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Abstract
Large-scale terrestrial carbon (C) estimating studies using methods such as atmos-
pheric inversion, biogeochemical modeling, and field inventories have produced dif-
ferent results. The goal of this study was to integrate fine-scale processes including 
land use and land cover change into a large-scale ecosystem framework. We analyzed 
the terrestrial C budget of the conterminous United States from 1971 to 2015 at 
1-km resolution using an enhanced dynamic global vegetation model and compre-
hensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen 
deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) 
were considered. We estimate annual C losses from cropland harvest, forest clearcut 
and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. 
C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 
2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net 
primary production increased by approximately 12.3 TgC/year, most of it was offset 
by increased C loss from harvest and natural disturbance and increased ecosystem 
respiration related to forest aging. As a result, the strength of the overall ecosystem 
C sink did not increase over time. Our modeled results indicate the conterminous US 
C sink was about 30% smaller than previous modeling studies, but converged more 
closely with inventory data.

K E Y W O R D S

carbon sequestration, DGVM, ecosystem model, ecosystem productivity, land use and land 
cover change, wildfire

[Correction added on 8 May 2020 after 
first online publication: the affiliation for 
Shuguang Liu and affiliation 1 have been 
updated in this version.] 

mailto:
https://orcid.org/0000-0003-0561-8988
mailto:
https://orcid.org/0000-0003-2371-9571
https://orcid.org/0000-0002-4556-0218
https://orcid.org/0000-0002-9493-8600
mailto:jxliu@usgs.gov
mailto:bsleeter@usgs.gov
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15079&domain=pdf&date_stamp=2020-04-14


LIU et aL.      |  3921

1  | INTRODUC TION

Regionally and globally, large uncertainties exist in quantifying bio-
logical carbon (C) sequestration in terrestrial ecosystems (Arneth 
et al., 2017; IPCC, 2007). Atmospheric inversion models, terrestrial 
biogeochemical models, and field inventories typically give notably 
different results (Hayes et al., 2012; King et al., 2015). Grassi et al. 
(2018) indicated that a model–inventory discrepancy in the global 
anthropogenic net land use emissions (about 1.5 GtC /year) can be 
mostly explained by conceptual differences in dealing with forest-
related land use and environmental changes. For the conterminous 
United States, estimates of the annual C sink during recent decades 
range from 200 to 685 TgC, varying greatly by method, period of 
analysis, and ecosystem type (Table S0-1). The recent SOCCR-2 re-
port (Birdsey et al., 2018) indicates that estimates of the US land 
C sink (excluding aquatic system) are converging around 275 TgC, 
including 201 TgC in forestland.

Land use and land cover change (LUCC) is an important per-
turbation of the regional and global C cycle. Synthesis of book-
keeping models, remote sensing, and process modeling studies 
indicate that global LUCC-induced C emission during 1990–2009 
was estimated around 1.1 PgC/year, with an overall uncertainty of 
±0.5 PgC/year (Houghton et al., 2012). Several long-term global 
and continental scale C assessments have used process-based dy-
namic global vegetation models (DGVMs). Although DGVMs can 
reflect much greater spatial and temporal variability in C density 
and response to environmental conditions than bookkeeping mod-
els, their modeled C stocks may differ markedly from observations 
(Houghton et al., 2012). One reason is that most C cycle processes 
related to LUCC were simplified in large-scale C modeling assess-
ments (Arneth et al., 2017) because DGVMs typically operate at 
coarse spatial resolutions with limited representation of LUCC. 
For example, the Community Land Model (Lindsay et al., 2014) and 
the Ecosystem Demography Model (Hurtt et al., 2002) have spatial 
resolutions of 0.5–1.0 degree for global simulations although the 
MC2 model has been used at 4-km resolution for western United 
States (Bachelet, Sheehan, Ferschweiler, & Abatzoglou, 2016). In 
some cases, other sources of LUCC C effects are adopted/com-
bined in DGVM simulations (Schimel et al., 2016; Sitch et al., 2015) 
in order to reflect LUCC effects. In general, LUCC is represented 
in DGVMs at spatial resolutions which are relatively coarse com-
pared to the spatial scales at which land cover change and land 
management occur (e.g., forest stands and municipal planning 
districts).

