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Abstract
Increased human-derived nitrogen (N) deposition to terrestrial ecosystems has 
resulted in widespread phosphorus (P) limitation of net primary productivity. However, 
it remains unclear if and how N-induced P limitation varies over time. Soil extracel-
lular phosphatases catalyze the hydrolysis of P from soil organic matter, an important 
adaptive mechanism for ecosystems to cope with N-induced P limitation. Here we 
show, using a meta-analysis of 140 studies and 668 observations worldwide, that N 
stimulation of soil phosphatase activity diminishes over time. Whereas short-term N 
loading (≤5 years) significantly increased soil phosphatase activity by 28%, long-term 
N loading had no significant effect. Nitrogen loading did not affect soil available P and 
total P content in either short- or long-term studies. Together, these results suggest 
that N-induced P limitation in ecosystems is alleviated in the long-term through the 
initial stimulation of soil phosphatase activity, thereby securing P supply to support 
plant growth. Our results suggest that increases in terrestrial carbon uptake due to 
ongoing anthropogenic N loading may be greater than previously thought.
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1  | INTRODUC TION

Humans have doubled nitrogen (N) inputs into terrestrial ecosystems 
over the past century by burning fossil fuels and using artificial fer-
tilizers (Davidson, 2009; Galloway et al., 2008). Nitrogen can enter 
natural ecosystems through multiple routes, whereas phosphorus 
(P) derives mostly from deposition of mineral aerosols and weath-
ering (Peñuelas et al., 2013; Thingstad et al., 2005). Phosphorus in-
puts are typically small compared with N inputs, leading to a strong 
stoichiometric imbalance between N and P in unmanaged terrestrial 
ecosystems (Crowley et al., 2012; Peñuelas et al., 2013; Reinhard 
et al., 2017).

Enhanced N loading generally increases plant growth, thereby 
potentially stimulating ecosystem C storage and mitigating cli-
mate change (LeBauer & Treseder, 2008; Schulte-Uebbing & de 
Vries, 2018). However, the imbalance between N and P inputs 
suggests that plant growth may gradually shift from N to P lim-
itation over time (Elser et al., 2007; Li, Niu, & Yu, 2016; Peñuelas 
et al., 2013). Indeed, several reports show that P fertilization stim-
ulates plant growth more strongly in ecosystems with elevated ver-
sus ambient N inputs (Elser et al., 2007; Li et al., 2016), suggesting 
an N-induced P limitation of primary productivity. On the other 
hand, N fertilization can stimulate plant growth in P-limited ecosys-
tems (LeBauer & Treseder, 2008), and P limitation of plant growth 
frequently fails to develop, even after decades of N fertilization 
(Crowley et al., 2012; Finzi, 2009; Hyvönen et al., 2008; Lambers, 
Raven, Shaver, & Smith, 2008; Tatariw et al., 2018; Weand, Arthur, 
Lovett, Sikora, & Weathers, 2010). These contrasting results suggest 
the existence of unknown mechanisms that can alleviate N-induced 
P limitation of plant growth over time.

Plants and soil microorganisms preferentially invest metabolic 
resources to acquire nutrients that limit their growth (Bragg, 2012; 
Johnson, Wilson, Bowker, Wilson, & Miller, 2010; Marklein & 
Houlton, 2012). Soil phosphatases are enzymes produced by both 
plants and soil microorganisms to catalyze the hydrolysis of es-
ter-phosphate bonds and phosphoric acid anhydrides, releasing 
orthophosphate that can be taken up across living cell membranes 
(Liu, Chen, Chen, Guo, & Li, 2020; Margalef et al., 2017; Vance, 
Uhde Stone, & Allan, 2003). The production of extracellular phos-
phatases is generally assumed to indicate P limitation of both plant 
and microbial growth (Jian et al., 2016; Marklein & Houlton, 2012; 
Vitousek, Porder, Houlton, & Chadwick, 2010). Short-term exper-
iments across a wide range of terrestrial ecosystems show that 
N loading stimulates soil phosphatase activity and accelerates P 
cycling (Jian et al., 2016; Marklein & Houlton, 2012; Xiao, Chen, 
Jing, & Zhu, 2018). Yet it remains unclear whether N stimulation of 
soil phosphatase activity is persistent or temporally dynamic. To 
address this knowledge gap, we compiled a database of the effects 
of N loading on soil phosphatase activity consisting of 668 ob-
servations from 140 studies (Figure S1; Table S1). We synthesized 
these data using meta-analysis, specifically focusing on how the 
response of soil phosphatase activity to N loading changes over 
time.

