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Gene-informed decomposition model predicts
lower soil carbon loss due to persistent microbial
adaptation to warming
Xue Guo et al.#

Soil microbial respiration is an important source of uncertainty in projecting future climate

and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying

microbial mechanisms are still poorly understood. Here we show that the temperature

sensitivity of soil microbial respiration (Q10) in a temperate grassland ecosystem persistently

decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial commu-

nities play critical roles in regulating thermal adaptation of soil respiration. Incorporating

microbial functional gene abundance data into a microbially-enabled ecosystem model sig-

nificantly improves the modeling performance of soil microbial respiration by 5–19%, and

reduces model parametric uncertainty by 55–71%. In addition, modeling analyses show that

the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6

± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur

generally across different spatial and temporal scales, the potential positive feedback of soil

microbial respiration in response to climate warming may be less than previously predicted.
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Soil stores large quantities of organic carbon (C), about three
times more C than the Earth’s atmosphere1,2. Soil respira-
tion is the largest single source of carbon dioxide (CO2)

from terrestrial ecosystems to the atmosphere, and is about ten
times larger than anthropogenic emissions3. Soil total respiration
(Rt) includes both autotrophic respiration (Ra) from plant root
growth and root biomass maintenance, and heterotrophic
respiration (Rh) from microbial decomposition of litter and soil
organic matter (SOM). Various short-term experiments show
that soil respiration increases exponentially with temperature4,
which has been used as a general relationship to parameterize
ecosystem and Earth System Models (ESMs)5. If the near-
exponential short-term relationship of soil respiration and tem-
perature holds for the long-term (years to decades), climate
warming will trigger a sharp increase in ecosystem respiration
(ER). Such an increase could then result in a strong positive
feedback to the global C cycle6, which is dependent on the
responses of Rh and the dynamics of detrital inputs under
warming7. Therefore, it is particularly important to accurately
evaluate soil Rh and its response to climate warming. However,
partitioning Rt into Ra and Rh is one of the main challenges in
both experiment- and model-based global change research8.
Consequently, soil respiration is a poorly understood key C flux
in the global C cycle and is an important source of the uncertainty
in climate projections9–11.

Microorganisms can dramatically adjust their respiratory
responses to temperature over long terms (years) via changing
their metabolism and community structure12. Several climate
change experiments demonstrated that soil respiration was sti-
mulated in the short term, followed by a dampened effect of
warming later13–15. This phenomenon is referred to as thermal
adaptation of soil respiration16,17. The existence of thermal
adaptation of soil respiration is of critical importance as the
greater the global thermal adaptation of soil respiration, the
weaker the positive feedback between climate warming and
ecosystem CO2 release18. However, the existence and the degree
of thermal adaptation of soil respiration is extremely uncer-
tain, especially in the field and over a long duration (years to
decades)9,10,19. Whether thermal adaptation of soil respiration
can persist over time is not clear. Moreover, the mechanisms
controlling thermal adaptation of soil respiration have been
intensively debated4,14,19–21, and include warming-induced sub-
strate depletion19,21 or evolutionary adaptation via individual
acclimatization and changes in microbial community13,14. These
two mechanisms may lead to different soil C loss in a warmer
world14,21. While the former could lead to a depletion of labile C
pools, releasing more C into the atmosphere through microbial
respiration if more plant-derived C is available under warming,
the latter could result in less soil labile C loss due to microbial
community adaptation to the rising temperature (warming)14.
Therefore, knowledge about thermal adaptation of soil respiration
and its underlying mechanisms will be central to making better
predictions of terrestrial C cycling feedbacks. However, one grand
challenge in climate change biology is to integrate microbial
community information, particularly omics information, into
ecosystem models to improve their predictive ability for pro-
jecting future climate and environmental changes22. More spe-
cifically, parameter values for various microbial processes are
poorly constrained by experimental observations, which becomes
one of the significant uncertainty sources leading to low con-
fidence in carbon-climate feedback projections23. Hence, using
omics-enabled experimental observations to improve model
parameter estimations could greatly help to refine the projected
magnitude of the carbon-climate feedbacks.

Soil microbial communities are very complex in structure
and are sensitive to changes in environmental conditions14, so

information obtained from a single time point provides only a
snapshot of the microbial community, and is not suitable for
ecosystem model simulation. To model microbial respiratory
responses to climate warming, long-term experiments under
more realistic field settings with time-series microbial data are
needed. Otherwise, it will be difficult to determine the direction,
magnitude, and duration of biospheric feedbacks to climate
change15,24. Therefore, a new warming experiment site with
sandy soil and dominance of C3 grasses was established in a
native, tall-grass prairie ecosystem of the US Great Plains in
Central Oklahoma (34̊ 59ʹN, 97̊ 31ʹW) in July 200925. The
warmed plots were subjected to continuous warming by infrared
radiators (+3 °C), and annual soil samples were archived over
subsequent years and analyzed by integrated metagenomics
technologies.