The conterminous United States (CONUS) has a diverse geog-
raphy, comprising many ecoregions with unique biophysical and 
land use characteristics. The unpredictable occurrence of large 
wildland fires, intensive land use in forestry and agriculture, and 
land use change complicate attempts to assess changes in ecosys-
tem C balance. This study integrates existing scientific knowledge, 
robust modeling, and the best currently available data to quantify 
the effects of major controlling environmental processes (atmo-
spheric chemistry, climate variability, fire disturbance, and LUCC) 

on ecosystem C dynamics. The goal of this study was to include 
smaller scale processes such as land use and land cover in a large-
scale regional ecosystem framework. Our approach evaluates C 
sequestration in dominant vegetation types (forests, shrublands, 
grasslands, croplands) in CONUS from 1971 to 2015 at 1-km reso-
lution by reconciling a modeling approach with county-scale obser-
vations. The study focuses on changes in ecosystem productivity, 
C storage, and biomass C losses from disturbances. Our modeling 
tool and various model input data are described in Section 2 and 
Supporting Information.

2  | METHODS

2.1 | Model description

The Integrated Biosphere Simulator (IBIS; Foley et al., 1996) is a 
DGVM that links mesoscale atmospheric drivers and vegetation 
ecophysiology in a physically consistent representation of canopy 
photosynthesis and stomatal conductance, while accounting for 
vegetation phenology and soil biogeochemistry to simulate long-
term vegetation dynamics and ecosystem productivity. IBIS allows 
multiple plant functional types (PFTs; see Table S0-3) to coexist in 
a single land pixel. Existence of a PFT depends on local-scale en-
vironmental conditions and is constrained by human land use. IBIS 
does not directly use forest age to calculate forest growth. Each for-
est PFT within a grid cell contains a single biomass C density. The 
biomass density together with the climate and disturbance variables 
determine the PFTs growth and mortality rates.

In this study, our modified version of IBIS introduces detailed 
effects of land cover change, wildland fire, forest thinning, and crop-
land grain/straw harvest (Liu et al., 2016). The model was enhanced 
to use comprehensive gridded LUCC data. The model handles eight 

Significance

Differences in input data and methods cause discrepancies 
in large regional carbon (C) assessment results. C seques-
tration estimates from bottom-up ecosystem models are 
usually smaller than estimates from atmospheric inversion 
models and larger than field inventory results. Here, we 
quantify C dynamics of the conterminous United States 
at 1-km spatial resolution focusing on detailed land cover 
changes over recent decades, using several proven and es-
tablished national data products. Our research highlights 
that the combined impacts of land management, human-
dependent land use change, and natural disturbance on C 
are greater than those associated with climate variability, 
and that process modeling can converge with field inven-
tory data when detailed land cover change information is 
used.
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major land transitions/disturbances (fire, forest clearcut, forest thin-
ning, deforestation to other vegetation, reforestation from other 
vegetation, agricultural expansion from grassland, agricultural con-
traction to grassland, and urban/infrastructure development). C 
transfer following LUCC and fire events includes direct C harvest/
combustion and additional vegetation mortality.

The modified IBIS model incorporates fractional land cover 
changes. Each 1-km grid cell contains multiple land cover types. Each 
land cover type (e.g., forest, grass and agriculture) can have multiple 
PFTs (see Table S0-3). Each PFT has a single set of biomass pools and 
fluxes. The IBIS model does not consider forest age directly. It uses 
biomass C density to adjust new biomass growth and mortality.

Forest thinning in a grid cell is determined by an external thinning 
ratio derived from the USDA Forest Service Forest Inventory and 
Analysis (FIA) and literature, which applies to entire forest PFTs annu-
ally. All live biomass from forest PFTs will be reduced following the thin-
ning ratio. More details are presented in the Supporting Information.

2.2 | Key input data

In this study, IBIS was enhanced to use comprehensive LUCC data:  
(a) 30-m vegetation height and cover type information from the USDA-
USGS LANDFIRE Program; (b) five dates (1973, 1979, 1986, 1992, 
2000) of 60-m resolution land cover change information from the USGS 
Land Cover Trends Project; (c) 30-m resolution annual wildland fire 
scar and burn severity information (1984–2015) from the USGS-USDA 
Monitoring Trends in Burn Severity (MTBS) Project; and (d) freshwa-
ter and saline wetland area fractions derived from 30-m National Land 
Cover Database (NLCD) and NOAA Coastal Change Analysis Program 
data. These publicly available datasets for CONUS are the largest and 
most comprehensive of their kind. In addition, state/county-level for-
est thinning rates were derived from previous studies (Law, Hudiburg, 
& Luyssaert, 2013; Zhou, Liu, Oeding, & Zhao, 2013).