2  | MATERIAL S AND METHODS

2.1 | Data collection

We searched for peer-reviewed articles published before December 
2019 (i.e., ~1900 to 2019) using Web of Science (http://apps.webof 
knowl edge.com/), Google Scholar (http://schol ar.google.com/), and 
China National Knowledge Infrastructure (http://www.cnki.net/). 
The keywords used for the article selection were: (a) “nitrogen load-
ing” or “nitrogen fertilization” or “nitrogen enrichment” or “nitrogen 
elevated” or “nitrogen deposition” and (b) “phosphatase” or “acid 
phosphatase” or “alkaline phosphatase” and (c) “terrestrial” or “soil” 
or “land.”

Articles selected for this meta-analysis had to meet the fol-
lowing criteria: (a) vegetation, soil, and climatic parameters were 
similar for ambient and N loading treatments; (b) results came 
from field or common garden experiments; (c) N loading methods 
(rate, duration, form and frequency) were clearly reported; (d) the 
duration of the experiment was longer than 1 year; and (e) stan-
dard deviation (SD) and sample size were reported or could be cal-
culated from the data presented in the publication. For factorial 
experiments, we only considered comparisons between control 
and treatments that differed solely in N loading (e.g., precipitation 
vs. precipitation plus N loading). Measurements from different 
years from the same study site were included separately. We ex-
cluded articles with: (a) incomplete information on the study site 
(e.g., when the coordinates, climatic variables or ecosystem type 
could not be determined); (b) ambiguous N loading methods (e.g., 
compost or slurry additions); (c) missing information on study du-
ration. When multiple measurements were taken within the same 
year or growing season, we considered the measurement with the 
most accompanied ancillary variables or that from the peak of the 
growing season (Tatariw et al., 2018). Based on these criteria, 140 
articles and 668 data points were selected (Figure S1); the original 
dataset is available from Figshare (https://figsh are.com/s/8ebfa 
bf329 c09de 0277e). When results from published sources were 
presented graphically, we used Grapher™ to digitize the data 
(http://www.golde nsoft ware.com/produ cts/grapher).

2.2 | Climatic and environmental variables

For each study in our dataset, we recorded a wide range of envi-
ronmental variables, including latitude (with a range from 4.12°S to 
68.63°N), longitude (157.78°W to 129.18°E), elevation (4–3,559 m), 
background N deposition (0.17–13.80 g N m−2 year−1), mean annual 
temperature (MAT; −8.8 to 27.7°C), mean annual precipitation (MAP; 
110–4,500 mm), and vegetation type (cropland, grassland, forest, 
shrubland and wetland). If the required data were not reported in 
the selected articles or other articles published by the same re-
search group, we contacted the corresponding author. Otherwise, 
we obtained MAT and precipitation from the WorldClim Database 
(Fick & Hijmans, 2017), background N deposition from the Global 
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N deposition database (ORNL DAAC, 2017), and vegetation types 
from the Whittaker Biome Diagram (Whittaker, 1962).