In this study, we examine the temperature responses of soil Rh
(7 years) and their underlying mechanisms. Our main objectives
are to answer the following questions: (i) How does long-term
experimental warming affect the temperature responses of soil
microbial respiration over time? (ii) Whether or not thermal
adaptation of microbial respiration occurs persistently across
years under warming and by what underlying mechanisms? (iii)
Can the microbial mechanisms underlying soil respiration be
incorporated into ecosystem models to improve model perfor-
mance and reduce model uncertainty? Our study reveals that
thermal adaptation of microbial respiration exists persistently
over the long-term and that the shifts of microbial communities
play critical roles in regulating such thermal adaptation of
microbial respiration. Incorporating metagenomics-based
microbial functional genes significantly increases confidence in
model simulations, indicating that the microbial thermal adap-
tation could lead to considerably less heterotrophic respiration
and hence less soil C loss.

Results and discussion
Overall ecosystem changes under long-term warming. The plots
in the warming experiment site have been subjected to con-
tinuous warming for over 7 years7. On average, experimental
warming significantly (p < 0.01) increased daily air temperature
by 1.3 °C, and daily mean soil temperature at 7.5 cm by 2.8 °C
(Fig. 1a). Experimental warming significantly (p < 0.01) decreased
soil moisture by 6.4% (Fig. 1b). Consistent with previous
reports14, warming significantly (p= 0.01) shifted plant com-
munity structure. Specifically, C3 plant biomass was significantly
(p < 0.01) lower under warming than control, but no significant
change was observed in C4 and total plant biomass (Supple-
mentary Fig. 1a), which results in a plant community shift
towards relatively more C4 plants. Although the statistical test is
not significant, the gross primary production (GPP) was slightly
increased by warming (Fig. 1c). Meanwhile, the net ecosystem
exchange (NEE) was higher under warming than control due to
lower ER, suggesting that the whole ecosystem acted as a C sink
under the climate warming scenario (Fig. 1c). In addition, no
overall differences were detected in total organic C (TOC), total
nitrogen (TN) and soil pH (Supplementary Fig. 1b, c), but the
amount of NO3

− was significantly (p < 0.05) higher under
warming than control (Supplementary Fig. 1c). These alterations
in ecosystem variables by warming are expected to lead to
changes in soil respirations and microbial community functions.

Temperature sensitivity of soil microbial respiration. Soil sur-
face CO2 efflux was measured by using shallow (2–3 cm) PVC
collars for Rt and deep (70 cm) PVC tubes for Rh, with the dif-
ferences between Rt and Rh calculated as Ra (Supplementary Fig. 2
and Methods). Warming significantly (p < 0.01) stimulated Rh by
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8.0–28.1% across all years, which is consistent with results from a
filter paper decomposition experiment that showed significantly
(p < 0.01) higher decomposition rates under warming (Fig. 1e).
However, warming appeared to suppress Ra, although it was not
statistically significant (Fig. 1d), which may result from the
decreased root activities along warming-induced plant commu-
nity shift7. More than half of Rt (58 and 65% for the control and
warming plots) was from heterotrophic respiration, indicating
that soil microbial community greatly contribute to soil CO2

efflux14. Due to the opposing responses of Ra and Rh to warming,
Rt exhibited no significant change by warming across all years
(Fig. 1d). Since our main interest is the response of microbial
litter and SOM decomposition to warming, we primarily focused
on Rh for the majority of the following analyses. Notably, the root
exclusion method by deep PVC tubes for partitioning Ra and Rh
had some potential artifacts, including soil moisture and tem-
perature changes, exclusions of plant detritus inputs, and soil
microbial community changes7, although these artifacts may be
less problematic when we focused on the relative changes between
treatments and controls. Soil moisture and temperature in the
deep PVC tubes were not measured in this study, but previous
study indicated that the similar root exclusion method (trenching
method) can artificially increase soil moisture and temperature26,
and thus could overestimate soil Rh. Soil microbial community
structure and biomass may not be significantly changed by root
exclusion, as revealed by a previous study27. The severing roots by
inserting PVC tube in soil may result in a transient increase of
soil respiration28. In this study, soil Rh was first measured at
least 8 months after the insertion of PVC tube into soil, so the
effects of decomposition of severing roots on measured Rh
should be minimized. However, it is highly possible that the

exclusion of root inputs to soil as dead roots and root exudates for
a long time could underestimate soil Rh, and in turn overestimate
soil Ra.