To better constrain the model's prognostic representation of the C 
cycle at regional scales, we used region-specific C densities as calibra-
tion references for each county in CONUS. MODIS-derived annual 
net primary productivity (NPP) from 2001 to 2005 (Zhao, Heinsch, 
Nemani, & Running, 2005), forest live biomass and dead wood stand-
ing stock at 100 years from the Carbon On Line Estimator (COLE) 
tool (Van Deusen & Heath, 2016), and USDA NASS county-level crop 
harvest data (https://www.quick stats.nass.usda.gov/) were used to 
calibrate the model. The COLE tool is based on USDA Forest Service 
FIA data (USDA Forest Service, 2016; http://fia.fed.us), which is also 
used in development of LANDFIRE and some NLCD mapped prod-
ucts. Details are provided in Section 2 and Supporting Materials.

Details of LUCC-related data are provided in Supporting 
Materials S1, S2, S3, and S4. Table S0-2 provides key data links. 
Dynamic monthly precipitation and temperature data from 1971 
to 2015, interpolated to 4-km resolution using PRISM (Daly et al., 
2008), were used as the main climatic drivers. Other variables like 
monthly mean cloud cover fraction, wet days per month, relative 
humidity, and wind speed were adopted from monthly normals for 

1961–1990 obtained from the UK Climate Research Unit (http://
www.cru.uea.ac.uk/). The soil texture and C content were obtained 
from SSURGO (2015) polygon data and reprocessed/interpolated to 
1-km resolution. The modeled soil profiles contain up to six layers 
(0–7, 7–15, 15–25, 25–50, 50–100, and 100–200 cm). Sand, silt, and 
clay fractions of each layer are used by IBIS to calculate soil water 
holding capacity and permeability. Additionally, 0.5-degree spatially 
explicit seasonal surface CO2 concentration (2003–2009) and annual 
nitrogen deposition (1970–2009) were derived from satellite-based 
column density measurements (Lu et al., 2016; Zhang et al., 2014). 
The 1-km land ownership map was derived from the Protected Areas 
Database of the United States, version 1.4 (USGS, 2016).

2.3 | Consideration of fractional land cover

IBIS tracks annual changes in the area fractions of each land cover 
type within each land pixel. The original IBIS model simulated the 
existence of each PFT using climatic constraints only, which could 
give very different upper and lower canopy fractions from reality in 
regions where human activities have a major influence and in regions 
where physical limitations on vegetation exist (such as rock, desert, 
or open water). In our modified version, observed fractional land 
cover data are used to constrain the extent of changes in LAI and the 
proportions of different PFTs. Land cover fractions, including the 
unvegetated fraction, are not allowed to change unless a relevant 
LUCC event occurs.

Vegetation regrowth occurs following any disturbance or  
human-caused land use change. Disturbance applies to an entire PFT 
and land cover type in the model. When wildfire and forest harvest 
events occur (which are not permanent land cover conversions), 
the forest fraction will remain unchanged, with only biomass den-
sity (kgC/m2) being reduced; however, when deforestation occurs, 
all of the forest fraction will be converted to the target land cover  
(e.g. agricultural land, grassland, shrubland, etc.) except that we in-
tentionally allow a small fraction (5%) of forest to exist during urban-
ization. Conversely, when reforestation/afforestation occurs, either 
natural or human induced, other land covers convert to forest, caus-
ing the forestland fraction to increase, although the forest biomass 
density of the entire grid cell may not immediately increase. Following 
LUCC events, different proportions of ecosystem C will transfer to 
the atmosphere, harvest products, and on-site dead wood.

2.4 | Forest biomass and soil carbon initialization

We used a county-level scalar and retrospective cold-start simula-
tions (i.e., forest biomass starts from zero) to obtain county-level 
average forest standing stocks at 100 years that matched with FIA-
COLE observations (per hectare biomass densities). For individual 
forest pixels in a county, we assumed that the pixel-level forest 
growth rates varied around the county mean forest growth rate. The 
variability is driven by local environmental factors specific to its soil, 