2.3 | Nitrogen loading methods

Information on N loading rate (g N m−2 year−1), duration (year), 
frequency (times per year), and chemical forms (urea, NH4NO3, 
and mixed N [combined inorganic and organic N loading]) were 
tabulated for each study. To make our results comparable to other 
meta-analyses on enhanced N deposition, continuous variables 
were divided into different subgroups as in earlier studies (Chen 
et al., 2017; Li et al., 2016; Liu & Greaver, 2010). For example, N 
loading rate was grouped by <5, 5–15 and >15 g N m−2 year−1 and 
N loading frequency by <4, 4–12 and >12 times per year. To assess 
temporal variation in treatment effects, we made a distinction be-
tween short-term (<5 years) and long-term (≥5 years) studies (Chen 
et al., 2020; Kuebbing et al., 2018). The cutoff of 5 years aligned with 
the large survey of long-term research in ecology and evolution by 
Kuebbing et al. (2018).

2.4 | Meta-analysis

We quantified the effect of N loadings on each variable by calculat-
ing the natural log of the response ratio (ln R), a metric commonly 
used in meta-analysis (Chen et al., 2015; Hedges, Gurevitch, & 
Curtis, 1999):

where XN and XC are the arithmetic mean value of the variables in the 
N loading and ambient treatments, respectively.

The effects of N loading on soil phosphatase activity were eval-
uated by mixed-effects models using the rma.mv function from the 
R package “metafor” (Viechtbauer, 2010). “Study site” and “obser-
vation” were considered as random effects in the meta-analysis, 
because several study sites contributed more than one effect size 
(Chen, Luo, García-Palacios, et al., 2018). Effect sizes were weighted 
by the inverse of the pooled variance (Vi):

where SDN and SDC are the standard deviations, nN and nC are the rep-
licate numbers, and XN and XC are arithmetric values for the variables 
for N loading and ambient treatments, respectively. The results for the 
analyses on lnR were back-transformed and reported as percentage 
change with N loading to ease interpretation. The effects of N loading 
were considered significant if the 95% confidence interval (CI) did not 
overlap with zero.

2.5 | Model selection and correlation analysis

Mixed-effects meta-regression model selection was adopted to 
identify the most important predictors of the effects of N loading on 
soil phosphatase activity using the “glmulti” package in R (Calcagno 
& de Mazancourt, 2010). The model selection was based on maxi-
mum likelihood estimation. The importance of each predictor was 
computed as the sum of Akaike weights for models that included 
this predictor. A cutoff of 0.8 was set to differentiate between 
essential and non-essential predictor variables (Calcagno & de 
Mazancourt, 2010; Jiang, Carrijo, et al., 2019; Terrer, Vicca, Hungate, 
Phillips, & Prentice, 2016). To avoid possible artifacts associated with 
arbitrary category definitions, we included study duration, N loading 
rate and N loading frequency as continuous variables in the model 
selection analysis. We ran model selection with all available pairwise 
predictors (i.e., latitude, longitude, elevation, MAT, MAP, background 
N deposition, N loading methods [frequency, rate and duration, all as 
continuous variables], and vegetation type) because missing values 
were not allowed in the model selection analysis.

To explore the potential mechanisms underlying P limitation, we 
tabulated the following information from both ambient and N load-
ing treatments from the original studies: aboveground biomass, soil 
pH, soil total N and P content, soil available P content, and soil micro-
bial biomass. We checked whether these variables were correlated 
with treatment effects on phosphatase activity. Since most studies 
reported only a few of those variables, correlation analyses were 
separately conducted for each variable. When a variable correlated 
significantly with treatment effects on phosphatase activity, we 
repeated model selection with the subset of studies that included 
information on this variable.

3  | RESULTS

Averaged across all studies, N loading enhanced soil phosphatase 
activity by 13% (95% CI, 8%–18%, p < .001; Figure 1). This effect of 
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F I G U R E  1   Effect of nitrogen (N) loading on soil phosphatase 
activity. Error bars represent bootstrap 95% confidence intervals. The 
sample sizes are shown above the error bars. Results are grouped 
by study duration for short- and long-term studies (<5 and ≥5 years) 
[Colour figure can be viewed at wileyonlinelibrary.com]
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N loading was consistent regardless of vegetation type (farmland, 
forest, grassland, shrubland and wetland) or the rate, duration and 
frequency of N loading (Figures 2 and 3).

