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Abstract
The susceptibility of soil organic carbon (SOC) in tundra to microbial decomposition under warmer climate scenarios
potentially threatens a massive positive feedback to climate change, but the underlying mechanisms of stable SOC
decomposition remain elusive. Herein, Alaskan tundra soils from three depths (a fibric O horizon with litter and course roots,
an O horizon with decomposing litter and roots, and a mineral-organic mix, laying just above the permafrost) were
incubated. Resulting respiration data were assimilated into a 3-pool model to derive decomposition kinetic parameters for
fast, slow, and passive SOC pools. Bacterial, archaeal, and fungal taxa and microbial functional genes were profiled
throughout the 3-year incubation. Correlation analyses and a Random Forest approach revealed associations between model
parameters and microbial community profiles, taxa, and traits. There were more associations between the microbial
community data and the SOC decomposition parameters of slow and passive SOC pools than those of the fast SOC pool.
Also, microbial community profiles were better predictors of model parameters in deeper soils, which had higher mineral
contents and relatively greater quantities of old SOC than in surface soils. Overall, our analyses revealed the functional
potential of microbial communities to decompose tundra SOC through a suite of specialized genes and taxa. These results
portray divergent strategies by which microbial communities access SOC pools across varying depths, lending mechanistic
insights into the vulnerability of what is considered stable SOC in tundra regions.
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Introduction

In response to climate change, soil carbon (C) at high lati-
tudes is considered to be the single largest component of the
terrestrial C pool susceptible to substantial loss over the
century time-scale [1–3]. The potential release of previously
frozen soil C in Arctic regions through microbial decom-
position sparks widespread concern over positive feedbacks
to climate change [4]. These concerns have been corrobo-
rated by recent findings. Rising summer temperatures cor-
related with high respiration rates during early winter
periods, which tip tundra ecosystems into net atmospheric
carbon dioxide (CO2) sources [5, 6]. This can be associated
with soil microbial communities rapidly responding to
warmer soil temperatures and increasing thaw depths [7].
Thaw can result in prolonged microbial exposure to
unfrozen SOC and in some areas ice melt increases water-
logged and anaerobic conditions contributing to substantial
methane release in addition to CO2 [8]. However, laboratory
incubations indicated substantially greater (averaging 3.4
times more) SOC loss under aerobic than anaerobic con-
ditions, suggesting that aerobic SOC decomposition plays a
crucial role in permafrost thaw feedbacks [9, 10]. In tundra
soils, positive feedbacks to climate warming through
enhanced mid- to long-term temperature sensitivity of
respiration were observed with the strongest enhancing
responses in soils with high C to nitrogen (N) ratios
[11, 12]. Altogether, previous results indicated that tundra
SOC from varying depths, which represents a massive ter-
restrial SOC pool, is vulnerable to enhanced decomposition
under warmed conditions.

Many studies that assessed the influences of climate
variables on tundra SOC loss focused on soil temperature
and moisture and utilized only respiration and total soil
microbial biomass data, which do not reflect underlying
microbial community compositions and functions asso-
ciated with SOC decomposition [13, 14]. The quality and
quantity of SOC have been shown to be important drivers
shaping microbial community composition, abundances of
bacteria, archaea, and fungi [15, 16], and microbial C use
efficiency (CUE) [17]. Additionally, in response to thaw,
bacterial/archaeal and fungal community abundances and
compositions exhibited significant shifts over depth profiles
[18–20] and across landscapes [21]. Mineral-organic asso-
ciations, which increase with depth, can protect SOC from
decomposition [22] and the proportion of the passive SOC
pool has also been shown to increase with depth and to be
higher in mineral soils [12, 23]. Furthermore, colder tem-
peratures and waterlogging potentially slow microbial SOC
decomposition with depth and could explain higher per-
centages of old carbon in deeper tundra soils [24]. Hence, to
better understand the temperature sensitivity of tundra
SOC it is important to assess microbial SOC decomposition

from soils of varying organic matter content and quality
and depths and simultaneously assay changes in
population dynamics and functional potentials of the soil
microbiome.

We previously reported tundra SOC decomposition
kinetics under aerobic conditions using 280-day laboratory
incubations of soils obtained from the Alaskan tundra
treated with experimental field warming or ambient condi-
tions [23]. Bracho et al. [23] demonstrated the sensitivity of
the slow SOC pool to microbial decomposition, which
accounted for most of the respiration throughout the
experiment. We continued the incubation for a total of 3
years without fresh C inputs and employed a three-pool C
model to estimate parameters related to decomposition and
respiration of fast, slow, and passive SOC pools. For each
pool size, the following model parameters were estimated;
cumulative CO2 respiration (CR), percentages of CR
attributed to each pool, CO2 respiration rates (R), percen-
tages of R from each pool, and decomposition rate con-
stants. The temperatures and time points in the incubation
were selected for SOC modeling purposes and do not reflect
field temperatures at this site (mean annual temperature is
−1 °C) or time points that signify important microbial
community shifts in the field (i.e. seasonal variations or
response feedbacks to environmental changes). Hence, most
analyses focus on the linkages between the model para-
meters and community profiles. We identified the functional
gene and taxonomic variations between microbial commu-
nities throughout the incubation and assessed community
changes that correlated to the estimated SOC decomposition
parameters. We hypothesized that shifts in community taxa
and traits would correlate with SOC decomposition para-
meters and that these associations would be divergent across
the depth gradient, owing to the varying C content and SOC
pool sizes over depth. Our results indicated that microbial
community profiles could predict model parameters for fast,
slow and passive SOC pools and revealed a suite of spe-
cialized taxa and traits important for stable SOC
decomposition.