https://www.quickstats.nass.usda.gov/
http://fia.fed.us
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/
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climate, tree cover fraction, and PFTs. When forest area fraction 
changes, pixel-level ecosystem production and biomass values will 
change based on the new forest area fraction. Based on those pixel-
level biomass-over-age growth curves, we used the “observed” 1-km 
forest biomass map generated from LANDFIRE data (Supporting 
Material S1) to determine the approximate forest age in 2000 and 
reconstructed the age and biomass for 1971. For a pixel where bi-
omass derived from LANDFIRE was larger than that simulated by 
IBIS at 100 years, we assumed the forest was mature and used the 
LANDFIRE estimate as its biomass in 1971. For a pixel where forest 
age backtracking indicated a stand-replacing disturbance occurred 
between 1971 and 2000, we assumed the previously disturbed for-
est was mature and set the biomass in 1971 to that of a forest with 
an age selected at random between 30 and 100 years. This assump-
tion could lead to slightly lower estimates of wood harvest for the 
western old-growth forest and slightly higher estimates of harvest 
for the southeastern plantations.

Initialization of soil C pools was based on soil survey data (Soil 
Survey Staff, 2019). Soil C has four pools: fast, unprotected slow, 
protected slow, and passive. These pools are not further divided by 
soil layers. IBIS soil layers are mainly used for water balance calcula-
tion. Our soil C calculation in the first 10 years was similar to the fast 
soil spin-up method of Xia, Luo, Wang, Weng, and Hararuk (2012), 
which compared input and output fluxes of total soil C. When input 
and output fluxes became very close, the soil C pool was close to a 
theoretical balanced state. To maintain the overall soil C pool size 
close to observations, we used a set of internal scalars in the first 20 
simulation years that dynamically adjust the slow soil C pool size and 
then deducted the slow C from the total observed soil C to obtain 
the size of the initial passive soil C pool. To avoid drastic declines 
of soil C in the simulation, we used an approach similar to the LPJ-
WHy model (Wania, Ross, & Prentice, 2009) in modeling peatland 
soil accumulation: A maximum amount of the passive soil C (reactive, 
5 kg C/m2) is allowed to participate in the soil decomposition pro-
cess. The extra passive soil C (beyond 5 kg C/m2) is assumed inactive 
within a given year. IBIS has ground litter C and dead wood C pools 
in addition to the four soil C pools. Dead wood calibration was done 
using FIA-COLE county-level 100-year dead wood data (same as live 
biomass calibration). Ground fine litter was calculated with IBIS de-
fault litter decomposition parameters.

2.5 | Model calibration

Model calibrations were performed by comparing simulated county-
level NPP, live biomass, dead wood, and crop yield with county-level 
observations of MODIS-derived NPP, FIA-derived forest live bio-
mass, dead wood, and USDA statistics of crop yields (Figure S5-1).

The COLE tool provides 100-year forest growth curves (live and 
dead wood) based on FIA data for each FIA survey unit (Table S5-1; 
Figure S5-1). It was assumed that a 100-year-old forest did not un-
dergo any stand-replacing disturbances, although effects of thinning, 
non–stand-killing fires or other disturbances are implicitly included 

in the FIA data. Repeated IBIS simulations were performed with 
disturbance events turned off and compared with the COLE-based 
FIA data. Scaling coefficients for each county were then calculated 
and applied to adjust IBIS’ simulations of forest live growth and dead 
wood. County-level live biomass scaling coefficient was calculated 
as a ratio of simulated county-level 100-year forest biomass over 
FIA-derived county-level 100-year forest biomass. The ratio was 
constrained between 0.1 and 10.0 and applied to tree mortality 
calculation in the next simulation. Repeated adjustments helped to 
make the simulation and observation converge. Dead wood scaling 
coefficient was calculated the same way using dead wood data.

We summarized county-level annual agricultural harvest data 
(comprising 26 crop species) since 1960. The yield data were aggre-
gated based on their area fractions (Table S5-2). The 2000–2009 
averages were used to calibrate IBIS agricultural harvest amounts 
over the same period. The 1960–2009 grain yield trend was used to 
adjust grain production increase in addition to simulated effects of 
CO2 fertilization.

The MODIS-derived NPP product provided full spatial and tem-
poral coverage, which was used to calibrate IBIS NPP at the ecore-
gion level. IBIS does not consider individual tree/crop species and 
other local management factors that would be captured by remote 
sensing. We avoided overfitting because IBIS has its own NPP algo-
rithm. Although this was not a pixel-level calibration, simulated NPP 
would still respond to spatial variability driven by climate, soil, and 
disturbance on the 960-m grid.

Four uncertainty statistics methods were used to evaluate model 
performance, including Pearson correlation coefficient, root mean 
square error, modeling efficiency, and mean relative difference. 
Details are provided in Supporting Material S5.