Model selection analysis of soil phosphatase activity to N loading 
were best explained by study duration (Figure 4). The high impor-
tance of study duration supported the removal of predictors related 
to climate and environmental variables (latitude, elevation, MAT, 
MAP and background N deposition), vegetation types and other 
N loading methods (Figure 4). Specifically, short-term (<5 years) N 
loading significantly increased soil phosphatase activity by 28% 
(p < .001), whereas long-term (≥5 years) N loading had no effect on 
soil phosphatase activity (p = .707; Figure 1). This differential re-
sponse of soil phosphatase activity to short- and long-term N loading 

was also found within study categories based on vegetation type 
and N loading method (Figures 2 and 3).

Increases in soil phosphatase activity positively correlated 
with soil N content (p < .001; Figure S2a). When we repeated our 
model selection procedure for the subset of studies reporting soil 
N content, study duration remained the most important predic-
tor of treatment effects on soil phosphatase activity (Figure S2b). 
Nitrogen loading did not affect soil total P or available P content in 
either short- or long-term studies (Figure S3a,b). The response of soil 
phosphatase activity was not correlated to soil total P or available P 
content (Figure S3c,d).

F I G U R E  2   Effect of N loading on soil phosphatase activity for 
different vegetation types when studies are grouped by study 
duration. Error bars represent bootstrap 95% confidence intervals. 
The sample sizes are shown on the right hand of the error bars. 
Studies are grouped by study duration (<5 and ≥5 years) [Colour 
figure can be viewed at wileyonlinelibrary.com]

F I G U R E  3   Effect of N loading on 
soil phosphatase activity for N loading 
(a) form, (b) rate and (c) frequency when 
studies are grouped by study duration. 
Error bars represent bootstrap 95% 
confidence intervals. The sample sizes are 
shown on the right hand of the error bars. 
Studies are grouped by study duration  
(<5 and ≥5 years) [Colour figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  4   Model-averaged importance of the predictors of 
the effects of nitrogen (N) loading on soil phosphatase activity. 
Importance is estimated from the sum of Akaike weights based 
on model selection analysis using corrected Akaike's information 
criteria. Cutoff is set at 0.8 to explore the most essential variables. 
BND, background N deposition; MAP, mean annual precipitation; 
MAT, mean annual temperature. Form, duration, rate, and 
frequency denote different N loading methods [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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Nitrogen loading significantly increased aboveground biomass by 
21% (95% CI, 13%–29%, p < .001), with no difference for short- and 
long-term N loading studies (Figure S4a). Nitrogen stimulation of soil 
phosphatase activity was positively correlated with the responses of 
aboveground biomass (Figure S4b). When we repeated the model se-
lection analysis by including the response of aboveground biomass, we 
found that study duration and N loading rate were the most important 
predictors of treatment effects on soil phosphatase activity (Figure S4c).

Nitrogen loading significantly decreased soil pH by 0.24 units 
(95% CI, 0.17–0.32, p < .001; Figure S5a). The response of soil 
phosphatase activity to N loading did not directly relate to soil 
pH, but N-induced reductions in soil pH were positively correlated 
with N-induced changes in soil phosphatase activity (Figure S5b; 
p < .001). When we repeated the model selection analysis by includ-
ing soil pH in ambient treatment and N-induced changes in soil pH, 
study duration remained the most important predictor of treatment 
effects on soil phosphatase activity (Figure S5c).

Across the dataset, N-induced changes in soil microbial biomass 
were positively correlated with treatment effects on soil phosphatase 
activity (Figure S6a). When we limited the model selection analysis to 
studies that reported soil microbial biomass, study duration remained 
the most important predictor of the effects of N loading on soil phos-
phatase activity (Figure S6b). In addition, short-term N loading sig-
nificantly increased microbial specific phosphatase activity by 21% 
(p < .001), whereas long-term N loading had no effect (Figure S7).