Materials and methods

Site description and sample collection

Samples for this study were collected from the Carbon in
Permafrost Experimental Heating Research (CiPEHR) pro-
ject, after exposure to two consecutive winter seasons
wherein warmed treatments were derived using snow fen-
ces. Details pertaining to field site characteristics and
warming experiment design are detailed in SI methods and
Fig. S1. Soil cores were collected to a depth of 60 cm from
6 control and 6 warmed soil plots. Soil cores were sectioned
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based on organic matter compositions (0–15; 15–25 cm;
and 35–58 cm). Measurement methods for determining soil
moisture content, bulk density, mass-based N and C con-
tents, and pH were previously described in Bracho et al.
[23]. Soil collected from the plots had higher pH values
with increasing depth (4.6–5.15; Table S1). The surface
depth (0–15 cm) was a fibric O horizon with litter and
course roots and the mid-depth (15–25 cm) was an O hor-
izon with decomposing litter and roots. The lowest depth
range (35–58 cm) was composed of soils with a mineral-
organic mix, laying just above the permafrost. Averaging all
field plots (warming and control), the initial extracted
soil properties showed declines in total C (TC) with depth
and the highest total N (TN) within the middle depth
(Table S1).

Incubation design

A total of 288 samples were analyzed for this study
(6 plots × 2 field treatments × 3 depths × 2 incubation tem-
peratures × 4 time points). Soil cores collected from each
plot were sectioned by depth then split into ~10 g sub-
samples. Subsamples were put in open vials and eight of
these vials were placed in a single 1 L incubation jar.
Incubation jars were incubated at either 15 or 25 °C. At each
time point one subsample was removed from each jar and
destructively processed to obtain microbial community
DNA. The accumulation of CO2 in each jar headspace was
quantified using an infrared gas analyzer (IRGA, Li-820
Licor, Lincoln, Nebraska) at 0.9 L min−1 with constant flow
maintained by a mass flow controller (Mass Flow meter
GFM, Aalborg Instruments & Control) and data was
recorded every 3 sec over 8 min by a datalogger (CR1000,
Campbell Scientific, Logan UT). The headspace was purged
when CO2 concentrations reached 10,000 ppm and C fluxes
(Fc) were calculated as the rate of CO2 increase in the
headspace of the jars over time after at least 4 cycles of
8.5 h each, expressed in μg CO2-C gCinitial

−1 d−1. Fluxes
were measured every 48 h during the first 2 weeks, twice a
week up to 45 days of incubation, biweekly up to 180 days,
then at least once per month until 3 years. Thorough details
on the measurement of soil C fluxes were reported by
Bracho et al. [23] and photographs of the incubation set-up
are in Fig. S1.

Sampling and DNA extractions

After 2 weeks, 3 months, 9 months, and 3 years of incu-
bation, subsample soils were removed from each incubation
jar and stored at −80 °C until DNA extractions were per-
formed for microbial analysis. To obtain total soil DNA, the
PowerSoil® DNA isolation kit was used in accordance with
the provided protocol (MoBio Laboratories, Inc, Carlsbad,

California). In some samples, DNA of high purity (Nano-
drop 260/280 and 260/230 absorbance ratios above 1.70)
could not be obtained via the kit alone so a freeze-grind
method [25] was used to obtain DNA that was subsequently
purified with the PowerSoil® kit.

16S and ITS amplicon library preparation and
illumina sequencing

Community DNA extracts were analyzed using targeted
sequencing of the V3–V4 hypervariable region of the bac-
terial and archaeal 16S ribosomal RNA (rRNA) genes [26]
and internal transcribed spacers (ITS), between 5.8S and
28S rRNA genes [27], for fungi. A total of 288 samples (3
depths, 6 field plots, warming and control field treatments,
15 and 25 °C incubations, 4-time points) were analyzed.
Sequencing was performed using a 2-step PCR protocol and
Illumina MiSeq high-throughput sequencing platform
(Illumina, San Diego, CA, USA) [28]. Details on the PCR
and sequencing primers, conditions, reagents, and sequence
processing are available in Supporting Information. De-
multiplexed Sequencing reads are available for download
from NCBI Sequence Read Archive under BioProject
PRJNA522791, accession numbers SAMN11233799-
11234070 (16S reads) and SAMN11267340-11267612
(ITS reads).

GeoChip analyses

We assessed the microbial functional gene structure using
GeoChip 5.0, which contains over 60,000 probes targeting
microbial functional genes relevant to environmental pro-
cesses [29–32]. For this work, we focused on probes tar-
geting genes involved in C-degradation only (24,886
probes). To generate these data, high-quality DNA (A260/
280 ≥ 1.7, A260/230 ≥ 1.3) was fluorescently labeled and
hybridized to GeoChip 5.0 60K microarrays. Scanned
images of individual microarrays were denoised and nor-
malized to remove poor-quality spots and transform signal
intensities into relative abundances. Detailed methodologies
for DNA labeling and hybridization, feature extraction, and
normalization are provided in SI methods. A data table of
normalized GeoChip signal intensities for all probes is
available at http://www.ou.edu/ieg/publications/datasets.

Three-pool carbon modeling

To model and partition the SOC into fast, slow, and passive
SOC pools we used a three-pool SOC decomposition
model, described previously [33] and detailed in the sup-
porting information. It should be noted, that in these soils all
depths have high organic matter content and the 0–15 cm
depth is a fibric O horizon, so slow and passive pools
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indicate recalcitrant chemical composition of organic matter
and physical barriers to decomposition as well as minerally
protected SOC. Briefly, estimates of the proportions and
decomposition rate constants of different SOC fractions
were modeled using the following equation:

R ¼ C0 � f1 � k1 � ek1l�t þ f2 � k2 � ek2�tþf3 � k3 � ek3�t
� �

ð1Þ

where R is CO2 respiration rate (g CO2-C g−1 SOC day−1) at
time t, C0 is initial SOC content (g SOC g−1 soil), f1, f2, f3,
k1, k2, and k3 are the relative pool sizes and decomposition
rate constants of the fast, slow, and passive SOC
components. From these values additional parameters
describing the SOC respiration kinetics were calculated
and included; CO2 respiration rate from the decomposition
of fast, slow, or passive SOC pools (R1, R2, R3), with units
of g CO2-C g−1SOC day−1, the proportion of CO2

respiration rate from the decomposition of fast, slow, or
passive SOC pools (fR1, fR2, fR3); cumulative CO2

respiration from the decomposition of fast, slow, or passive
SOC pool or total cumulative CO2 respired (CR1, CR2, CR3,