3  | RESULTS

3.1 | Land cover transition and related carbon gains 
and removals

Over the study period, wildland fire and forest clearcut disturbed 
the most land area, followed by agricultural contraction and expan-
sion, development, and forest to/from agricultural land (Table 1).

The mean annual C loss was 572.6 TgC/year, including grain har-
vest (284.5), straw harvest (152.3), forest clearcut harvest (31.9), forest 
thinning (86.0), direct emissions from fires (10.5), and C losses related 
to other land transitions (10.4). These C losses were partly compen-
sated by vegetation regrowth. For example, over the 45 years, aver-
age total net biome productivity (NBP; negative values denote C loss) 
of all clearcut harvest sites was −14.0 TgC/year, whereas the average 
annual C removal on clearcut sites was 31.9 TgC/year. Similarly, all 
wildfire sites together sequestered 5.5 TgC/year, while their average 
annual C loss in combustion was 10.5 TgC/year. Fire emission was not 
available before 1984 due to lack of wildfire data. This would cause 
underestimation of C loss in those years. The underestimation might 
be close to the average annual fire emissions during 1984–1990 (6 
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TgC/year), which was lower than the fire emissions during 2011–2015 
(25 TgC/year). Urban development areas on average lost 2.3 TgC/
year. Areas with unchanged land cover sequestered 182.9 TgC/year.

3.2 | Carbon trends and spatial distribution

Figure 1 shows the simulated trends in key ecosystem C fluxes 
and stocks from 1971 to 2015. Due to the combined contribu-
tions of CO2 fertilization, plant phenology, climate change, and 
land change impacts, average NPP increased by about 23% dur-
ing 1971–2015 (18.5% in forests, 7% in shrubland, 27.9% in grass-
land, and 31.7% in agricultural systems), calculated using the linear 
trend line of the 45-year NPP values. NPP of agricultural land had 
the highest increase partly due to farming and biotechnology ad-
vances, which were represented in the model empirically, based 
on 1960–2010 crop yield data. Average total NBP was 170 TgC/
year, ranging from a loss of 104 TgC/year in 1988 to a maximum 
uptake of 366 TgC/year in 2004. Clearcut harvest removals aver-
aged 32 TgC/year and were lowest in the 1970s (21 TgC/year) and 
highest in the late 1980s (36 TgC/year), whereas forest thinning 

removed approximately 86 TgC/year. Combustion of soil and bio-
mass C was 6 TgC/year during 1984–2000, but increased to 12 
TgC/year in 2000s, and reached 25 TgC/year during 2001–2015, 
with large interannual variation. C losses in agricultural harvests 
(grain + straw) increased steadily from 374 TgC/year to 505 TgC/
year over the simulation period. Total C increases in live biomass, 
dead wood, other plant litter, and soil were 4.19, 1.16, 0.57, and 
1.75 PgC, respectively. More than half of the C stock increase was 
in live biomass (55%), followed by soil (23%), dead wood (15%), and 
litter (7%).

Summaries of C stocks and fluxes by land cover class and by 
decade from 1971 to 2015 are listed in Table 2. Overall, the esti-
mated CONUS terrestrial ecosystem C sink of 170 TgC/year (not 
including C sink in aquatic systems and harvested wood product) 
offset about 11.5% of total CONUS fossil fuel emissions (1,476 
TgC/year) (King et al., 2015). The highest decadal NBP occurred in 
the 1990s (188 TgC/year), due to favorable climate and relatively 
small areas disturbed. However, NBP was low in the 2000s (166 
TgC/year), when C removals in agriculture, fire disturbances, and 
LUCC increased. The average NBP of 2011–2015 recovered to 192 
TgC/year.

TA B L E  1   Land cover change and fire effects on ecosystem carbon fluxes in CONUS (1971–2015 average NPP and NBP). The areas are 
the sum of the land pixels that had undergone the same LUCC events during 1971–2015. A positive NBP value refers to a net carbon sink 
on land. Fire disturbance locations overlap with the No-LUCC locations. The land area and carbon numbers on the No_LUCC row already 
include the numbers from the Fire row. Therefore, the numbers on the Sum/Avg row do not include the numbers from the Fire row. The fire 
area included 14,000+ fires from 1984 to 2015. No fire data were available from 1971 to 1983. Forest thinning was assumed to occur across 
all forested areas annually

Change type AREA (km2)
NPP  
(kgC m−2 year−1)

NPP_SUM 
(TgC/year)