4  | DISCUSSION

4.1 | Stimulation of soil phosphatase activity with N 
loading

Our results indicate that N loading significantly increases soil 
phosphatase activity across a wide range of ecosystems (Figure 2). 
Enhanced plant growth with N loading could drive increased demand 
for P, causing widespread plant and microbial P limitation (Elser 
et al., 2007; Li et al., 2016; Vitousek et al., 2010). This is supported by 
the positive relationship between N stimulation of soil phosphatase 
activity and aboveground biomass (Figure S4b). Plants and microbes 
are therefore investing energy and resources in phosphatase produc-
tion, which increases the turnover rate of P-containing compounds 
(Bragg, 2012; Plaxton & Tran, 2011; Richardson & Simpson, 2011). 
Phosphatases are N-rich molecules (Midgley & Phillips, 2016; 
Pinsonneault, Moore, & Roulet, 2016; Sinsabaugh et al., 2008), and 
the additional N provides building blocks to support plant and micro-
bial production of these enzymes (Delgado-Baquerizo et al., 2013).

4.2 | Acclimation of soil phosphatase activity to 
prolonged N loading

Total and available soil P content were unaffected by N loading, 
even in long-term studies (Figure S3a,b). Further, N stimulation of 

soil phosphatase activity decreased over time (Figure 1). These re-
sults suggest that ecosystems may prevent N-induced P limitation by 
mechanisms that maintain P availability (discussed below), thereby 
weakening the initial N stimulation of soil phosphatase activity over 
time.

First, enhanced soil phosphatase activity during initial stages of 
N loading can accelerate organic P mineralization (Jian et al., 2016; 
Marklein & Houlton, 2012; Vitousek et al., 2010), making a portion of 
P bioavailable and conserved in plant biomass rather than occluded 
by clays and minerals (Crowley et al., 2012). The P assimilated by 
plants can then be re-translocated and recycled with extended N 
loading, e.g., by redistributing P from senescing leaves to developing 
tissues (Bragg, 2012).

Second, shifts in plant community composition could increase 
P use efficiency. Nitrogen-induced P limitation of plant growth has 
been observed for individual species, but is less likely for whole 
communities (Turner, Brenes-Arguedas, & Condit, 2018; Weand 
et al., 2010), suggesting that individual species differ in their response 
to P limitation. Species able to tolerate P limitation or those with high 
P-recycling capabilities will outcompete other species, alleviating 
the N-induced P limitation of plant growth (Farrer & Suding, 2016; 
Sundqvist, Liu, Giesler, & Wardle, 2014). For example, arbuscular 
mycorrhizal-associated herbaceous species gained a competitive 
advantage over ectomycorrhizal-associated larch in response to en-
hanced N loading in a temperate forest (Deng et al., 2016). In addi-
tion, plants can mitigate P limitations for growth through adaptation 
strategies related to root morphology (Castrillo et al., 2017; Gilroy 
& Jones, 2000; Li et al., 2020), exudation of organic acids (Lambers 
et al., 2008), and reduced N demands (Maathuis, 2009).

