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Abstract
Changes in rainfall amounts and patterns have been observed and are expected to 
continue in the near future with potentially significant ecological and societal con-
sequences. Modelling vegetation responses to changes in rainfall is thus crucial to 
project water and carbon cycles in the future. In this study, we present the results of a 
new model-data intercomparison project, where we tested the ability of 10 terrestrial 
biosphere models to reproduce the observed sensitivity of ecosystem productivity to 
rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or 
irrigation experiments had been performed. The key results are as follows: (a) Inter-
model variation is generally large and model agreement varies with timescales. In 
severely water-limited sites, models only agree on the interannual variability of evap-
otranspiration and to a smaller extent on gross primary productivity. In more mesic 
sites, model agreement for both water and carbon fluxes is typically higher on fine 
(daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models 
on average overestimate the relationship between ecosystem productivity and mean 
rainfall amounts across sites (in space) and have a low capacity in reproducing the 
temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a 
given site, even though observation uncertainty is comparable to inter-model vari-
ability. (c) Most models reproduced the sign of the observed patterns in productivity 
changes in rainfall manipulation experiments but had a low capacity in reproducing 
the observed magnitude of productivity changes. Models better reproduced the ob-
served productivity responses due to rainfall exclusion than addition. (d) All models 
attribute ecosystem productivity changes to the intensity of vegetation stress and 
peak leaf area, whereas the impact of the change in growing season length is negligi-
ble. The relative contribution of the peak leaf area and vegetation stress intensity was 
highly variable among models.

K E Y W O R D S

drought, irrigation, rainfall manipulation experiment, terrestrial biosphere models

1  | INTRODUC TION

Understanding the impact of rainfall changes on ecosystem func-
tioning and vegetation dynamics is crucial for accurately predicting 
the responses of vegetation structure, composition and dynamics 
under present or future conditions. Changes in both rainfall intensity 
and variability have been measured in the last decades (IPCC, 2013; 
Trenberth, 2011). Changes in precipitation extremes have also been 
observed (Alexander et al., 2006) and according to climate model 
projections, such changes will intensify as we progress through the 
21st century (IPCC, 2012; Knutti & Sedláček, 2013).

Changes in rainfall can affect energy and carbon fluxes at the 
land surface (Green et al., 2017). Rainfall changes modify soil water 
dynamics, alter plant water status and consequently the terrestrial 
biogeochemical cycles (Allan et al., 2014; Heisler-White, Knapp, & 
Kelly, 2008) through changes in plant productivity or plant mortal-
ity (Allen, Breshears, & McDowell, 2015). The importance of plant 

water limitation has been highlighted by the fact that semi-arid re-
gions, which typically experience drought, control part of the global 
interannual variability of the terrestrial carbon sink (Ahlström et al., 
2015), with an increasing sensitivity during the last decades (Poulter 
et al., 2014). The importance of water limitation on carbon fluxes will 
likely increase soon, since terrestrial vegetation is thought to oper-
ate close to its critical hydraulic thresholds across a wide range of 
ecosystems (Choat et al., 2012), even though the full implications 
of this result are still debated (Klein, Yakir, Buchmann, & Grünzweig, 
2014; Körner, 2019). As a direct consequence, minor changes in plant 
water availability worldwide can lead to significant impacts on the 
terrestrial carbon sink (Allen et al., 2010; Frank et al., 2015; Green 
et al., 2019; Humphrey et al., 2018; Reichstein et al., 2013; Zhao & 
Running, 2010).

To understand the ecosystem responses to changes in rainfall 
amounts and patterns at the local scale, rainfall manipulation experi-
ments have been conducted. Typically, such experiments change the 
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overall rainfall amount by exclusion (Estiarte et al., 2016; Limousin 
et al., 2009; Martin-Stpaul et al., 2013) or irrigation (Collins et al., 
2012) and responses are commonly quantified by the changes in abo-
veground net primary production (ANPP). In some experiments such 
as the Amazon rainfall exclusion experiment (Nepstad, Tohver, Ray, 
Moutinho, & Cardinot, 2007), additional detailed data quantifying 
the changes in forest structure and composition have been obtained. 
There are a small number of experiments where the structure of rain-
fall pulses is modified (e.g. Fay, Kaufman, Nippert, Carlisle, & Harper, 
2008; Heisler-White et al., 2008; Vicca et al., 2014). Rainfall manipula-
tion experiments have been conducted in a range of ecosystems, span-
ning from semi-arid shrublands (Báez, Collins, Pockman, Johnson, & 
Small, 2013), to temperate (Hanson & Wullschleger, 2003) and tropical 
forests (Fisher et al., 2007; Nepstad et al., 2007), even though most of 
the experiments have focused on grasslands or low-stature vegetation 
due to the difficulties in setting up experiments. Those experiments 
have identified a strong correlation between rainfall changes and 
vegetation productivity (e.g. Heisler-White, Blair, Kelly, Harmoney, & 
Knapp, 2009; Stuart-Haëntjens et al., 2018), phenology (e.g. Peñuelas 
et al., 2004), plant community structure (e.g. Miranda, Armas, Padilla, & 
Pugnaire, 2011; Zhang et al., 2019) and belowground carbon dynamics 
(e.g. Hagedorn et al., 2016; Hasibeder, Fuchslueger, Richter, & Bahn, 
2014; Vicca et al., 2014). Despite the important findings derived from 
these field experiments, these studies have strong spatial and tempo-
ral limitations; they reported only few variables and it is challenging to 
extrapolate information beyond the specific design of the experiment. 
Extrapolation and mechanistic understanding related to vegetation re-
sponses to changes in precipitation can be better achieved by combin-
ing model and data-driven approaches (e.g. Kayler et al., 2015).

Modelling vegetation responses to changes in water availability is 
a challenging task (Xu, McDowell, Sevanto, & Fisher, 2013). Despite 
strong evidence that modelling responses to drought is a significant fac-
tor affecting terrestrial carbon dynamics (Trugman, Medvigy, Mankin, & 
Anderegg, 2018), a commonly accepted parameterization of water lim-
itation does not exist (Egea, Verhoef, & Vidale, 2011; Fatichi, Pappas, & 
Ivanov, 2016; Hu et al., 2018; Medlyn, Kauwe, & Duursma, 2016; Zhou, 
Duursma, Medlyn, Kelly, & Prentice, 2013). Plant water stress simu-
lated in terrestrial biosphere models can affect various processes but is 
commonly a function of either volumetric soil water content (e.g. Clark 
et al., 2011) or soil water potential (e.g. Fatichi, Ivanov, & Caporali, 2012; 
Lawrence et al., 2019; Manzoni, Vico, Porporato, & Katul, 2013), inte-
grated over the root zone. Examples of how water limitation affects 
plant functions include a decline in stomatal conductance affecting pho-
tosynthesis (De Kauwe, Kala, et al., 2015; De Kauwe, Zhou, et al., 2015; 
Egea et al., 2011; Fatichi et al., 2012), changes in the photosynthetic 
parameters Vcmax and Jmax (e.g. Krinner et al., 2005) and/or accelerated 
senescence of plant tissues, especially leaves (Thurner et al., 2017) 
leading to drought-induced deciduousness. Recently, significant efforts 
have been made to include more detailed plant hydraulics, to better 
describe water flow within the soil-plant-water continuum (Bonan, 
Williams, Fisher, & Oleson, 2014; Eller et al., 2018; Kennedy et al., 2019; 
Lawrence et al., 2019; Mirfenderesgi et al., 2016) and to include dynam-
ics of non-structural carbohydrates to simulate consequences of water 

stress for carbon allocation and carbon starvation (reviewed in Fatichi, 
Pappas, Zscheischler, & Leuzinger, 2019).