NEP  
(kgC m−2 year−1)

NEP_SUM 
(TgC/year)

NBP  
(kgC m−2 year−1)

NBP_SUM 
(TgC/year)

No_LUCC 6,835,273 0.36 2,480.7 0.10 665.5 0.027 182.9

Fire 547,034 0.33 181.5 0.04 23.4 0.010 5.5

Forest clearcut harvest 316,501 0.55 175.2 0.09 28.5 −0.044 −14.0

Deforestation to Ag. 39,515 0.43 16.9 0.16 6.1 −0.030 −1.2

Reforestation from Ag. 38,512 0.61 23.5 0.15 5.8 0.065 2.5

Forest to development 38,735 0.38 14.8 0.09 3.4 −0.023 −0.9

Grass to development 15,702 0.18 2.8 0.04 0.7 −0.019 −0.3

Ag. to development 50,164 0.27 13.8 0.09 4.5 −0.021 −1.1

Ag. expansion from grass 123,993 0.30 37.3 0.16 20.2 −0.004 −0.5

Ag. contraction to grass 183,977 0.28 51.0 0.04 8.1 0.015 2.8

Sum/Avg (excluding fire row) 7,642,373 0.368 2,816 0.097 743 0.022 170

Abbreviations: LUCC, land use and land cover change; NBP, net biome productivity; NEP, net ecosystem productivity; NPP, net primary productivity.

F I G U R E  1   Temporal trends of major 
carbon fluxes of CONUS from 1971 to 
2015. Units are TgC/year. A positive 
NBP value refers to a net carbon sink 
on land. NBP, net biome productivity; 
NEP, net ecosystem productivity; NPP, 
net primary productivity; RH, ecosystem 
heterotrophic respiration
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Figure 2 shows the spatial patterns of ecosystem NPP, net eco-
system productivity (NEP), NBP, and C removals from fire and har-
vest averaged over the 45-year simulation period. The US west coast 
and the eastern United States had generally high NPP and NBP, 
mostly in forested regions. Agricultural land had the highest NEP 
and medium high NPP, but its NBP was low due to grain and straw 
removals.

4  | DISCUSSION

4.1 | Implications for LUCC-based C modeling

Our study provides a number of important insights on the quantifi-
cation of LUCC and fire effects on CONUS C cycling. First, the in-
terannual variations in NPP and NEP were driven mainly by climate 
variability without counting LUCC and fire effects. In our study, 
LUCC and fire disturbance caused C loss of approximately 573 TgC 
(STD = 68 TgC) per year on average (including 437 TgC/year loss from 

agricultural land), which offset 77% of total NEP (743 TgC/year). This 
huge C loss greatly exceeded year-to-year variability (STD) in NPP 
(199 TgC/year), NEP (121 TgC/year), and NBP (96 TgC/year). If we 
look at forestlands only, C losses caused by clearcut and thinning 
(104 TgC/year, STD = 13.2 TgC/year) also exceeded the variations of 
forest NPP (93 TgC/year), NEP (53 TgC/year), and NBP (47 TgC/year). 
This demonstrates that human land use and natural disturbance are 
key factors in the C balances of the CONUS ecosystems, with larger 
magnitude and smaller variation than climate variability effects.

Second, most terrestrial C sinks occur in areas unaffected by 
LUCC, primarily on forestlands, with about 55% of the C sink allo-
cated to living biomass. Although forest NPP and NEP increased 
by 18.5% and 33.4%, respectively, forest NBP basically remained 
the same during the study period. This leveled NBP of forest was 
attributable to a combination of increased C gain from NPP and 
increased C loss from heterotrophic respiration, LUCC, and fire 
disturbances.

Third, our estimates are generally more consistent with results 
from inventory-based methods, which consistently estimate a 

TA B L E  2   Overall carbon fluxes and stocks in CONUS by land cover type and by decade. Flux values by land cover are the 1971–2015 
averages. Stock values by land cover are for 2015. The “Other” lands include all lands in CONUS with non-vegetation cover of greater than 
85%, mostly barren, and urban areas. Area unit is km2; C stock unit is TgC; C flux (NPP, NEP, NBP) unit is TgC/year