Third, N-induced microbial P limitation can increase microbial 
mobilization of soil P through enhanced expression of P cycling 
genes or through changes in microbial community composition 
(Carrara et al., 2018; Vance et al., 2003). For example, Chen 
et al. (2019) reported that long-term mineral N addition increased 
crop production, but decreased soil phosphatase activity. These 
contrasting responses were accompanied by considerable shifts in 
bacterial communities harboring phoD genes coding for PhoD al-
kaline phosphatases (e.g., Stenotrophomonas and Brevundimonas), 
showing that N addition favored bacteria with the capacity to 
mineralize recalcitrant organic P rather than stimulating soil 
phosphatase production (Chen et al., 2019; Fox, Kwapinski, 
Griffiths, & Schmalenberger, 2014). Similarly, N-induced changes 
in microbial community composition and physiology can help eco-
systems adapt to P limitation (Jakobsen, Abbott, & Robson, 1992; 
Johnson et al., 2010; Tedersoo & Bahram, 2019; Wei et al., 2013). 
For example, arbuscular mycorrhizal fungi symbionts enhanced 
soil available P content, stimulated plant P absorption, and de-
creased the plant N:P ratio with N loading, which could help 
alleviate N-induced P limitation over time (Mei, Yang, Zhang, 
Zhang, & Guo, 2019; Wang et al., 2018). However, it should be 
noted that responses of arbuscular mycorrhizae are ecosys-
tem specific (Cusack et al., 2016; Sekaran, McCoy, Kumar, & 
Subramanian, 2019; Treseder, 2008; Wang et al., 2018), and that 
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N loading typically decreases the abundance of arbuscular mycor-
rhizae (Treseder, 2004). As such, the potential of mycorrhizae to 
alleviate P limitation with N loading is still unclear.

Fourth, N-induced changes in soil pH could partly attenuate 
N-induced P limitation. Soil acidification after N loading could 
induce a selective pressure that drives the evolution of the soil 
microbial community towards preventing the N-induced P lim-
itation of plant and microbial growth (Chen et al., 2019; Vitousek 
et al., 2010). In addition, N-induced soil acidification can reduce 
plant growth, soil C input rates, and microbial activity (Carrara 
et al., 2018; Chen, Luo, van Groenigen, et al., 2018), which could 
gradually reduce plant and microbial P requirements over time. 
Reductions in soil pH with long-term N loading could also help 
mobilize P from secondary minerals of aluminum, calcium and 
iron, alleviating N-induced P limitation over time (SanClements, 
Fernandez, & Norton, 2010; Sherman, Fernandez, Norton, Ohno, 
& Rustad, 2006). However, because this latter mechanism does not 
affect the P requirements of plants or microbes, it will not alleviate 
P limitation indefinitely.

Finally, prolonged N loading generally reduces belowground C 
allocation by plants, including decreased production of fine root 
biomass and root exudates (Carrara et al., 2018; Song et al., 2019). 
These responses can be ascribed to either N saturation over time or 
the accumulated deleterious effects on plant and microbial growth 
with long-term N loading (Aber et al., 1998; Treseder, 2008). Thus, it 
is likely that there is an ecosystem-specific threshold, above which 
prolonged N inputs do not exacerbate the P limitation, but instead 
reduce belowground C allocation (Tian, Wang, Sun, & Niu, 2016). 
Reduced belowground C allocation by plants may suppress mi-
crobial enzyme production due to C and energy limitations of mi-
crobial metabolism and growth over time (Mooshammer, Wanek, 
Zechmeister-Boltenstern, & Richter, 2014; Soong et al., 2019). This 
explanation is supported by our finding that N loading increases 
microbial specific phosphatase expression in the short-term, but 
not in the long-term. Similarly, limitation of other nutrients induced 
by long-term N loading (e.g., potassium, calcium and magnesium) 
could also constrain plant and microbial metabolism and gradu-
ally alleviate N-induced plant and microbial P limitation (Crowley 
et al., 2012; Wright et al., 2011).