CRTOT) at time t, with units of g CO2-C g−1 SOC; and the
percentage of cumulative CO2 respired from the decom-
position of fast, slow, and passive SOC pool relative to the
cumulative CO2 respiration from the decomposition of total
SOC (fCR1, fCR2, fCR3) at time t. All calculations were
based on the parameters estimated from the entire 3-year
incubation determined at each time t, corresponding to the
DNA extraction time points (2 weeks, 3 months, 9 months,
and 3 years). All calculated model parameters are available
at http://www.ou.edu/ieg/publications/datasets and rounded
values are presented in Tables S2–S4.

Statistical analyses

Prior analyses showed that field warming had a negligible
effect on community composition (16S rRNA gene ampli-
cons) and functional potential (GeoChip) [23]. Therefore,
we pooled samples from the two field treatments. GeoChip
data and 16S and ITS OTU tables were refined prior to
analyses using correlation analyses to discard non-
significant probes or OTU’s (SI methods). To assess how
the SOC parameters varied based on depth and incubation
temperatures, ANOVA’s were applied to data subset by
depth and incubation temperatures using R. To determine
significance of variations between community profiles
across soil depths and incubation temperatures non-metric
multidimensional scaling (NMDS) plots and non-parametric
multivariate dissimilarity tests based on distance matrices
were employed (details in SI methods). Significant corre-
lations between microbial community profiles and SOC
decomposition parameters were identified using Mantel

tests with Pearson correlations and Multiple Regression on
distance Matrices (MRM) analyses based on distance
matrices (SI methods). Random Forest analyses were
employed to identify whether estimated SOC decomposi-
tion parameters could be predicted by the 16S, ITS, or
GeoChip profiles and to assign values of predictor impor-
tance for each OTU, microbial class, or GeoChip probe for
each significant prediction based on %IncMSE (the increase
in mean squared error of prediction resulting from that
OTU, probe, or class being permuted; SI methods).

Results

Soil SOC pools and decomposition kinetics across
depth

Estimated SOC parameters (Tables S2–S4) varied sig-
nificantly in soils from different depths and incubated at
different temperatures (ANOVA, P ≤ 0.01, Table S5 and
S6) Additionally, cumulative respiration from the decom-
position of slow and passive SOC pools dominated the total
soil respiration in all depths, under both incubation tem-
peratures (15 °C data presented in Fig. 1 is representative of
trends found at both incubation temperatures). The total
cumulative respiration and the cumulative respiration
attributed to each SOC pool were highest in the surface soil
and decreased with soil depth (Fig. 1). Estimated SOC
decomposition parameters exhibited significant differences
over the depth profile for cumulative respiration, CO2

Fig. 1 Stacked bar plots show estimated cumulative respiration (CR)
from each SOC pool and total measured cumulative respiration over
the 3-year incubation. Estimated CR from the decomposition of the
fast, slow and passive SOC pools were calculated using a 3-pool
model. Measured CR corresponds to the CR quantified during the
incubation. Data are from samples incubated at 15 °C. The samples
incubated at 25 °C follow the same trend (not shown here, but data
provided in Table S2)
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respiration rates, relative pools sizes, and decomposition
rates for all three pools (ANOVA, P ≤ 0.01, Table S5). The
percentage of cumulative CO2 respiration (slow and passive
pools) significantly varied across depth at the 25 °C incu-
bation, but not the 15 °C incubation. There were higher
portions of SOC in the passive pool in the lower depths,
whereas the surface depths contained the highest propor-
tions of fast SOC pools (ANOVA, P ≤ 0.01, Table S5).
Model parameters also varied in soils incubated at 15 °C
compared to those incubated at 25 °C and were significantly
different in the mid and lowest depths, but not at the surface
depth (ANOVA, P ≤ 0.01, Table S6). For example, incu-
bation temperature resulted in less variation in the surface
soils with respect to fast SOC pool size and decomposition
kinetics, whereas incubation temperature exhibited the
highest significant variation in passive SOC pool sizes and
kinetics in the deepest layer (ANOVA, P ≤ 0.01, Table S6).
Specifically, the CO2 respiration (slow and passive pools)
were affected by incubation temperature in all depths, but
the CO2 respiration rate from the decomposition of the fast
SOC pool was not impacted at any depth (ANOVA, P ≤
0.01, Table S6). Altogether, incubation temperature had a
greater effect on slow and passive as opposed to fast SOC
decomposition parameters. Model parameters exhibited
high variances across depth with a lesser effect of incuba-
tion temperature (Table S5 and S6).

Community dissimilarity was significant across
depth and incubation temperature

The 16S rRNA gene profiles were significantly different
between the deepest and surface depths at both tempera-
tures (Table 1). In all depths, a significant effect of the
incubation temperature on 16S rRNA gene profiles was
observed based on almost all dissimilarity tests (Table 1).
ITS profiles significantly varied with depth and incubation
temperature as well (Table 1). Ordination (NMDS) illu-
strated a clear contrast between incubation temperatures
and reduced dissimilarity (tighter clustering) in the 3-year
16S rRNA gene profiles compared to the other time points
(Fig. 2a). The 16S rRNA gene profiles did not cluster based
on depths (NMDS). However, ITS profiles were distinctly
clustered based on depth, but showed no trends relating to
incubation time or incubation temperature (Fig. 2b). The
stress tests for these plots indicated the data should
be evaluated with caution. GeoChip-based functional gene
profiles significantly varied with respect to incubation
temperature for all depths, as well as between the surface
and deepest depth, for most dissimilarity tests (Table 1).
Ordination of GeoChip data indicated functional gene
profiles were more similar for communities incubated at the
same temperature, except for the 3-year samples, which
were distinctly clustered with respect to incubation

temperature, though in the opposing ordination direction
(Fig. 2c).