A large discrepancy of predicted model responses has direct con-
sequences for the uncertainties related to the fate of terrestrial car-
bon under a changing climate (Ahlström et al., 2015; Humphrey et al., 
2018; Zscheischler, Michalak, et al., 2014). This is the case because 
the terrestrial vegetation and thus the terrestrial land carbon sink in-
troduce the largest uncertainties of the global carbon cycle (Le Quéré 
et al., 2018). In this context, large epistemic model uncertainties can 
have considerable impacts on our ability to forecast the growth rate of 
atmospheric CO2. Additionally, vegetation responses to water stress 
can influence land–atmosphere coupling (Gentine et al., 2019; Koster, 
2004; Lemordant, Gentine, Stéfanon, Drobinski, & Fatichi, 2016; 
Seneviratne et al., 2013), since vegetation cover and canopy conduc-
tance affect land surface energy balance. This will have a large impact 
on our skill to model the coupled hydrological, plant physiological and 
meteorological processes and thus robustly projecting climate change 
(Miralles, Gentine, Seneviratne, & Teuling, 2018).

To reduce this source of epistemic uncertainty and understand the 
reasons for model disagreement, a detailed comparison between the 
responses of different modelling schemes with respect to plant water 
availability is essential. Rainfall manipulation experiments assessing 
vegetation responses to water limitation are particularly useful in this 
regard. Arguably, this is an extremely important test to evaluate the 
structure and parameter values of a model and its capability to repro-
duce responses to environmental changes. A model should be able to 
reproduce the observed dynamics under control and manipulated con-
ditions in order to be considered robust, especially for climate change 
simulations (Medlyn et al., 2015). Despite the importance of this com-
parison, there are only few examples that have compared terrestrial 
biosphere models and global change manipulation experiments (De 
Kauwe et al., 2013, 2017; Fatichi & Leuzinger, 2013; Medlyn et al., 2015; 
Powell et al., 2013; Zaehle et al., 2014). Recently, Wu et al. (2018) com-
pared 14 models under different idealized rainfall scenarios for three 
grassland experiments sites and showed a fair reproduction of spatial 
sensitivities of ANPP to rainfall but large differences in the modelled 
asymmetric response of ANPP to interannual, that is temporal rainfall 
variability at a given site. Wu et al. (2018) were not able to evaluate the 
modelled responses with respect to actual experiments because they 
used idealized rainfall changes that did not exactly mimic the site treat-
ments. In this study we perform such an evaluation. We make use of 
10 sites with diverse climates and biomes, where multiyear rainfall ma-
nipulation experiments took place to evaluate 10 terrestrial biosphere 
models, representing an unprecedented data-model intercomparison 
effort focused on ecosystem responses to water limitation. This da-
ta-model intercomparison will address the following questions: (a) Can 
models reproduce the observed responses to precipitation variability 
at rainfall manipulation sites? (b) Do models accurately reproduce the 
spatial (across-sites) and temporal (within-site) dependence of vegeta-
tion productivity to precipitation? (c) Which are the underlying reasons 
for model disagreement? Answering those questions will provide in-
sights on the robustness of Earth System model projections with re-
spect to the global carbon cycle.
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2  | DATA AND METHODS

2.1 | Sites

Ten different sites with contrasted climates and biomes and 
sufficiently long records were considered here. For all analy-
ses presented in this study, the sites are termed: Lahav, Matta, 
SGS, Prades, Garraf, Konza (AmeriFlux ID: US-Kon), Puèchabon 
(FluxNet ID: FR-Pue), Brandbjerg, Walker Branch (Walker Branch; 
AmeriFlux ID: US-WBW) and Stubai (Table 1). The sites are in 
ascending order in terms of wetness index (WI) defined as the 
average ratio of annual precipitation to annual potential evapo-
transpiration (ET) during the study period. For our analysis the 
sites are split in three wetness categories (WI < 0.4 [Lahav, Matta, 
SGS]; 0.4 ≤ WI < 1 [Prades, Garraf, Konza, Puèchabon]; and WI ≥ 1 
[Brandbjerg, Walker Branch, Stubai]).

The sites are in the United States (Konza, SGS, Walker Branch), 
Israel (Lahav, Matta), Spain (Garraf), France (Prades, Puèchabon), 
Austria (Stubai) and Denmark (Brandbjerg) and span a precipita-
tion gradient from 253 to 1,440 mm/year and include grasslands 
shrublands and forested ecosystems (Table 1). In eight for the sites 
rainfall exclusion experiments were carried out, and in four of the 
sites, irrigation experiments were carried out. The experiment du-
ration considered in this study was from 5 up to 32  years. The 
average experiment duration was 13.3 years.

For all sites, ANPP estimates were recorded for most of the ex-
perimental years derived by either biomass harvesting (grasslands) 
or biomass increase estimates derived from allometric relations and 
simultaneous observations of stem diameter, leaf area changes, plus 
litterfall (e.g. shrublands and forests). Leaf area index (LAI) was quan-
tified using the MODIS (MCD15A2H v006) estimate of the pixel 
containing each site. MODIS data were interpreted with caution as 
they are an indirect measurement, valid at typically larger scales, and 
prone to large uncertainties. For three sites, Konza, Puèchabon and 
WB, ET and gross primary productivity (GPP) were obtained at the 
half hourly scale by the Fluxnet2015 database and aggregated to 
the daily scale.

2.2 | Participating models and simulation protocol

For all sites, we conducted simulations using 10 terrestrial biosphere 
models: CABLE r54482.0 (Wang et al., 2011), DLEM v2.0 (Tian 
et al., 2010), JULES v5.2 (Clark et al., 2011), JSBACH v3.2 (Kaminski 
et al., 2013; Mauritsen et al., 2019), LPX v1.4 (Lienert & Joos, 
2018), ORCHIDEE rev5150 (Krinner et al., 2005), ORCHIDEE MICT 
rev5308 (Guimberteau et al., 2018), ORCHIDEE CNP rev4520 (Goll 
et al., 2017), T&C v1.0 (Fatichi et al., 2012; Paschalis, Katul, Fatichi, 
Palmroth, & Way, 2017) and TECO v2.0 (Huang et al., 2017). All mod-
els include a land surface scheme, a hydrological component and a 
dynamic vegetation module. Soil moisture dynamics are simulated 
in multiple vertical layers by either solving the 1D Richards equa-
tion or simplified hydrological ‘bucket-type’ models. Some models 

can simulate vegetation succession; however, this feature was disa-
bled in the current study. Five models included nutrient dynamics. 
CABLE, DLEM, JSBACH and LPX simulated nitrogen and ORCHIDEE 
CNP nitrogen/phosphorus cycles. Hydrological and biogeochemical 
processes are simulated with a variable degree of complexity (for a 
detailed model description see the supplementary material of Wu 
et al., 2018). As there is no commonly accepted way to simulate 
water limitation, each model has adopted significantly different ap-
proaches (Medlyn, De Kauwe, Zaehle, et al., 2016). Water stress in 
all models but T&C is a function of an average root zone soil mois-
ture; and in T&C, water stress is a function of the integrated root 
zone soil water potential. Specifically, models alter either photosyn-
thetic rates (T&C, JULES, TECO), the maximum rate of carboxylation 
Vcmax (ORCHIDEE, ORC MICT, ORC CNP), stomatal conductance 
(JSBACH, DLEM) or a combination of all such parameters (CABLE), 
based on plant water availability. LPX uses a supply and demand-
driven approach to water limitation. If water demand exceeds sup-
ply, photosynthesis is downregulated until they match. None of the 
models simulates plant hydraulics and thus xylem cavitation in re-
sponse to water stress.