 Area (1971) Area (2015) NPP NEP NBP
Live  
Biom C

Dead 
Biom C Litter C Soil C Total C

Forest 2,737,374 2,709,645 1,448 280 129 15,407 2,374 3,454 40,461 61,695

Crop 2,018,467 1,958,302 747 395 21 1,875 208 696 28,429 31,209

Shrub 1,670,473 1,651,758 282 28 14 1,051 428 723 11,004 13,206

Grass 1,174,161 1,185,146 325 35 14 624 104 638 14,727 16,094

WdCrop 10,066 10,066 7.6 5.1 0.1 22 0 6 104 132

Other 31,833 127,456 7.8 0.9 −7.6 63 8.0 16.4 947 1,034

Sum 7,642,374 7,642,374 2,817 744 170 19,043 3,123 5,533 95,672 123,371

1970s   2,607 653 171 17,488 2,676 5,277 95,041 120,482

1980s   2,698 686 145 18,559 2,948 5,378 95,265 122,150

1990s   2,868 776 188 19,354 3,174 5,605 95,671 123,804

2000s   2,947 796 166 19,984 3,430 5,701 96,227 125,342

2010s   3,105 866 192 20,543 3,630 5,865 96,645 126,683

AVG 71-15   2,816 743 170 19,035 3,121 5,532 95,673 123,360

Abbreviations: NBP, net biome productivity; NEP, net ecosystem productivity; NPP, net primary productivity.

F I G U R E  2   Spatial distribution of 
45-year average net primary productivity 
(NPP), net ecosystem productivity (NEP), 
net biome productivity (NBP), and carbon 
losses from grain harvest, tree harvest, 
and fire. Unit is kgC m−2  year−1
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smaller land C sink than ecosystem models and atmospheric inver-
sion methods (Table S0-1). Simulated forestland C sink in the 1990s 
was 125 TgC/year. If we consider an estimated 25 TgC/year sink 
in harvested wood products (Pan et al., 2011; U.S. Environmental 
Protection Agency, 2014), our adjusted 1990s forest NBP estimate 
would be 150 TgC/year. Because our forest summary included only 
land cells where forest cover was dominant, and because we used 
fractional land cover in the model, a portion of the C sink in shrub-
lands, grasslands, and agricultural lands (total about 63 TgC/year) 
could be attributed to additional C uptake by trees. Our statistics 
indicate that average tree biomass density on forestland, agricul-
tural land, shrubland, and grassland during 1971–2015 was 5.60, 
0.81, 0.16, and 0.20 kg C/m2, respectively. Therefore, about 14.5% 
of agricultural lands, 2.9% of shrubland, and 3.6% of grassland can 
be considered tree-covered land. That equals approximately 13.9% 
of normal forestland area. Therefore, given a forestland C sink of 
125 TgC/year in 1990s, we can assume an additional C sink of 17 
TgC/year for forests in non-forest dominant lands. Sparse trees on 
agricultural land usually have higher productivity than trees in a 
forest stand due to better soil nitrogen and water supply and edge 
effect. But sparse trees on non-agricultural lands may reside in 
a harsh environment (such as cold mountaintop) and have lower 
productivity than normal forest. Given that we have more than 
doubled sparse tree areas on agricultural land than on shrubland 
and grassland, we think the additional 17 TgC/year C sink is con-
servative and reasonable. Our new adjusted forest NBP estimate 
for the 1990s would be 167 TgC/year, which is very close to some 
forest inventory studies, such as Pan et al. (2011; 179 TgC/year), 
Heath, Smith, Skog, Nowak, and Woodall (2011; 162 TgC/year), 
and Woodbury, Smith, and Heath (2007; 169 TgC/year). For the 
2000s, our adjusted estimate of forest NBP (with dynamic climate 
data used) is still 167 TgC/year. This value is a little lower than the 
inventory-based forest NBP (199 TgC/year) that usually has limited 
response to climate variability. However, our estimate of 2011–
2015 forest C sink is 195 TgC/year, which is close to inventory re-
sults. On the contrary, our adjusted average NBP on all land types 
for 1991–2010 was 202 TgC/year, which is significantly lower than 
that obtained from other models (average of 331 TgC/year) and the 
SOCCR2 NBP estimates (275 TgC/year).