Microbial community profiles correlate with some
estimated SOC Decomposition parameters

Random Forest and MRM analyses were run to identify
correlations between the variances of the SOC decomposi-
tion parameters and community profiles (16S, ITS, and
GeoChip). Results indicated a higher number of associa-
tions between SOC decomposition parameters and com-
munity profiles in the lowest depth (compared to the upper
depths), for slow and passive SOC decomposition para-
meters (as opposed to fast SOC decomposition parameters),
and when GeoChip profiles (vs. 16S or ITS profiles) were
used (Table 2).

Overall, there were significant correlations between 16S
profiles and SOC decomposition parameters (both pool
sizes and respiration from those pools), particularly those of
slow and passive SOC (Tables 2 and 3). From the lowest
depth 16S rRNA gene profiles predicted cumulative
respiration from the slow SOC pool (55% variance was
explained based on Random Forest, Table 3). In all depths,
16S rRNA gene profiles predicted the cumulative respira-
tion from the passive SOC pool and total cumulative
respiration (Random Forest, >30% variance explained,
Table 3). At the surface, the proportion of respired SOC
attributed to the decomposition of the passive and slow
pools exhibited variation that could be predicted with the
16S rRNA gene profiles (Random Forest, >30% variance
explained, Table 3). In the lowest depth, the pool sizes of
fast, slow and passive SOC were explained by 16S rRNA
gene profiles (Random Forest, >30% variance explained).
At the mid-depth only the variance of the slow pool was
explained (Random Forest, 43% variance explained), and
no pool sizes were reasonably predicted in the surface depth
(Random Forest, <30% variance explained, Table 3).
Compared to Random Forest analyses, MRM analyses
revealed fewer significant correlations between 16S rRNA
gene profiles and SOC decomposition parameters (Table 3).
MRM identified significant correlations that were primarily
found at the lowest depths (MRM, P < 0.05, Table 3).
Cumulative respiration from the passive SOC pool in the
lowest depth was the only model parameter that could be
significantly associated with 16S profiles by both MRM and
Random Forest (MRM, P= 0.04, Random Forest variance
explained= 48%). Without sub-setting the community
profiles by depth, there were significant, but weak correla-
tions with the distance matrices of 16S rRNA gene profiles
and SOC decomposition parameters (Mantel, P= 0.113,
MRM, P < 0.05).

ITS profiles exhibited more significant correlations with
SOC model parameters than did the 16S rRNA gene profiles.
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When samples from all depths were combined, distance
matrices of ITS profiles and model parameters exhibited
significant associations (P < 0.001 for both Mantel and MRM
tests). When subset by depth, a higher number of slow and
passive SOC decomposition parameters were significantly
associated with ITS profiles than fast SOC decomposition
parameters (MRM and Random Forest analyses, Tables 2 and
3). Overall, ITS profiles were more closely associated with
cumulative respiration (passive, slow, and total) than with
SOC pool sizes or decomposition rates (Tables 2 and 3). The
pool size of fast SOC could be better explained by ITS pro-
files with increasing depth (Random Forest 18, 31, 42%
variance explained, respectively, Table 3). In all depths, the

cumulative respiration from the passive and slow pools as
well as the total cumulative respiration were all explained by
the ITS profiles (Random forest, ≥ 30% variance explained,
Fig. S2, Table 3). In the surface soils, ITS profiles explained
the variance in the proportion of cumulative respiration
(passive pool), respiration rates (all pools), and the percentage
of respiration from the decomposition of the slow pool
(Random forest, ≥30% variance explained, Table 3). In both
lower depths, the ITS profiles explained variances of the fast
SOC pool sizes and in the lowest depth the respiration rate of
the fast SOC was explained (Random forest, ≥30% variance
explained, Table 3). Plot variance explained by ITS profiles
was as high as the most influential SOC decomposition

Table 1 Results from non-parametric multivariate dissimilarity tests reflect variation of microbial communities at differing depths and incubation
temperatures with respect to bacterial/archaeal, fungal, and functional gene profiles

Bacterial/archaeal (16S) Fungal (ITS) Functional (GeoChip)

MRPP Adonis ANOSIM MRPP Adonis ANOSIM MRPP Adonis ANOSIM

δ p F p R p δ p F p R p δ p F p R p

Between depths at 15 °C

Surface vs Mid 0.79 0.13 1.26 0.17 0.01 0.24 0.8 *** 18.64 *** 0.69 *** 0.36 0.31 0.56 0.52 0.01 0.15

Surface vs Low 0.79 0.01 1.94 *** 0.05 *** 0.79 *** 18.67 *** 0.74 *** 0.37 0.05 1.95 0.15 0.07 ***

Mid vs Low 0.82 0.2 1.18 0.21 0.01 0.17 0.82 *** 8.39 *** 0.32 *** 0.37 0.07 1.63 0.18 0.08 ***

Between depths at 25 °C

Surface vs Mid 0.81 0.11 1.4 0.09 0.02 0.1 0.82 *** 16.82 *** 0.73 *** 0.33 0.04 2.13 0.06 0.02 0.08

Surface vs Low 0.81 *** 2.34 *** 0.04 *** 0.86 *** 11.38 *** 0.55 *** 0.34 0.01 3.71 0.02 0.05 ***

Mid vs Low 0.84 0.14 1.21 0.2 0 0.49 0.86 *** 5.74 *** 0.26 *** 0.34 0.05 2.17 0.08 0.03 0.04

Between incubation temperature at depths

Surface 0.78 0.02 1.75 0.02 0.03 0.04 0.79 *** 2.65 *** 0.07 *** 0.35 *** 6.62 *** 0.25 ***