For each site, we conducted a control simulation corresponding to 
the observed climate without manipulation, and simulations represen-
tative of each rainfall manipulation experiment (rainfall exclusion and/
or irrigation) with the same timing and magnitude of water input as in 
the real experiment. For all experiments the common data distributed 
to all modelling groups included hourly values of incoming shortwave 
and longwave radiation, vapour pressure deficit, air temperature, wind 
speed, atmospheric pressure and ambient CO2 concentration. Model 
set-up was performed by each modelling group separately based on 
common information for each site that included, apart from the me-
teorological input, species composition, vegetation cover, soil and 
root depth, and soil textural properties. Each modelling group trans-
lated independently this information into model-specific parameters. 
Dependent on the model, species composition and vegetation cover 
were used to either choose between prescribed plant functional types 
(PFTs) or plant-specific model parameters. Soil and root depth were 
used by all modelling groups to set-up the simulation domain, and the 
vertical discretization of the simulation was decided by each modelling 
group independently. Soil textural properties were used to select soil 
hydraulic properties. All information concerning the simulation set-up 
of each model and the common site properties provided to all mod-
elling groups can be found at a free access data repository (see Data 
Availability Statement). Reported model outputs included GPP, NPP 
and ANPP, ET and its partition in evaporation (soil evaporation plus 
evaporation from interception) and transpiration, respectively, soil 
moisture, LAI and biomass carbon pool (below and aboveground) dy-
namics. Some models additionally reported the water stress factor (β) 
used in the model. β is a model parameter that quantifies the effects 
of plant physiological stress due to limitations in soil water availability. 
β is not identical between models and the description of the β for each 
model can be found at the supplementary material of Wu et al. (2018). 
Initial conditions for all simulations were obtained after a spin-up pe-
riod long enough to equilibrate the biogeochemical cycles.
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2.3 | Statistical analyses

2.3.1 | Data-model comparison

First, we compare the models' ability to accurately reproduce the re-
lationship between ANPP and precipitation (P) across sites (i.e. spa-
tial dependence) and within each site (i.e. temporal dependence) at 
the annual scale. At all sites, observations of ANPP were based on 
biomass estimates (e.g. using aboveground biomass harvesting for 
grasslands and a carbon budget approach for forested sites combin-
ing litterfall observations with allometric equation for aboveground 
biomass growth) rather than carbon fluxes, therefore discrepancy 
between observed and modelled ANPP is expected (detailed bias 
quantification are reported in the Supporting Information).

Model skill in reproducing the spatial dependence of ANPP to 
P was quantified as the root mean squared error (RMSE) and the 
coefficient of determination (R2) between the modelled and ob-
served annual ANPP, averaged over the entire period, across sites 
for the control case. Model performance in capturing the magnitude 
of interannual variability of ANPP was assessed by comparing the 
standard deviation (σ) of annual ANPP between models and observa-
tions for all sites. Model skill with respect to single-site interannual 
dependence of ANPP to P was quantified using an estimate of the 
sensitivity of annual ANPP to annual P. Specifically, we fitted a linear 
model ANPP = a0 + a1P + a2T, where P is annual precipitation and T 
is annual temperature. To increase the sample size and robustness of 
the fit, precipitation from both the control and the rainfall manipu-
lation experiments were used. Additional covariates such as vapour 
pressure deficit and radiation could not be added due to the small 
sample size, making the linear fit over constrained. Preliminary analy-
ses (not reported here) showed that P and T were the most important 
covariates. Model skill was evaluated by estimating the differences 
between observed and simulated sensitivities of ANPP with respect 
to P (i.e. a1=

�ANPP

�P
). Observation uncertainty of the sensitivity metric 

was quantified as the 90% confidence interval of the linear model fit.
For the control simulations, modelled ET and GPP were compared 

with eddy covariance high-frequency observations from Walker 
Branch, Puèchabon and Konza. In these three locations, flux-tower 
data were available in the proximity and with the same vegetation 
cover as the rainfall exclusion/addition experiment. Comparison at 
the daily scale was performed by means of Taylor diagrams (Taylor, 
2001). The magnitude and seasonal pattern of the fluxes were also 
analysed (Figures S2–S4).

Responses due to rainfall manipulation were quantified at the 
annual scale using the response ratio for a variable X (e.g. ANPP) 
defined as the ratio RR=X

(y)

M
∕X

(y)

C
, where the subscript M denotes ma-

nipulation, C denotes the control scenario and (y) indicates the an-
nual scale. In this study, we focused on the simulated RRs of ANPP 
and ecosystem water use efficiency (WUE) calculated at the annual 
scale as the ratio of annual GPP to annual actual ET. To quantify 
whether the simulated response ratios have a statistically significant 
different mean value from the observations, a two-sample t test was 
performed for every model and the respective observed responses. 

For the two-sample t test, the sample size for each site is equal to 
the number of years in the observations and simulations. Response 
ratios were assumed normally distributed and independent at the 
annual scale. The test's null hypothesis was that modelled and ob-
served response ratios have the same mean. The analysis was also 
performed using the commonly used logarithm of RR yielding identi-
cal results, and thus not further shown here.

2.3.2 | Model agreement

Model agreement across timescales was quantified by estimating 
the Pearson correlation coefficient (ρ) between all pairs of models 
for ET and GPP at the daily, monthly and annual scale. In Figure S7, 
the analysis is expanded for a wider range of scales by estimating 
the wavelet coherence between all pairs of models for ET and GPP.

To quantify agreement with respect to modelled changes in 
ANPP and WUE due to rainfall alterations, a two-sample t test for 
the response ratios of both ANPP for all model pairs was performed 
and presented in Tables S2 and S3.

