRR++ with wetness 
indices using the inverse-variance weighted regressions.

To explore which factors could determine the variations of the eCO2 effects 
(RR) on ecosystem carbon-cycle variables among sites, meta-regressions were also 
used to examine the correlations of the eCO2 effects with eCO2 levels (ppm), MAP 
and wetness indices. In addition, we also investigated whether the depths of root 
biomass sampling affect the responses of root-to-shoot ratios to individual global 
change drivers using meta-regressions.

Interaction evaluations of multiple global change drivers on ecosystem carbon-
cycle variables. Given that there was not enough data available from three- and 
four-factor experiments to analyse interactions among three and four global 
change drivers, we only estimated interactive effects of two-driver pairs using 
80 two-factor experiments (362 observations in total; Supplementary Table 4). 
If a two-factor experiment included four treatments (the control, treatment A, 
treatment B, and treatment A plus B), based on the techniques developed by two 
previous studies62,87, the interactions were calculated as:

ln RRð Þ ¼ ln
�XAB

�XB

� �
� ln

�XA

�XC

� �
ð6Þ

with a variance (the multiplicative property of variances)87 of:

var RRð Þ ¼ s:d:2AB
nAB �X

2
AB

þ s:d:2B
nB �X

2
B

þ s:d:2A
nA �X

2
A

þ s:d:2C
nC �X

2
C

ð7Þ

where �XAB
I

, s:d:AB
I

 and nAB
I

; �XB
I

, s:d:B
I

 and nB
I

; �XA
I

, s:d:A
I

 and nA
I

; �XC
I

, s:d:C
I

 and nC
I

 
represent the mean, standard deviation and sample size of the group of treatment 
A plus B, treatment B, treatment A and control, respectively. In the calculation 
of the interaction term, experimental data of the last year/growing season were 
used in the metafor package when multiple measurements were taken at different 
years/growing seasons. Results of funnel plots and Egger’s regressions under 
the interactions between W and IP (W × IP), W and DP (W × DP), W and eCO2 
(W × eCO2), W and eN (W × eN), IP and eN (IP × eN), DP and eCO2 (DP × eCO2) 
and eCO2 and eN (eCO2 × eN) are provided in Supplementary Figs. 15–20, 
respectively. However, caution should be taken when using our datasets, because 
we used fewer than three studies per group to test for publication bias for some 
two-driver interactions.

Based on a previous study that defined the calculation of interactions62, 
the interactions between two factors were classified into three types, including 
multiplication, positive interactions and negative interactions. If the 95% CI of 
the interaction term overlapped with zero, the interactive effect was considered to 
be multiplicative. If not, there were positive (the interaction term >0) or negative 
interactions (the interaction term <0).

Sensitivity of ecosystem carbon-cycle variables in response to global change 
drivers. Further calculations were performed to analyse sensitivity of ecosystem 
carbon-cycle variables to global change drivers as a standardized response 
magnitude per unit change in the global change driver. First, the main effects (E) 
of global change drivers on ecosystem carbon-cycle variables at each experiment 
were calculated using formula (4), which gives a percentage change. Second, the 
sensitivity (S) of ecosystem carbon-cycle variables to W (SW, percentage change 
per 1 °C−1 increase), IP (SIP, percentage change per 10 mm increase), DP (SDP, 
percentage change per 10 mm decrease), eCO2 (SeCO2

I
, percentage change per 100 

ppm increase) and eN (SeN, percentage change per 1 g N m−2 yr−1 addition) in each 
experiment was calculated as:

SW ¼ E
Increase in temperature Cð Þ ð8Þ

SIP ¼ E
Increase in precipitation amount mmð Þ

10

ð9Þ

SDP ¼ E
Decrease in precipitation amount mmð Þ

10

ð10Þ

SeCO2 ¼
E

Increase in CO2 concentration ppmð Þ ´ 100 ð11Þ

SeN ¼ E
N addition rates g N m�2 yr�1ð Þ ð12Þ

The units of warming (1 °C increase), eCO2 (100 ppm increase) and N addition 
(1 g N m−2 yr−1 addition) sensitivities were selected based on two previous studies5,44. 
Moreover, given that effective rainfall is generally more than 5 mm, we calculated 
precipitation sensitivities as 10 mm increase or decrease in precipitation. Third, the 
weighted mean sensitivities of ecosystem carbon-cycle variables to global change 
drivers at global/ecosystem scales were calculated using the same method as the 
meta-analysis (bias-corrected 95% bootstrap-confidence interval using inverse-
variance weighted regressions and random-effects models).

To investigate whether the local climate conditions influence the sensitivity 
of ecosystem carbon-cycle variables in response to global change drivers, simple 
linear regressions with 95% CIs were conducted to examine the dependences of 
the warming sensitivity of ecosystem carbon-cycle variables on local MAT, and the 
relationships of the IP and DP sensitivity of ecosystem carbon-cycle variables on 
local MAP and wetness indices.