Mid 0.83 0.01 1.81 0.02 0.03 0.05 0.83 0.01 2.24 *** 0.05 *** 0.34 *** 10.64 *** 0.34 ***

Low 0.83 0.03 1.75 0.02 0.02 0.12 0.86 *** 2.89 *** 0.06 *** 0.37 *** 7.12 *** 0.26 ***

Three tests were used; MRPP, multi-response permutation procedures; Adonis, permutational multivariate analysis of variance using distance
matrices; and ANOSIM, analysis of similarity. Results are based on distance matrices calculated with Bray-Curtis index, but Sørenson was also
used and generated similar outcomes

Bold values indicate P < 0.05

*** indicates P < 0.01

Fig. 2 Non-metric multidimensional scaling plots of community pro-
files. Clustering of bacterial/ archaeal communities (16S) by timepoint
and incubation temperature (a); fungal communities (ITS) by

timepoint and depth (b); functional gene profiles (GeoChip) by time-
point and incubation temperature (c)
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parameters (Random forest, ≥35% variance explained,
Table 3). The cumulative respiration from the passive SOC
pool and respiration rate of the slow SOC pool (surface soil)
as well as the proportion of cumulative respiration from the
fast SOC pool (lowest depth) were the only parameters sig-
nificantly associated with the ITS profiles using both MRM
and Random Forest analyses (Table 3).

Functional gene profiles developed using GeoChip
microarrays showed a higher number of significant asso-
ciations with the model parameters, than did 16S and ITS
profiles (Table 2). GeoChip-based functional community
dissimilarity correlated with the dissimilarity of the model
parameters (Mantel test, P < 0.001; MRM analysis, P <
0.01). Altogether, the passive SOC decomposition para-
meters were more significantly correlated (83%) with
GeoChip-based functional profiles across depths than were
the slow (44%) or fast (28%) SOC decomposition para-
meters (Table 2). In all depths, there were significant
associations between functional gene profiles and percen-
tage of respiration, cumulative respiration, and the percen-
tage of cumulative respiration attributed to the
decomposition of the fast and passive SOC pools (MRM
analyses, P ≤ 0.05, Table 3). Except for the fast SOC pool
size in the surface soil, all SOC pool sizes could be
explained by the functional profiles from all depths (Ran-
dom Forest analyses, ≥30% variance explained, Table 3). In
the surface and deepest layers the decomposition rate of the
slow pool corresponded with functional profiles (Random
Forest analyses, ≥30% variance explained, Table 3). The
cumulative respiration (slow and passive pools), total
cumulative respiration, and the proportion of cumulative
respiration from the fast and passive pools also corre-
sponded to functional profiles in all layers (Random Forest
analyses, ≥30% variance explained, Table 3). Respiration
rates and the proportion of respiration from the slow and

passive SOC pools also could be explained by the func-
tional profile for different depths (Random Forest analyses,
≥30% variance explained, Table 3). Only the lowest two
depths had SOC decomposition parameters associated with
C decomposition gene profiles using both MRM and Ran-
dom Forest and these were predominantly slow and passive
SOC decomposition parameters, not fast SOC decomposi-
tion parameters (Random Forest ≥ 30% variance explained;
MRM P ≤ 0.05, Table 3).

Community markers that explained variance of SOC
decomposition parameters

Several bacterial classes were predictors of model para-
meters. Only SOC decomposition parameters associated
with 16S profiles based on Random Forest analyses (≥30%
variance explained) were investigated to further to deter-
mine OTUs and classes that contributed the most to this
association. As depth increased, the relative abundances of
OTUs in the class Planctomycetes explained more variance
of cumulative respiration (total, slow and passive pools)
(heat map values increasing from 18.6–34.4, 2.9–38.1, and
34.4–39.2, respectively, Fig. 3). Planctomycetes exhibited
some of the highest explanatory power consistently across
16S profile-associated model parameters (top 5% of heat-
map values, Fig. 3). Class level analyses revealed Proteo-
bacteria, Actinobacteria, and Acidobacteria to be
associated with model parameters (Random Forest, heat
map values in the upper 10%). Notably, Chlamydiea,
Planctomycetcia, and Opitutae classes, which all belong to
the PVC (Planctomycetes, Verrucomicrobia, and Chlamy-
diae) superphylum, were predictors of slow and passive, but
not fast SOC decomposition parameters in the upper two
layers (Plancotmycetica), at the surface (Opitutae), and
across all three depths (Chlamydiea) (Fig. 4a).

Table 2 The proportion of significant outcomes for each set of Random Forest or MRM tests used to associate SOC parameters with community
profiles (16S, ITS, GeoChip) from each depth

MRM Random Forest

16S ITS GeoChip 16S ITS GeoChip

SOC category

Fast C 0.11 0.06 0.11 0.06 0.22 0.28

Slow C 0.06 0.11 0.17 0.22 0.33 0.44

Passive C 0.06 0.11 0.17 0.33 0.33 0.83

Estimated parameter

Respiration rate 0.11 0.11 0.17 0.11 0.28 0.39

Cumulative respiration 0.14 0.14 0.14 0.38 0.57 0.67

Pool size 0 0 0.11 0.44 0.22 0.89

Decomposition rate 0.11 0 0.22 0 0 0.22

For, example, 2 MRM tests were significant of the 18 ran to relate16S community profiles from 3 depths to 6 fast SOC estimated parameters.
Random Forest analyses were considered significant if the community profile could explain ≥30% of the variance of a given estimated SOC
parameter. MRM tests were significant when P < 0.05. Correlations for individual SOC parameters are presented in detail in Table 3
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Actinobacteria exhibited associations with model para-
meters for all pools in the lowest depth, but not upper
depths, a trend unique to this class (Fig. 4a). Deltaproteo-
bacteria and Acidobacteria were identified as predictors of
slow and passive SOC decomposition parameters, but not
fast SOC decomposition parameters (Fig. 4a).