To attribute the variability of ANPP to its causes we proceeded 
similar to De Kauwe et al. (2017) who found that the annual ANPP 
could be approximated by the product.

where Ab is the aboveground fraction of carbon allocation, CUE is the 
carbon use efficiency, GPPu is the potential (unstressed) rate of GPP 
per unit of leaf area, β is the annually averaged value of the water stress 
factor, LAIp is the peak LAI during the year and LAIr is the proxy of the 
growing season length, defined as the integral of LAI during the year 
divided by LAIp. Considering that water stress and LAI dynamics deter-
mine most of the interannual variation of ANPP, assuming that Ab, CUE 
and GPPu vary less between treatments, then, the annual response ratio 
of ANPP can be estimated by the response ratios of β, LAIp and LAIr,

where the subscript M denotes manipulation, C denotes the control 
scenario and (y) indicates the annual scale. If the response ratios of β, 
LAIp and LAIr are independent at the annual scale, then

where overbars indicate average values for all years. This approxima-
tion is well-supported by the results of our simulations (Figure S6), even 
though data evidence suggests that CUE may change significantly under 
changes in water stress (Rowland et al., 2014). Using this decomposition 
in the model results, the average ANPP response ratio can be decom-
posed as the product of the average response ratios of β, LAIr, LAIp. Based 
on these considerations, we can attribute the changes in the modelled 

ANPP=Ab ⋅CUE ⋅GPPu ⋅� ⋅LAIp ⋅LAIr,

e.g.
ANPP

(y)

M

ANPP
(y)

C

≈
�
(y)

M

�
(y)

C

⋅

LAIp
(y)

M

LAIp
(y)

C

⋅

LAIr
(y)

M
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(y)

C

,

(
ANPP
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ANPP among models to differences in simulated water stress, LAI dy-
namics, and phenological changes. Since only six (T&C, CABLE, JULES, 
TECO, DLEM and JSBACH) of the 10 participating models reported the 
water stress β factor, this analysis was performed using this subset of 
models. All statistical analyses were performed in MATLAB 2019a.

3  | RESULTS

3.1 | Control scenario

Models captured the increasing trend of observed average ANPP to 
average P across sites (Figure 1a). The RMSE between simulated and 
observed ANPP was in the range 23–354 g C m−2 year−1. Normalized 

RMSE of ANPP was weakly but positively correlated (R2  =  .36; 
p = .067) with the RMSE of normalized LAI (i.e. LAI divided by its maxi-
mum value). All models were positively biased. Positive biases can be 
partially attributed to model shortcomings but can be also explained 
by experimental underestimations in ANPP measurements (see 
Figure S1). Relative absolute biases, i.e. ||relBias||=

|ANPPMod−ANPPobs|
ANPPobs

,  
are typically larger at the driest sites: �|relBias|

�P
=−6.3×10−4 mm−1 (es-

timated using ordinary least squares method; Table 2).
Both models and observations support a larger sensitivity of an-

nual ANPP to interannual variation in precipitation at sites with inter-
mediate wetness conditions (e.g. Garraf, Prades, Puèchabon, Konza; 
Figure 2). Specifically, in sites with a WI < 0.4 models(observations) 
have mean sensitivity a1=0.058(0.076) gCm

−2
mm−1, in sites with 

0.4 ≤ WI < 1 have a1=0.22(0.18) gCm−2 mm−1 and in sites with WI > 1 

F I G U R E  1   (a) Dependence of mean annual aboveground net primary production (ANPP) to average annual precipitation during the study 
period. Letters indicate observed values (L: Lahav; M: Matta; S: SGS; P: Prades; G: Garraf; K: Konza; Pb: Puèchabon; B: Brandbjerg; W: WB; 
Sb: Stubai). Lines indicate, for each model, a least square fit of a linear relationship: ANPP(P) = αP between the modelled mean annual ANPP 
and mean annual precipitation for all sites. (b) Standard deviation of modelled annual ANPP (circles) and observed annual ANPP (crosses) for 
all sites and models. Each model has a unique colour indicated in the legend [Colour figure can be viewed at wileyonlinelibrary.com]
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TA B L E  2   Model skill across sites in terms of root mean square error (RMSE) for annual ANPP, normalized root mean square error 
(NRMSE) for annual ANPP, coefficient of determination for annual ANPP, average bias of ANPP, average bias of the standard deviation of 
annual ANPP, RMSE for daily LAI and RMSE for daily normalized LAI, i.e. LAI

max (LAI)

Model
ANPP − RMSE 
(g C m−2 year−1)

ANPP −  
normalized  
RMSE (−)

ANPP −  
R2 (−)

ANPP − bias 
(g C m−2 year−1)

σ (ANPP) − bias 
(g C m−2 year−1)

LAI − RMSE 
(m2 m2)

LAI 
normalized 
RMSE (−)

TC 76.318 0.368 0.8295 30.7907 −13.5738 1.2399 0.2956

JSBACH 233.0982 1.1239 0.2379 79.3713 −19.6096 1.2972 0.4276

DLEM 202.8963 0.9783 0.7732 96.935 −23.7873 1.2038 0.356

ORC MICT 121.7962 0.5872 0.6131 51.5792 −5.7495 1.1895 0.3966

ORC CNP 210.5444 1.0151 0.041 15.0756 −1.0366 1.1451 0.4198

ORCHIDEE 113.8664 0.549 0.6489 44.8288 9.3944 1.2675 0.3505

CABLE 215.6812 1.0399 0.4728 115.9473 −5.1951 2.147 0.3437

JULES 354.0429 1.707 0.4399 278.4353 39.4962 1.4164 0.449

TECO 23.3013 0.1123 0.982 5.3858 −9.3174 1.1347 0.3462

LPX 113.6602 0.548 0.5956 36.4618 33.2501 1.3886 0.4317

Abbreviations: ANPP, aboveground net primary production; LAI, leaf area index.

www.wileyonlinelibrary.com
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have a1=0.13(−0.013) gCm−2 mm−1. At the most arid sites, annual 
precipitation explains a large fraction of the observed and modelled 
variability of annual ANPP, but the sites are not highly productive 
(i.e. absolute productivity values are low; Figure 1), yielding a low av-
erage sensitivity a1. At the opposite end, mesic sites have higher pro-
ductivity, but they are not water-limited during the observation period, 
resulting also in a low modelled sensitivity a1. Modelled sensitivity 
uncertainty was largest for intermediate precipitation regimes due to 
a larger model disagreement for those sites. For sites with a WI < 0.4, 
the average uncertainty, quantified here as the standard deviation 
between models of modelled a1 was �a1|dry=0.08 gCm−2 mm−1,  
for intermediate sites �a1|inter=0.24 gCm−2 mm−1 and for wet sites 
�a1|wet=0.14 gCm−2 mm−1.

On average, the modelled sensitivity of ANPP to precipitation 
within sites was lower (~0.15 g C m−2 mm−1) than (~0.37 g C m−2 mm−1; 
estimated as the average slope of the linear models reported in 
Figure 1a) between sites. However, the uncertainty of the estimated 

temporal sensitivity from observations, as quantified by the 90% 
confidence limits of the linear model, is very high in most sites 
(0.29 g C m−2 mm−1, averaged across all sites) and comparable to the 
uncertainty between models (�a1 =��

a1
=0.4 gCm−2 mm−1, averaged 

across all sites). A large uncertainty is related to either a small sam-
ple size, or low skill of the linear model. As a result, it is not possible 
to robustly quantify whether the modelled temporal sensitivities are 
statistically different from the observed ones, but overall only six 
of the 10 sites had mean modelled that were not non-statistically 
scientifically different than the one observed (Figure 2).