4.3 | Soil N regulation of soil phosphatase activity 
with N loading

N loading increased soil phosphatase activity more strongly in eco-
systems with greater soil N content (Figure S2), suggesting that 
plants and soil microorganisms are more prone to P limitation in 
N-rich ecosystems. Soil phosphatase activity can be enhanced by N 
loading when plant growth and microbial metabolism have shifted 
from N limitation to P limitation, particularly once N limitation of 
plant growth has been lifted (Finzi, 2009; Li et al., 2016). Since phos-
phatase production imposes high N costs, N loading could stimu-
late soil phosphatase activity more strongly in ecosystems already 

with relatively high soil N content (Mineau, Fatemi, Fernandez, & 
Simon, 2014; Ratliff & Fisk, 2016). In ecosystems with relatively low 
soil N content, plant growth and microbial metabolism may remain 
N limited, even with enhanced N inputs (Fatemi, Fernandez, Simon, 
& Dail, 2016; Jones, Clode, Kilburn, Stockdale, & Murphy, 2013; 
Yokoyama, Imai, & Kitayama, 2017). Under these conditions, N 
loading would primarily support plant and microbial growth rather 
than the production of phosphatases (Kuzyakov & Xu, 2013; Pii 
et al., 2015).

4.4 | Implications

Our analysis confirms numerous studies showing that N loading 
leads to P limitation of both plant growth and microbial activity 
across a wide range of ecosystems (Elser et al., 2007; Li et al., 2016; 
Marklein & Houlton, 2012). However, our findings underline the 
importance of ecosystem processes leading to long-term acclima-
tion of P limitation. These processes have not yet been adequately 
explored, and ignoring them may lead to overestimating the effect 
of P limitation on ecosystem function. For instance, some model 
simulations suggest that future P limitation of plant growth will 
turn ecosystems into net CO2 sources by the end of this century 
(Sun et al., 2017; Wieder, Cleveland, Smith, & Todd-Brown, 2015). 
However, these models do not consider plant and microbial P ac-
quisition strategies, potentially leading to substantial uncertain-
ties in model projections (Jiang, Caldararu, Zaehle, Ellsworth, & 
Medlyn, 2019; Reed, Yang, & Thornton, 2015). When plant and 
microbial P acquisition strategies are considered, ecosystems that 
experience long-term enhanced N deposition can still act as net 
CO2 sinks (Fleischer et al., 2019). Our results point in that direction 
and suggest that omitting plant and microbial P acquisition strat-
egies may underestimate the potential of vegetation to mitigate 
climate change.

Phosphorus fertilization constitutes a challenge in modern agri-
culture, as continued P over application has led to enhanced P runoff 
from agricultural fields, causing eutrophication and hypoxia of lakes 
and marine ecosystems (Conley et al., 2009; Vance et al., 2003). Our 
results imply that plants and microorganisms will likely strengthen 
their P acquisition strategies due to N-induced P limitation, eventu-
ally leading to ecosystems being acclimated to N-induced P limita-
tion. Indeed, soils store considerable amounts of organic P (Vance 
et al., 2003; Vitousek et al., 2010), which can potentially be taken 
up by plants and microorganisms through, for example, phospha-
tase catalyzed P mineralization (Margalef et al., 2017; Marklein & 
Houlton, 2012). Thus, by managing plant and microbial P acqui-
sition strategies, the need for P fertilizers could potentially be re-
duced (Lambers et al., 2008; Menezes-Blackburn et al., 2018; Vance 
et al., 2003). Exploiting and applying plant and microbial P acquisi-
tion pathways with N loading is a top research priority for develop-
ing nutrient-smart and sustainable agricultural systems.

In summary, our synthesis indicates that N-induced increases 
in soil phosphatase activity diminish over time, even when 
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considering a wide range of climatic, edaphic, and experimental 
determinants of phosphatase activity. Our results indicate pro-
gressive attenuation of P limitation with N loading, highlighting the 
plant- and microbial-mediated ecosystem acclimation to N-induced 
P limitation. Thus, our results suggest that P limitation of plant 
growth with chronic N loading is smaller than previously thought. 
Our findings reconcile current conflicting results on N-induced P 
limitation, and underline the importance of ecosystem acclima-
tion strategies to nutrient imbalances. By exploring the plant and 
microbial mechanisms associated with ecosystem acclimation to 
N-induced P limitation, we may enhance plant nutrient use effi-
ciency and improve model predictions of net primary production in 
a warmer and N-enriched world.
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