Ascomycota, Basidiomycota, and Zygomycota were the
primary phyla comprising the fungal community in the
incubated tundra soils. Ascomycota had the highest relative
abundance and the genus Helotiales exhibited consistent
dominance over time and depth (read abundance ≥ 18%,
Fig. S4). Important OTUs, revealed by Random Forest were
from of each of the 3 dominant fungal phyla, Sodar-
iomycetes, Leotiomycetes, and Eurotiomycetes, and were
important predictors of fast, slow, and passive SOC
decomposition parameters (Random Forest, Fig. 4b and S3).
Dothideomycetes and Mucoromycotina were predictors of
slow and passive SOC decomposition parameters in the
upper layers (Random Forest, Fig. 4b and S3). In the
15–25 cm soils Tremellomycetes were associated with fast
SOC decomposition parameters only (Random Forest,
Fig. 4b and S3). In the mid depth Microbotryomycetes were
good predictors of all SOC decomposition parameters and
Agaricomycetes predicted slow and passive parameters
(Random Forest, Fig. 4b and S3). Pezizomycotina were
predictors of fast SOC decomposition parameters, only in
the lowest depth (Random Forest, Fig. 4b and S3).

GeoChip probes targeting enzymes involved in the
decomposition of simple sugars were not good predictors of
any of the model parameters (Random Forest). However,
probes related to the decomposition of starch, other aro-
matics, chitin, hemicellulose, and pectin were identified as
good predictors for fast, slow, and passive SOC decom-
position parameters in all depths (Random Forest, Fig. 4c
and S3). Probes targeting enzymes involved in the decom-
position of agar, pesticides, and lignin were associated with

fast SOC decomposition parameters whereas those involved
in the decomposition of heparin, pectin, aromatics, and
cellulose were associated with slow and passive SOC
decomposition parameters, exclusively (Random Forest,
Fig. 4c and S3).

Discussion

The potential for a significant positive feedback to climate
warming exists if C in Arctic soils is decomposed by soil
microbial communities, but whether and how microbes
access and respire tundra SOC was elusive. This study
generated in-depth profiling of tundra microbial commu-
nities during SOC turnover that was dominated by the
decomposition of slow and passive SOC pools. The esti-
mated SOC decomposition parameters generated for this
study provide unique information on identifying microbial
community characteristics related to the decomposition
kinetics of stable tundra SOC. Here we showed how
microbial community profiles (bacterial/archaeal, fungal,
and functional genes) associate with these parameters and
we identify taxa and traits that were best predictors of fast,
slow, and passive SOC decomposition parameters (sum-
mary diagrams are in Figs. 5 and 6).

Overall, 16S-, ITS-, and GeoChip-based profiles were
better predictors of cumulative respiration than of respira-
tion rates, pool sizes, and decomposition rates. Likely, the
DNA-based profiles were better suited for predicting net
outcomes, rather than rates and fluxes. Fungal communities
were better predictors of cumulative respiration and
respiration rate, which, according to the exponential decay
relation of SOC decomposition, are negatively correlated
[34]. Hence, it is not surprising that fungal profiles could
predict both sets of parameters. The C decomposition
functional gene profiles from GeoChip were better

Fig. 3 Heatmap of importance (%IncMSE) of bacterial classes and
genera to predicting model parameters. Model parameters presented
had ≥30% variance explained by 16S profiles. Model parameters are
cumulative CO2 respiration from the slow (CR2) and passive (CR3)
SOC pools, and total (CRtot); relative pool sizes of the fast (f1), slow

(f2), and passive (f3) SOC pools, percentage of the cumulative CO2

respiration from the decomposition of the passive (fCR3) SOC pool,
and percentages of the respiration rate from the decomposition of slow
(fR2) and passive (fR3) SOC pools. SOC parameters are split by depth
(A= 0–15 cm, B= 15–25 cm, C= 35–58 cm)

Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic. . . 2909



predictors of model parameters than the taxonomic profiles,
and in particular could predict SOC pool sizes. From these
results, we could hypothesize that functional gene data

could be more informative in predicting SOC quality or
availability than community composition data. However,
supplementation of functional gene data with fungal and

Fig. 4 Heatmaps of importance (%IncMSE) of bacterial classes (a),
fungal classes (b) or GeoChip probes, categorized by C substrate
target (c) to predicting categorized model parameters (fast, slow,

passive, or total) over depth. Importance values were output from
Random Forest analyses

2910 L. Hale et al.



bacterial/archaeal community composition profiles would
be best for estimating SOC loss, as they explain divergent
decomposition parameters.

The initial properties of the soil profile from the AK
tundra site showed decreases in total SOC with increasing
depth, with the highest N concentration and lowest C:N
values residing in the 15–25 cm depth. Karhu et al. [11]
found that higher soil C:N was related to enhanced micro-
bial CO2 respiration under warming conditions. The AK
soils tested herein had high C:N ratios and slow and passive
SOC dominated the respiration. Hence, we infer that in
these soils, microbial communities were effective in
decomposing what would be considered stable SOC.
Unsurprisingly, respiration from soils taken from different
depths and incubation temperatures varied during the 3-year
incubation. The total cumulative respiration was much
higher in the surface soils than at the lower depths, irre-
spective of incubation temperature. With depth there was
reduced total cumulative respiration and increasing pro-
portions of slow and passive SOC pools, potentially arising
from increased water-filled pore spaces and slow, anaerobic
processes dominating SOC turnover with depth [35].
Additionally, increased mineral-organic associations occur
with depth and have been shown to be critical stabilizers of
SOC in soil but were not directly tested here [22, 36–38].

However, at all depths, the passive SOC pool offered a high
contribution of cumulative respired CO2. Hence, the
microbial mechanisms to access these pools were present
along the depth profile in soils with a range of SOC
pool sizes.