Simulated daily ET for the control simulations was substantially 
different regarding its day-to-day variability from measured ET at 
all three eddy sites (Konza, Puèchabon and WB). Correlation coef-
ficients were in the range 0.27–0.78 with an average value between 
all models and sites of ~0.60 ± 0.13 (mean ± SD; Figure 3). Simulated 
variability of ET, expressed in terms of standard deviation at the 
daily scale, deviated substantially from the measured variability of 

F I G U R E  2   Simulated and observed sensitivity of annual aboveground net primary production (ANPP) to annual precipitation (α1 = ∂ANPP/∂P). 
For each site, boxplots indicate the distribution of the simulated sensitivity of ANPP to precipitation by all models. Error bars show the sensitivity 
of observed ANPP to precipitation (blue squares) and the corresponding 90% confidence intervals (bar length) of the fit of the linear model. 
Crosses indicate the sites for which the mean value of the distribution of simulated sensitivities is not statistically different from the observed with 
90% confidence. Sites are ranked from left to right in order of ascending wetness [Colour figure can be viewed at wileyonlinelibrary.com]

Dry Interm Wet

F I G U R E  3   Taylor diagrams for daily 
evapotranspiration (ET) and gross primary 
productivity (GPP) for all models and 
all sites with available flux tower data. 
Models are indicated with different 
colours according to the legend. Each 
site has a different marker (diamond 
for Konza, circle for WB and square 
for Puèchabon). The ideal model (i.e. 
reproducing precisely the data) would lie 
on the black markers, each corresponding 
to different sites [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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ET. In particular, simulated variability from most models was lower 
than observed at Konza (observed σET  =  1.76  mm/day, modelled 
σET = 1.40 ± 0.3 mm/day), and higher than observed at Puèchabon 
(observed σET = 0.61 mm/day, modelled σET = 1.86 ± 0.50 mm/day). 
For WB, the modelled ET variability was higher than observed, and in-
ter-model agreement was low (observed σET = 1.39 mm/day, modelled 
σET = 1.51 ± 0.45 mm/day). Seasonality of ET was well-reproduced by 
all models (Figure S2), partially explaining the high correlation coeffi-
cients (Figure 3). One pronounced exception is in Puèchabon, where 
the observed late summer reduction of ET and increase in early fall 
was reproduced only by a small subset of models (Figure S2).

Simulated daily GPP had a correlation (~0.59 ± 0.17) with observed 
daily GPP for all models (Figure 3). A large fraction of the GPP cor-
relation can be attributed to seasonality. However, the modelled vari-
ability was significantly different from the observed for all sites. Most 
models underestimated the daily variation of GPP at Konza (observed 

σGPP = 4.04 g C m−2 day−1, modelled σGPP = 2.87 ± 1.88 g C m−2 day−1) 
and WB (observed σGPP = 4.53 g C m−2 day−1, modelled σGPP = 4.01 ± 
1.26 g C m−2 day−1) and overestimated the variability of daily GPP at 
Puèchabon (observed σGPP = 1.68 g C m−2 day−1, modelled σGPP = 2.6
7 ± 1.01 g C m−2 day−1; Figure 3). Large model differences between 
observed and simulated GPP can be partially attributed to an incor-
rect representation of the magnitude of LAI. There is, indeed, a large 
disagreement between the modelled LAI across models (Figure 4). 
Modelled LAI is also significantly different than observed, even though 
LAI derived via remote sensing is also uncertain (Fang et al., 2013).

Model agreement in terms of ET and GPP varies also with times-
cale (Figure 5). In the driest sites (e.g. Lahav, Matta, SGS; WI < 0.4), 
models agree mostly with each other on the interannual variability of 
ET (average corr. coef. ρ for ET at the annual (y) scale �y

�

ET|dry=0.75; for 
�
y�

GPP|dry=0.35). This is expected since at those sites annual ET almost 
equals the total amount of rainfall. However, a significant model 

F I G U R E  4   Simulated average monthly 
leaf area index (LAI) by all models for 
all sites for the control case simulation. 
Dots indicate the long-term monthly LAI 
averages of the nearest MODIS pixel in 
the area [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  5   Boxplots of Pearson 
correlation coefficients between 
simulated evapotranspiration (ET) and 
gross primary productivity (GPP) for 
all pairs of models for three timescales 
(daily, monthly and annual) for all 10 sites. 
Scales are indicated with different colours 
according to the legend [Colour figure can 
be viewed at wileyonlinelibrary.com]

Dry Interm Wet

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


PASCHALIS et al.      |  3345

disagreement occurs at the daily (d) scale (�d�
ET|dry=0.58, �d�

GPP|dry=0.30

). The opposite picture occurs in mesic sites (WI > 1), where models 
agree better at the daily timescale for ET (�d�

ET|wet=0.79), but their 
agreement is significantly lower at the annual scale (�y

�

ET|wet=0.61). 
A similar pattern is also valid for GPP (�d�

GPP|wet=0.77, �y
�

GPP|wet=0.60;  
Figure 5).

Model agreement with regard to the dependence of the water 
stress factor β on root averaged soil moisture θ(Zr) is also low (Figure 6). 
On average, model agreement was highest for sites with a large per-
centage of sand (Brandbjerg 88%–95% sand, Prades 48% sand) and 
lowest in sites with soils rich in more fine material (e.g. Lahav 22% 
sand, Matta 19% sand, SGS 14% sand, Konza 10% sand).

3.2 | Manipulation experiments

Models were tested for their skill at reproducing changes in ANPP due 
to rainfall manipulations (Figure 6). Most models (75% for model-site-
treatment combinations) correctly predicted the sign of the change in 
ANPP. However only 54% of the models for the drought treatment 

(10 models × 8 sites) and 43% for the irrigation treatment (10 mod-
els × 4 sites) have a mean response that is statistically similar in magni-
tude with the observed, highlighting a better model performance for 
rainfall exclusion than addition. The worst performance of the models 
was obtained for both the drought and irrigation experiments in Lahav 
and in the irrigation experiment in Konza where almost no model was 
able to capture the correct magnitude of the response ratio.

Even though observed ANPP estimated from biomass should 
be close to modelled ANPP (Figure S1), several uncertainties re-
lated to observations, such as the choice of biomass harvest date, 
the use of specific allometric equations and specific local con-
ditions, could affect our results. For instance, the observed re-
sponse to irrigation in Lahav and Matta is considerably different 
despite the two sites having similar vegetation and climate. Those 
differences are either due to measurement uncertainties, or due 
the large effect of some local properties (e.g. soil composition, nu-
trient availability; Golodets et al., 2013, 2015) causing significant 
changes in the ecosystem dynamics. Overall, the magnitude of re-
sponses is similar among models except CABLE, JULES and TECO, 
which show a larger sensitivity of ANPP to rainfall manipulation. 