Our model's agreement with forest inventory estimates (1990s) 
may be partially explained by our calibration of modeled live bio-
mass C stock and dead woody C stock against surveyed coun-
ty-level 100-year-old forest stands. However, our calibration was 
done before fire and LUCC data were used. Therefore, our LUCC-
related C budget is mostly independent from an inventory-based 
C budget. Our regional model calibration approach is likely the big 
difference from the site-level calibration approach used by other 
DGVM models. Additionally, our model considered land owner-
ship, by which public or protected lands (mostly in the western 
United States) have reduced thinning rates compared to private 
lands (mostly managed land in the eastern United States). Overall, 
our findings represent the most comprehensive C modeling exer-
cise utilizing available LUCC data for CONUS. Results indicate that 

combined effects of direct management, human-caused LUCC, 
and natural disturbance on C budget are larger than those associ-
ated with climate variability. However, we acknowledge that nat-
ural disturbances (such as wildland fires) also vary with climate. 
So additional work is needed to understand the full influence of 
climate variability.

Using a bookkeeping modeling approach, Piao et al. (2018) found 
that lower land use emissions were responsible for the global in-
creased land C sink since the 2000s. From our study, overall LUCC-
induced total biomass removals (beyond fire emission) gradually 
increased, with the 2000–2009 period being slightly lower than the 
1990s and the 2010–2015 period, which is consistent with the global 
trend. Land conversions had relatively higher C emissions (biomass 
removals) during 1985–2000, and logging reached the highest level 
during late 1980s and early 1990s. But CONUS wildland fires signifi-
cantly intensified since the 2000s.

Pugh et al. (2019) pointed out that age-related forest C sink is pre-
dominantly located in the middle latitudes. Although IBIS does not 
track forest age, our study seems to support that statement. From our 
study, IBIS showed significant increases in forest NPP and sustained 
NBP level even with gradually increased biomass removals and fire 
combustions. Our initial analysis indicated that, after excluding climate 
effects, forest NPP increased by 17% during 1971–2015. Considering 
this NPP increase, the model can generate 100-year total tree biomass 
that matches the 100-year biomass level derived from inventory. We 
believe the driving forces behind the NPP increase are the CO2 enrich-
ment effect and forest age effect. Currently, although the IBIS model's 
photosynthesis formula includes a conservative CO2 fertilization algo-
rithm, we cannot separate the contributions of the two factors effec-
tively. Further work is needed to quantify the relative contributions of 
forest age and CO2 fertilization.

4.2 | Reducing model uncertainties

Many aspects of this study still have notable uncertainties. First, 
dead wood C is one of the big unknowns in C modeling. In this 
study, although we calibrated our model with surveyed overall for-
est dead wood C stock at 100 years, we still do not have good 
dead wood C initialization. In addition, we did not explicitly model 
the effects of insects, disease, and physical agents such as flood-
ing on tree mortality. Adding greater details to the tree mortality 
process, including the transfer of live tree C to dead tree C and 
the temporal changes in decomposition rates of standing and 
downed dead wood pools (Landry, Parrott, Price, Ramankutty, & 
Matthews, 2016; Landry, Price, Ramankutty, Parrott, & Matthews, 
2016), would improve NBP calculations in future work. Second, al-
though total C removal from forests (including clearcut, thinning, 
and other deforestation events) was about 128 TgC/year, which 
matched inventory-based estimates (Williams, Gu, MacLean, 
Masek, & Collatz, 2016), thinning practices by region and by own-
ership across CONUS are still highly uncertain, especially in the 
interior western United States. Separation of partial thinning and 
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clearcut can be further improved when better annual clearcut data 
become available. Third, estimates of annual land area burned 
also have considerable uncertainty. By mapping fires from 1984 
to 2015 using Landsat data, Hawbaker et al. (2017) found 31% 
more area burned than reported in MTBS in the western United 
States, 312% more in the Great Plains, and 233% more in the 
eastern United States. Therefore, the apparently low C removals 
due to fire may be attributed to the focus of the MTBS database 
on large fires (defined as 1,000 acres in the west and 500 acres 
in the eastern United States). Finally, given that spatially explicit 
and comprehensive historical land change data were not available, 
we generated annual wall-to-wall land cover maps (1971–2015) 
based on land cover change sampling. The overall accuracy of land 
cover change sampling was reported to be 85% (USGS Land Cover 
Trends Project). Yet, new approaches, including annual wall-to-wall 
remote sensing products (e.g., USGS Land Change Monitoring, 
Assessment, and Projection project) and robust land cover change 
models will be very helpful to reconstruct more realistic land cover 
and biomass histories. In addition, DGVMs that can deal with frac-
tional land cover change will be useful for large-scale, coarse reso-
lution regional and global simulations. This feature of our model 
allows direct use of future land cover products such as the harmo-
nized land use projections (Hurtt et al., 2011) developed for the 
IPCC’s Fifth Assessment Report.
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