Overall, the fungal community composition data exhib-
ited more associations with estimated SOC decomposition
parameters in the upper depth and to fast SOC in the lowest
depths. In contrast, the bacterial/archaeal community com-
position and functional gene profiles were associated with
the estimated SOC decomposition parameters in the deeper
layers. This could be related to biomasses of the commu-
nities, which were not tested here, but based on qPCR
results from Blaud et al. [16], tundra soils exhibited greater
bacterial and archaeal abundances when they had higher

Fig. 5 Model parameters for each depth that were predicted by one of
the three community profiles, bacterial/archaeal (pink); fungal (yel-
low); or C decomposition functional genes (blue). These results are
based on associations deemed significant using both a Random Forest
approach (≥30% of the model parameter variance was explained by the
community profile) and multiple regression on distance matrices
(MRM) analyses (P < 0.05)

Fig. 6 Bacterial/archaeal classes (pink), fungal classes (yellow), and
functional gene substrate targets (blue) associated with relatively
available SOC (fast model parameters) vs relatively stable SOC (slow
and passive model parameters). Predictor importance was assigned to
each class or gene probe category for all model parameters with ≥30%
variance explained by the corresponding 16S, ITS, or GeoChip pro-
file based on Random Forest analysis. Predictor importance was used
to generate heatmaps with fast, slow, and passive groupings for the
SOC parameters. A class or probe category was deemed important to
prediction of an SOC category if heat map values were ≥4 (16S and
ITS) or ≥5 (GeoChip). Only classes and substrates that met this
threshold uniquely for either the fast SOC category or the slow/ pas-
sive categories are presented here

Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic. . . 2911



mineral content, whereas fungal abundances remained
consistent.

Interestingly, the fast SOC decomposition parameters
exhibited less relation to microbial community taxa and
functional genes than the slow and passive SOC decom-
position parameters (Figs. 5 and 6). This could reflect the
ubiquity of genes and microbial taxa involved in fast SOC
decomposition as opposed to specialized genes and taxa
with the capacity to access slow and passive SOC. These
“specialized” taxa and genes may be less consistently
abundant but respond to SOC limitation with the ability to
increase their prevalence in the community. Slow and pas-
sive SOC respiration was dominant across most of the
incubation time. As such, the microbial communities appear
to be able to access and respire what could be considered
stable SOC. Estimated SOC parameters in the lowest depth
frequently had closer associations to community metrics
than the upper depths. Again, this may be indicating that as
SOC is less easily accessible via mineral associations or
other SOC stabilizers, microbial communities are more
specialized, thus correlations are more easily detected and
can be better used to predict SOC decomposition kinetics.

Many of the bacterial classes with strong contributions to
predicting model parameters were not the most abundant
organisms, but were classes belonging to the PVC super-
phylum (Fig. 6). Members of this superphylum are diverse
in terms of habitat range, and lifestyles, and are grouped
primarily owing to a shared evolutionary history [39].
Verrucomicrobia and Planctomycetes have been found in
high-latitude peat bogs, which similar tundra, are char-
acterized by high organic matter and water contents
[40, 41]. Using 16S rRNA gene sequencing in forest soils
Bai et al. [42] found that SOC temperature sensitivity (Q10)
was positively related to copiotrophic guild relative abun-
dances and inversely related to oligotrophic guilds. Here,
the Q10 values calculated for the slow SOC pool was larger
[23] and slow and passive SOC decomposition parameters
were better predicted by Verrucomicrobia, likely K strate-
gists [43] able to grow on low substrate concentrations. This
may indicate ecotype variations in SOC decomposition
driven by variations in soil edaphic properties and habitat.
Interestingly, all Chlamydiae and some Verrucomicrobia
are intracellular organisms, found in association with
nematodes, ciliates, and amoebae [44–46]. The significance
of these classes in predicting slow and passive SOC
decomposition parameters could relate to essential nutrient
cycling driven by soil invertebrates under low-nutrient
conditions. Acidobacteria were abundant at all depths, are
ubiquitous in soils, have been found broadly in Arctic soils
with ranging properties, and have been assayed for their
functional roles in SOC decomposition [20, 47]. In this
study, Acidobacteria were found to be associated uniquely
with slow and passive SOC decomposition parameters in

the mid-layer and with fast SOC pool size in the lowest
layer. Additionally, Actinobacteria exclusively associated
with model parameters for fast, slow, and passive SOC
pools in the lowest depth soil, which had higher mineral
content and a larger proportion of old C. In previous works
metagenome assemblies from arctic soils highlighted SOC
catabolic potentials of Actinobacterial taxa related to
diverse SOC sources [48, 49]. This could indicate roles of
Acidobacteria and Actinobacteria in decomposing stable
SOC as well as mineral-associated labile SOC. Altogether,
this provides insights into the specialization of many tundra
bacterial classes to access and respire stable SOC.

A detailed presentation of the dominant and rare fungal
taxa at the CiPHER site was previously published based on
soil samples assayed directly after field collection [50].
Interestingly, the dominant genus, Helotiales, found at this
site maintained its dominance throughout the incubation.
Ascomycota, Basidiomycota, and Zygomycota were the
primary phyla comprising the fungal community in the
tundra soils, with Ascomycota showing strong dominance.
This falls in line with previous findings wherein Ascomy-
cota was the dominant phylum in tundra communities
throughout three seasons [51].