F I G U R E  6   Average simulated water 
stress factor β as a function of root zone 
averaged soil moisture. For all sites and 
models � corresponds to the simulated 
average value of β at the daily scale for 
overlapping bins with soil moisture width 
0.05 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  7   Simulated and observed 
response ratios of annual aboveground 
net primary production (ANPP) due to 
rainfall exclusion (rows 1 and 2) and 
addition (irrigation; row 3). Different 
models are presented with different 
colours according to the legend. Error 
bars represent the standard deviation 
for all years of treatment. Red error bars 
represent measured response ratios. Black 
crosses indicate models where the null 
hypothesis of the same mean between 
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is not rejected based on a two sample 
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survival [Colour figure can be viewed at 
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Modelled interannual variability of the responses was in most 
cases similar in magnitude to the observed for the rainfall exclu-
sion experiments, and lower for the irrigation experiments (for the 
drought experiments, average modelled standard deviation of the 
response ratios was ��m

RD
=0.18;  and observed ��o

RD
=0.178. For ir-

rigation experiments modelled standard deviation was ��m
RI

=0.25;  
and observed ��o

RI
=0.42). Outliers with regard to both the magni-

tude and the interannual variability of response ratios occurred for 
the most water-limited sites (Figure 7).

Besides carbon assimilation, changes in rainfall can simultane-
ously modify ET and thus the land surface energy balance. The cou-
pling between ET and GPP depends heavily on the parametrizations 
of water stress and how this affects stomatal conductance and the 
reduction of photosynthesis. It further depends on vegetation dy-
namics such as a shift of carbon allocation from leaves to roots or 
leaf shedding due to water stress. To quantify the responses of the 
ET and GPP coupling, we compute the relative changes of WUE for 

the various cases (Figure 8). Most models predict relatively small 
changes in WUE (i.e. R~1) for both drought (R�m

D
=0.98) and irrigation 

(R�m
I

=1.08) treatments, indicating a change of comparable magni-
tudes for both ET and GPP. CABLE, JULES and TECO occasionally 
simulate larger changes, in both positive and negative directions, in 
WUE for the most water-limited sites. This larger change can be at-
tributed to a more sensitive response of GPP to water stress than ET.

3.3 | Response attribution

We partitioned the total response ratio of ANPP into relative changes 
of (a) the β stress factor; (b) peak LAI (LAIp); and (c) the length of the 
growing season approximated by LAIr (Figure 9). Changes in simu-
lated ANPP following rainfall manipulation can be almost exclusively 
attributed to changes in β and LAIp. The response ratio of LAIr was 
always close to unity (RLAIr =0.98±0.058; mean ± SD) for the drought 

F I G U R E  8   Simulated response ratios 
of water use efficiency during treatment 
period per year due to rainfall exclusion 
(rows 1 and 2) and addition (irrigation; 
row 3). Different models are presented 
with different colours according to 
the legend. Error bars represent the 
standard deviation for all years of 
treatment [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  9   Boxplots of the response 
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treatment and RLAIr =1.01±0.029 for the irrigation treatment con-
tributing insignificantly to the response ratio of ANPP. Thus, no 
model predicted substantial changes in the length of the growing 
season. A reduction or enhancement of β for the drought and irriga-
tion experiments explained the largest fraction of ANPP responses 
at wet sites, but the uncertainty of the relative strengths of changes 
in β and LAIp was high (drought treatment for sites with WI  >  1, 
Rβ = 0.95 ± 0.08, RLAIp =0.91±0.18; irrigation treatment for sites with 
WI > 1, Rβ = 1.05 ± 0.06, RLAIp =1.02±0.02). For the driest sites both 
LAIp and β explained a large fraction of the total response for the 
drought treatment, whereas LAIp was the dominant and simultane-
ously the most uncertain factor for the irrigation treatment (drought 
treatment for sites with WI < 0.4, Rβ = 0.87 ± 0.10, RLAIp =0.77±0.24;  
irrigation treatment for dry sites with WI  <  0.4, Rβ  =  1.06  ±  0.10, 
RLAIp =1.49±0.86). Differences in the simulated responses of both β 
and LAIp among models were high as indicated by the standard devia-
tions above. At the sites where rainfall exclusion was applied only in 
part of the year (Garraf, Brandbjerg), the response ratio of LAIp was 
larger than the reduction of β (Rβ = 0.93 ± 0.09, RLAIp =0.78±0.27), but 
given the large variability among models, it is not possible to conclude 
if this is a true signal. The variability was higher for the most water-
stressed sites, primarily because for those sites model disagreement 
on the estimated response ratio of ANPP was also the highest.

4  | DISCUSSION

4.1 | Multisite and local sensitivities to rainfall and 
the role of temporal scales

Most models overestimated the relationship between mean annual 
precipitation and average annual ANPP observed across sites, but 
managed to capture well the overall trend, despite large site differ-
ences in terms of vegetation coverage and overall climatic regime 
(Figure 1). This result confirms that terrestrial biosphere models 
can capture spatial gradients of vegetation productivity relatively 
well (e.g. Wu et al., 2018). Reproducing local (single-site) response 
of ANPP to interannual precipitation variability has been generally 
found to be more challenging (Fatichi & Ivanov, 2014). In fact, previ-
ous intercomparison studies have found that models have significant 
biases at various timescales, from subdaily (Matheny et al., 2014) to 
decadal (Dietze et al., 2011). Dietze et al. (2011) found model errors 
to be largest at the annual scale. In agreement with such a result in 
our experiment, models differed greatly in their simulated sensitiv-
ity of local-scale productivity to annual precipitation but were able 
to reproduce the previously reported stronger spatial than temporal 
sensitivity of productivity to rainfall. A large model disagreement 
with regard to the magnitude of the interannual variability of ANPP 
also confirms the previously found difficulties of models to prop-
erly capture carbon dynamics at the annual scale (e.g. Dietze et al., 
2011; Paschalis, Fatichi, Katul, & Ivanov, 2015). Despite large model 
disagreement we found that the within-site sensitivity of ANPP to 
precipitation is lower than across-site sensitivity of ANPP to average 

precipitation, in agreement with a number of previous observational 
(Goward & Prince, 1995; Huxman et al., 2004; Knapp & Smith, 2001) 
and modelling results (Fatichi & Ivanov, 2014; Wu et al., 2018).

One of the main reasons for model disagreement originates from 
the differences in parametrization in schemes representing water lim-
itation effects on water and carbon fluxes (e.g. Trugman et al., 2018), 
summarized here by the water stress parameter β (Figure 6). Those 
parametrizations influence ecosystem dynamics at a wide range of 
temporal scales, complicating assessment of their skill. For instance, 
at shorter timescales (e.g. daily), in ecosystems with no water lim-
itation, where temperature and radiation are the dominant controls 
for ET and GPP (Paschalis et al., 2015), models had a high agreement 
(Figure 5), in terms of correlation. This highlights that parametrizations 
that impact the temporal changes of ET and GPP should be relatively 
consistent among models, at least during wet conditions (Ukkola et al., 
2016). Even though correlation between models was high, large vari-
ability between models with regard to the actual magnitude of the 
fluxes was pronounced (Figures S2–S4), primarily for carbon fluxes 
(e.g. GPP). This indicates that a ‘scaling’ factor affecting GPP is sig-
nificantly different among models. For our experiments, LAI could be 
this explanatory ‘scaling’ factor (Figure 4), as models greatly differed 
regarding the seasonality and magnitude of LAI.