We also plotted the observed against their predicted effects of global change 
drivers on carbon-cycle variables at each experiment, to examine the predictive 
ability of our sensitivity database. The observed effects of global change drivers 
on carbon-cycle variables at an experiment are the influences reported directly 
in publications collected in this study. The predicted effects were calculated as 
the product of the magnitudes of experimental manipulations (for example, 
temperature increases in warming experiments) at the experiment and the 
sensitivity calculated from the other experiments (Supplementary Figure 5).

Reporting Summary. Further information on the research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the results can be found in Song, J., Wan, S., Ru, J., Zhou, Z., 
Shao, P., Han, H., Lei, L., Wang, J., Li, X., Zhang, Q., Li, X., Su, F., Liu, B., Yang, F., 
Ma, G., Zhang, K., Hu, M., Yan, C., Zhang, A., Zhong, M., Hui, Y., Li, Y. & Zheng, 
M. Figshare https://doi.org/10.6084/m9.figshare.7442915.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Peer-reviewed publications that reported ecosystem manipulative experiments in global change research were collected by searching 
Web of Science (WoS; January 1st, 1900 to December 31th, 2016; Thomson Reuters, New York, NY, USA) to construct the dataset of the 
synthesis during January-May 2017. Databases used for search in WoS included 1) WoS Core Collection, 2) Inspec®, 3) KCI-Korean Journal 
Database, 4) BIOSIS Previews, 5) Derwent Innovations Index, 6) Russian Science Citation Index, 7) Data Citation Index, 8) Chinese Science 
Citation Database, 9) MEDLINE®, and 10) SciELO Citation Index. Details were reported in data collection section of the Methods.

Data analysis All meta-analyses and meta-regressions were performed using the package 'metafor' in R software (version 3.5.1). Details were reported 
in statistical analysis section of the Methods.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data supporting the results of this study were archived in Figshare (https://doi.org/10.6084/m9.figshare.7442915).
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Synthesis study.

Research sample In total, we extracted 4010 observations from 850 single factor experiments and 1013 observations from 269 multi-factor 
experiments for ecosystem carbon-cycle variables including net primary productivity and its above- and below-ground components, 
total, aboveground, and root biomass, root-to-shoot ratios, litter mass, gross and net ecosystem productivity, and ecosystem and soil 
respiration (Supplementary Table 2), to perform meta-analysis calculations. We also extracted 362 observations from 80 two-factor 
experiments for ecosystem carbon-cycle variables (Supplementary Table 4), to estimate the interaction terms among multiple global 
change drivers.

Sampling strategy The peer-reviewed publications were searched (title search) using Web of Science covering studies published between 1900 to 2016 
with the keywords including 1) global change, 2) climate change, 3) free-air carbon dioxide enrichment, 4) free-air CO2 enrichment, 
5) elevated carbon dioxide, 6) elevated CO2, 7) elevated atmospheric CO2, 8) CO2 enrichment, 9) eCO2, 10) [CO2], 11) warming, 12) 
elevated temperature, 13) changing precipitation, 14) increased precipitation, 15) decreased precipitation, 16) nitrogen deposition, 
17) nitrogen addition, and 18) nitrogen application. Details about the inclusion/ exclusion criteria for publications were reported in 
data collection section of the Method.

Data collection Peer-reviewed publications that reported ecosystem manipulative experiments in global change research were collected by 
searching Web of Science (WoS; January 1st, 1900 to December 31th, 2016; Thomson Reuters, New York, NY, USA) to construct the 
dataset of the synthesis during January-May 2017. Databases used for search in WoS included 1) WoS Core Collection, 2) Inspec®, 3) 
KCI-Korean Journal Database, 4) BIOSIS Previews, 5) Derwent Innovations Index, 6) Russian Science Citation Index, 7) Data Citation 
Index, 8) Chinese Science Citation Database, 9) MEDLINE®, and 10) SciELO Citation Index. Details were reported in data collection 
section of the Methods.

Timing and spatial scale Together, the studies published between 1973 to 2016, covered seven ecosystems including forests, grasslands, wetlands, tundra, 
and deserts. The mean annual precipitation (MAP) ranged from 52 mm to 4239 mm, and the mean annual temperature (MAT) 
ranged from less than -19°C to greater than 27°C.

Data exclusions We excluded studies that were conducted in aquatic and agriculture ecosystems. In addition, we collected data from field studies, 
and excluded those from laboratory incubation studies. 

Reproducibility The methods of data collection and analysis were presented in the Methods section in detail and the data supporting the results of 
this study were archived in Figshare for reproducibility.

Randomization The data were analyzed with a random effect model. Details were reported in statistical analysis section of the Method.

Blinding N/A

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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