The rare and abundant taxa of fungi exhibited essential
roles in SOC and litter decomposition [52]. Here, fungal
classes from each of the three dominant phyla contained
OTUs that explained the variances of model parameters
across all depths. Dothideomycetes and Mucoromycotina,
which contain many saprobes, were predictors of slow and
passive SOC decomposition parameters in the upper layers.
This suggests the influence of detritus, which was the pri-
mary component within the upper layers, on the decom-
position kinetics of the fungal community.Mucoromycotina
also contain many ectomycorrhizal taxa and tend to increase
in diversity towards the poles [53, 54]. Members of the
Mucoromycotina class have high extracellular enzyme
production and have been well-studied with regards to
lipases, a class of enzymes with efficient catalytic properties
in hydrolyzing long chain C molecules [55]. Species rich-
ness within this class has been shown to be explained by
soil C:N ratio [54], offering additional support that this class
of fungi may be associated with SOC chemical composition
and recalcitrance. In the 15–25 cm soils, TC remained
high and TN was higher than in the other two depths. At
this depth, Tremellomycetes were associated with fast SOC
decomposition parameters. Members of this class have been
previously detected in shallow tundra soils [56–58].
Microbotryomycetes were identified as good predictors of
slow and passive SOC decomposition parameters and have
been associated with mineral layers of tundra soil and
increased in relative abundance in response to warming
[59]. Hence, at the mid-depth, the fast SOC pool could be
predicated by fungi within a class typically found in surface,
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organic matter rich soils. In contrast, the slow and passive
SOC decomposition parameters were associated with fungi
involved in accessing mineral-associated OM, highlighting
the different strategies used by fungi within these classes to
access different SOC pools. The class Agaricomycetes, was
an important predictor of slow and passive SOC decom-
position parameters at both lower depths and includes many
ectomycorrhizal taxa. Diverse lineages within this class
produce ligninolytic class II fungal peroxidases and other
plant cell wall-decaying enzymes, indicating potential roles
in the decay of wood and detritus [60]. Pezizomycotina
were predictors of fast SOC decomposition parameters, but
only in the lowest depth. While the species richness of this
class was previously explained by a positive response to soil
pH (increasing with neutral pH) [54], there are less reports
on extracellular enzymatic activity by this class than those
reported for the aforementioned fungal classes. The pH
increased from 4.6 to 5.15 with depth in these samples,
which may indicate that the potential of Pezizomycotina to
decompose fast SOC and predict fast SOC decomposition
parameters is pH dependent. Altogether, the fungi identified
with the Random Forest analyses broadly reflect a diverse
range of classes that can putatively decompose different
SOC pools.

Our analyses revealed associations with model para-
meters and GeoChip probes targeting enzymes involved in
the decomposition of more complex C substrates as
opposed to simple sugars, a finding that was consistent
across depths. Similarly, using shotgun metagenomic
sequencing Mackelprang et al. [61] found cellulose, hemi-
cellulose, and chitin decomposition genes to be significantly
correlated with permafrost thaw and genes involved in
simple sugar utilization to shift in response to thaw, but with
a lesser fold change. Overall, probes targeting enzymes with
extracellular activity and/or specialized capabilities had the
greater predictive capacity for fast, slow, and passive SOC
decomposition parameters. Because extracellular enzymes
are energetically expensive for soil microorganisms they are
often associated with slow-growing, oligotrophic life stra-
tegists, so we expected to find these associated with slow
and passive SOC decomposition parameters [62]. However,
agarase enzymes, identified in the upper soils in association
with fast SOC decomposition parameters, have been
demonstrated to be extracellularly secreted [63]. Interest-
ingly, enzymes involved in heparin and pectin degradation
were important predictors of slow and passive SOC
decomposition parameters in the surface soils, but not of the
fast parameters. Heparin is a highly, negatively charged
biomolecule, hence chemically recalcitrant and micro-
organisms with heparinases have been studied, owing to
their potential importance in SOC decomposition [64].
Microbial enzymes acting on pectins and heparins often
employ elimination mechanisms (lyases) rather than

hydrolytic pathways (hydrolases), more commonly utilized
to break C–O, C–H, and C–C bonds [65]. Hence, the
associations between the slow and passive SOC decom-
position parameters and these enzymes reflect potential
unique strategies for SOC decomposition processes in sur-
face tundra soils. However, at lower depths, these enzymes
no longer serve as the best predictors of slow and passive
SOC decomposition parameters. Here, the deeper soils
exhibit a stark contrast in functional gene predictive capa-
cities for the fast and slow/passive SOC decomposition
parameters. Lignin-targeting enzymes predicted fast SOC
decomposition parameters. In contrast, the oxygenases,
hydrolases, and aldolases, which are involved in aromatic
compound-degradation, and cellulase and galactosidase
enzymes, associated with cellulose degradation, were better
predictors of the slow and passive SOC decomposition
parameters and hence may become more important with
increasing C-limitation.

These novel findings are the first to relate estimated SOC
decomposition parameters to microbial community com-
position, phyla, and functional genes, providing unique
insights into the associations of microbial taxa and traits
with stable SOC turnover across a depth profile. First,
fungal communities, which are well known for their capa-
city to decompose chemically recalcitrant SOC types, were
associated with model parameters in surface layers. At
lower depths, associations were more closely related to
bacterial/archaeal and functional gene profiles, indicating
that bacteria and archaea may play more strategic roles in
accessing potentially mineral-associated SOC and have
greater mobility over depth, likely through water-filled pore
spaces, than do the fungal communities. Second, the PVC
superphylum has not been reported as important to tundra
SOC decomposition in the past, though classes within this
superphylum were consistently indicated here by Random
Forest analyses. This suggests that there is a previously
overlooked role of this versatile superphylum in tundra
SOC decomposition. Third, our analyses revealed that a
suite of microbial classes and genes, associated with puta-
tive extracellular enzyme production, correlated to model
parameters for fast, slow, and passive carbon. In addition,
microbial community composition and functional gene
structure could be better correlated to slow and passive
model parameters than to fast model parameters, indicating
an increased specialization of the microbial community to
decompose SOC with increasing C-limitation. Altogether,
in tundra soils microbial taxa and genes could predict SOC
decomposition parameters and exhibited a potential of the
community to decompose stable SOC. Provided that slow
and passive SOC pools dominated the total soil respiration,
we conclude that this functional potential was realized and
is indicative of the vulnerability of old and stable tundra
SOC to decomposition.
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