Significant changes emerge under drought, when water stress 
parametrizations influence the simulation of water and carbon fluxes. 
Different water stress parametrizations alter the water/carbon dynam-
ics at different scales. In severely water-limited systems (WI  <  0.4), 
model results diverge in terms of GPP and ET at short temporal scales 
(e.g. daily; Figure 5). Thus, parametrizations of how water stress im-
pacts processes operating at daily and subdaily timescales are crucial, 
and highly diverging among models. Such parametrizations include 
stomatal regulations and downregulation of photosynthesis during 
drought. In general, plant hydraulic dynamics will also operate at these 
temporal scales, but none of the participating models simulated such 
processes in detail. In severely water-limited ecosystems, the amount 
of annual precipitation imposes a strong constraint on ET (i.e. ET ≅ P), 
leading to overall good agreement between models for annual ET. 
However, this agreement is not true for transpiration alone (Figure 
S8), highlighting the major importance of how stomatal limitations are 
implemented in models. Physical constraints for productivity are not 
as strong, and thus models have large disagreement with respect to 
GPP even at annual scales.

In intermediate wetness sites (0.4 ≤ WI < 1), in our simulations, 
models disagree at intermediate scales (weeks–months) in terms of 
GPP (consistent with the wavelet coherence analysis presented at 
Figure S7). As mentioned before, at short (daily) temporal scales, 
temperature and radiation mostly determine water and carbon 
fluxes, when water is not a strong limiting factor, and due to the 
similar parametrizations among models (Wu et al., 2018), we detect a 
substantial convergence in GPP. However, since such controls ‘fade’ 
with increasing temporal scales, the effects of features linked to soil 
moisture dynamics, such as the soil moisture retention after a rain-
fall event, can manifest at longer temporal scales (Paschalis et al., 
2015). Those dynamics can be influenced by factors including both 
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biotic and abiotic factors such as the parametrizations of soil prop-
erties that determine the temporal dynamics of soil moisture and the 
vertical distribution of root biomass, affecting how plants withdraw 
water from the soil. In fact, models were found to strongly disagree 
on how plants are affected by soil moisture (biotic factor—Figure 6) 
and on the soils' water holding capacity, as indicated by the range of 
accessible values of soil moisture (abiotic factor—Figure 6).

At the wettest sites (WI > 1), strong model disagreement in terms 
of both water and carbon fluxes occurs at annual scales. A key factor 
for model disagreement for those sites is LAI (Figure 4). Model dis-
agreement in LAI is a composite effect of the water stress impacts to 
LAI development and the overall model disagreement in leaf phonol-
ogy and carbon allocation rules (Figure 4; Richardson et al., 2012).

All those behaviours highlight further the need to correctly 
capture water/carbon dynamics at multiple timescales, from the 
scale of the individual rain pulse (Huxman et al., 2004) up to in-
terannual scales where drought legacies can have an important 
effect (Anderegg et al., 2015). The need to understand in detail 
multiscale dynamics linked to water stress and soil moisture dy-
namics is also exacerbated by the fact that model disagreement 
in terms of the sensitivity of ANPP to annual rainfall is highest 
for sites with intermediate wetness (0.4 ≤ WI < 1). Those regions 
experience moderate water limitations, and the impact of water 
limitation to fast-acting processes (changes in e.g. stomatal con-
ductance, photosynthesis) can accumulate and impact longer 
timescales through slow-acting processes (e.g. changes in LAI). 
Additionally, areas with intermediate wetness are expected to op-
erate close to soil moisture thresholds inducing plant water stress. 
Sensitivity of the responses of ANPP to precipitation in those sites 
is concurrently the highest and most uncertain (Figure 2). This can 
have a large impact on our ability to model the fate of terrestrial 
CO2, given that those areas are among the largest contributors 
to the interannual dynamics of the growth rate of CO2 (Ahlström 
et al., 2015; Poulter et al., 2014). Understanding such dynamics 
across scales requires high quality and high frequency long-term 
measurements, not only for CO2 and water fluxes but also for soil 
moisture dynamics (Vicca et al., 2012). Annual ANPP values alone 
are limiting our inference capabilities and even 10–20 years of an-
nual ANPP data were not long enough to obtain a precise estimate 
of the sensitivity of ANPP to precipitation.

Uncertainties arise from the relatively short span of the record, 
but also due to the lack of data describing short-scale dynamics of 
carbon assimilation and growth in manipulation experiments. Annual 
precipitation has been found to be a relatively weak descriptor of the 
interannual variability of water and carbon fluxes in many locations 
worldwide (Fatichi & Ivanov, 2014). A better descriptor would be the 
time duration during a year when favourable meteorological condi-
tions for photosynthesis occur under well-watered conditions (Fatichi 
& Ivanov, 2014; Zscheischler et al., 2016). As a result, a few bursts 
of positive extremes in terms of productivity can strongly modify 
the annual budget and long-term dynamics (Zscheischler, Mahecha, 
et al., 2014). Therefore, to quantify the interannual dynamics of veg-
etation productivity, detailed knowledge of water/carbon fluxes, 

meteorology, soil moisture and plant water status at fine-temporal 
scales would be essential. In fact, previous research at the PHACE 
experiment, one of the few facilities that combined such high fre-
quency measurement clearly identified the problems models have in 
reproducing sub-annual dynamics (De Kauwe et al., 2017). Given the 
present limited availability of such data, new ways of combining ex-
isting data (e.g. combining different data-streams representing short 
and long-term-dynamics in multiple locations, such as Fluxnet sites 
for water and carbon fluxes at high frequencies, sites equipped with 
phonecams for high-frequency phenology monitoring, soil moisture 
networks (e.g. COSMOS, the International Soil Moisture Network, 
the Long Term Ecological Research Network, etc.), open access data 
archiving with common data formats to facilitate data exchange 
between research groups and the use of proxy data to extend the 
length of the time series (e.g., tree rings) are necessary to better in-
form models (Babst et al., 2018; Pappas, Mahecha, Frank, Babst, & 
Koutsoyiannis, 2017).

4.2 | Response to manipulation experiments

The modelled sensitivities of vegetation dynamics to changes in 
rainfall are highly uncertain. On average, most models captured 
better the observed responses of vegetation to rainfall exclusion 
than addition (Figure 7). That behaviour can be associated with 
low skill in reproducing the asymmetric response of productivity 
to precipitation (Wu et al., 2018), failing to capture the correct 
pattern of the productivity saturation effect associated with rain-
fall increase.

Even though, multiple models generated close vegetation pro-
ductivity responses in the rainfall exclusion experiments, the under-
lying reasons are very different and at the same time highly uncertain 
(Figure 9). In the more water-limited ecosystems, both changes in LAI 
magnitude and the level of plan water limitation determine productiv-
ity responses. Variability of the relative strength of β and LAIp between 
models is large. Variability concerning LAIp is larger than β, which can 
be explained by the fact that LAIp integrates the model differences 
related to LAI phenology, carbon allocation rules and reductions in 
photosynthetic rates due to soil moisture limitations. Pinpointing 
which model best captures the relative strengths of changes in β and 
LAIp would require simultaneous high-frequency data, including soil 
moisture, regular measurements of stomatal conductance and leaf 
water potentials, high-frequency photosynthetic rates and regular LAI 
estimates. At more mesic sites, physiological effects of water stress 
(through β) are the main reason for productivity responses. The rea-
son is that in such sites, induced water stress is mild. Productivity will 
be reduced during the imposed water stress due to rainfall exclusion, 
but this small increase in water stress cannot cause large changes in 
vegetation structure (Estiarte et al., 2016), or LAI.

Disagreement in irrigation experiments is primarily related 
to leaf area dynamics. The reason can be that in the simulations 
where water stress was relieved, model disagreement originates 
primarily from the leaf area dynamics simulated for the unstressed 
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conditions. Those dynamics are related to the choice of carbon 
allocation and leaf phenology algorithms. Pronounced model dif-
ferences related to those dynamics can be shown via the magnitude 
and seasonal patterns of LAI (Figure 4) as simulated by all models. 
Both the allocation and the phenology algorithms affect the dy-
namics of LAI. In our simulations (Figure 4) the range in modelled 
LAI is large and comparable with that reported by previous studies 
(De Kauwe et al., 2017; Walker et al., 2014). Parametrizations of 
carbon allocation rules are also limited by the use of generic PFTs 
used by most models. Such a choice is generally very restrictive 
and cannot capture the natural variability of plant traits, which is 
relevant at the local scale.

In our analysis changes in growing season length were not 
evident and did not influence out results. This is not surprising, 
as all rainfall manipulation experiments decreased or increased 
the available water to the ecosystem, without altering its ‘pulse’ 
structure, including the frequency of rainfall occurrence, and the 
time of storm arrival (Ross et al., 2012). As vegetation phenology 
in water-limited ecosystem is very sensitive to the pulse struc-
ture dynamics of rainfall (Heisler-While et al., 2009), evaluating 
in future experiments, whether models can properly capture the 
responses of vegetation to rainfall pulses in terms of productivity 
and drought deciduousness is very important. Changes in rainfall 
pulses will also strongly impact soil respiration dynamics that will 
contribute significantly to the total carbon balance (Jarvis et al., 
2007; Unger, Máguas, Pereira, David, & Werner, 2010).

4.3 | Outlook for model developments and 
observations

Our results highlight the need for a coordinated effort of new model 
development and data collection that could enable validations that 
are much more detailed than currently achievable here. Model dis-
crepancies in the present study were attributed to the β stress factor 
and long-term leaf area dynamics. The models used in this study im-
plemented simple conceptual, yet vastly different (Wu et al., 2018) 
parametrizations of the effects of water limitation, neglecting plant 
hydraulics and thus impacts on the water transport system (xylem 
cavitation) that can lead to hydraulic failure and/or carbon starva-
tion (Bonan et al., 2014; McDowell, 2011; McDowell et al., 2013; Xu, 
Medvigy, Powers, Becknell, & Guan, 2016). This could be an impor-
tant limitation. However, tree mortality is not a prominent feature 
of the manipulation experiments considered here and while it has 
attracted a lot of attention, models first need to better simulate mild 
to severe water stress before considering vegetation death. For in-
stance, differences associated with the β factor are not only related 
to plant physiological thresholds but are associated with a complex 
function of the assumed soil textural properties. Those proper-
ties are translated into soil hydraulic parameters (Van Looy et al., 
2017), affecting soil moisture dynamics and ET and ultimately their 
interplay with the value of the β factor. It is currently impossible or 
very difficult to identify which model is more realistic in this respect 

and each model can only ‘tune’ all the above components at once. 
Specialized experiments measuring for example simultaneously 
high-frequency water and carbon fluxes, soil moisture and plant 
water status in controlled environments could be designed to de-
velop more informed parameterizations of β, and eventually expand 
to more detailed mechanistic representation of ecosystem-scale 
plant hydraulics (Anderegg et al., 2016; Konings & Gentine, 2017).

Correct modelling of leaf area dynamics is equally important as 
the plant physiological stress β for quantifying the effect of rain-
fall changes in ecosystem functioning (Yang, Medlyn, De Kauwe, 
& Duursma, 2018). Simulation of LAI could be constrained bet-
ter than currently done with available information, considering 
that high-frequency LAI measurements in an experiment could 
be added with a relatively low budget. Observations of LAI, via 
indirect methods, are common at large scale. Extensive ground 
(Iio, Hikosaka, Anten, Nakagawa, & Ito, 2014) and remote-sensing 
estimates (Zhu et al., 2013) of LAI and phenology data from low-
cost cameras worldwide (Brown et al., 2016; Klosterman et al., 
2014) can be used to further constrain phenology and carbon al-
location. Regarding carbon allocation, belowground dynamics and 
their responses to water limitation should also be simultaneously 
quantified.

From an observational perspective, in order to improve models, 
we need to disentangle the effects on plant physiological stress from 
those on vegetation dynamics at the local scales. Since physiologi-
cal effects of water stress manifest earlier than changes of LAI or 
carbon pools, a nearly continuous monitoring of photosynthesis, ET, 
leaf and soil water potentials, sap flow and LAI would be essential to 
get further insights. These quantities are often observed (e.g. using 
eddy covariance systems, sap flow sensors, leaf porometers, hyper-
spectral cameras), but rarely in an integrated manner and associated 
with rainfall manipulation experiments. This should become a prior-
ity to foster model developments.

Finally, new streams of data via remote sensing can be also 
used for detailed model confirmation at larger scales. Satellite and 
airborne data related to vegetation structure, spanning from leaf 
chemistry to delineation of individual trees (Andersen, Reutebuch, 
& McGaughey, 2006; Asner & Martin, 2009; Gougeon & Leckie, 
2006; Vicca et al., 2016), high frequency photosynthesis through 
solar induced fluorescence, soil moisture (Liu et al., 2011), and 
plant hydraulic status (Konings & Gentine, 2017) currently exist. 
Such data can help us to identify the mechanistic link between 
plant water stress and how it affects vegetation productivity from 
short-term photosynthesis reduction to decadal scales involving 
plant mortality and composition shifts. Note however that esti-
mates of photosynthetic activity during water stress purely based 
on remote sensing (light reflection signals) are often biased and 
need to be interpreted with care (De Kauwe, Keenan, Medlyn, 
Prentice, & Terrer, 2016; Stocker et al., 2019).

In conclusion, our key finding in this study is that current genera-
tion terrestrial biosphere models have major uncertainties related to 
simulating plant water stress, and its impact on the terrestrial carbon 
cycling. Those uncertainties arise from the model formulations related 
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to both carbon allocation patterns and phenology and the representa-
tion of water stress frequency and magnitude on carbon assimilation. 
These two effects are inherently coupled at a wide range of scales. To 
decouple the two effects and constrain mechanistic representations of 
how water stress acts on multiple processes will require the close col-
laboration between experimentalists and modellers, for planning and 
implementing new ‘high frequency’ experiments (Rineau et al., 2019). 
These experiments should observe across a range of temporal scales 
from hourly values of photosynthesis and ET, to daily and weekly 
LAI dynamics, up to arrive to annual changes in species composition 
(Halbritter et al., 2019).
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