A wide range of different models have been developed to
express the temperature sensitivity of SOM decomposition and
respiration processes29. While many models are based on the
exponential function characterized by the Q10 or activation
energy4, the square root relationship30 and the macromolecular
rate theory (MMRT) equation31 have also been proposed to
enable the comparison of temperature sensitivity of microbial
activity between habitats or organisms. The square root equation
includes a theoretical minimum temperature for growth and
activity, which allows one to more accurately estimate Q10 below
optimum temperature30. The core concept of the MMRT
equation is that there exists an optimum temperature for enzyme
and microbial activity31, which overcomes the limit of tempera-
ture range for the applicability of the Arrhenius (including the
Q10 approach) and the square root equations. The optimum
temperature in the MMRT equation could be ca. 30 °C31,32 and
57–71 °C33, which is generally above the temperature range of
0–40 °C for the validity of the Arrhenius relationship12. Given
that 95% of the soil temperatures were below 30 °C in our study
site and the Q10 method has been widely accepted to interpret the
temperature sensitivity in the biological and environmental
research including most of the ESMs models4,29, we adopted
the Q10 approach (see Methods) to examine the apparent
temperature sensitivity of microbial respiration (>7 years) and
their underlying mechanisms. This also allows us to directly
compare our results to the vast amount of existing studies and
interpret the temperature sensitivity in a generally accepted
framework.
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Fig. 1 Warming effects on soil variables and ecosystem C fluxes. a Air and soil surface (7.5 cm) temperatures averaged from 2010 to 2016. b Soil
moisture averaged from 2010 to 2016. c Ecosystem C fluxes, which were estimated on the basis of the C amount from CO2 emissions averaged from 2010
to 2016. GPP, gross primary productivity; ER, ecosystem respiration; NEE, net ecosystem C exchange. Positive values indicate C sink, and negative values
represent C source. d in situ soil respirations averaged from 2010 to 2016. Ra, autotrophic respiration; Rh, heterotrophic respiration; Rt, soil total respiration.
e Decomposition rate of standard cellulose filter paper (mass loss) in the field determined in 2016. f Apparent and model-derived temperature sensitivity
(Q10) of heterotrophic respiration (Rh) averaged from 2010 to 2016. Apparent Q10 is estimated by fitting the curve of Rh versus soil temperature based on
the Q10 method. Model-derived Q10 is derived by calibrating the MEND model. Error bars represent standard errors of the means (n= 4 field plots
examined over seven repeated measures from 2010 to 2016). The differences between warming and control were tested by the two-sided repeated
measures ANOVA, indicated by *** when p < 0.01, ** when p < 0.05, * when p < 0.10. Source data are provided as a Source Data file.
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Significant (p < 0.05) or marginally significant (p < 0.10)
apparent Q10 estimates were observed under both control and
warming treatments in all years except 2011 (Supplementary
Fig. 3). Therefore, the apparent relationship between Rh and soil
temperature follow a monotonic exponential equation in most
years. The poor fit of apparent Q10 in 2011 and 2012 is most
likely due to the suppression rather than enhancement of
microbial respiration under warming, which could be explained
by the higher temperatures (e.g., >30 °C) beyond the optimal
temperature for microbial respiration32 and/or the confounding
effects of environmental factors other than temperature (e.g., soil
moisture)4. In average, the apparent Q10 estimates were
significantly (p= 0.03) higher under control (1.61 ± 0.06) than
warming (1.41 ± 0.07), suggesting a 12.0 ± 3.7% decrease in the
temperature sensitivity of soil Rh across 7 years of warming
(Fig. 1f). However, the apparent temperature sensitivity estimate
based on the field measurements are influenced by various other
factors beyond temperature, including soil moisture, plants-
derived substrate quality and availability, nutrient limitation
influencing microbial enzyme production, experimental duration,
and/or spatial heterogeneity, as well as uncertainty in instru-
mental measurements4,8.

To further delineate the temperature sensitivity of SOM
decomposition, ecosystem model-based inverse analysis was
performed to untangle various complex soil processes8,14,20 using
the Microbial-ENzyme Decomposition (MEND) model (Supple-
mentary Fig. 4a), which has been evaluated from laboratory to
global scale34–36. Here we used the model-derived temperature
sensitivity to distinguish the Q10 estimated by process-based
ecosystem modeling from the apparent Q10 estimated by the
relationship between respiration and temperature. The model-
derived temperature sensitivity represents direct response of
heterotrophic respiration to temperature change in the modeling
context37,38, as we used different response functions in MEND to
represent the direct effects of soil pH, temperature, and moisture
on various transformation processes35. By fitting all 7-year
respiration data together, the model-derived Q10 under warming
was 1.39 ± 0.09, significantly lower (p < 0.01) than that under
control (1.77 ± 0.12) (Fig. 1f). The model-derived Q10 values from
our model-data fusion approach were comparable with the
measured apparent Q10 under both control and warming.
Altogether, the above results indicate that there was a strong
and persistent decrease in model-derived temperature sensitivity
of microbial heterotrophic respiration under warming over the
last 7 years.

Mechanisms of soil microbial respiration. The persistent
decrease in temperature sensitivity of soil microbial respiration
across different years under warming could be due to substrate
depletion under warming. It has been argued that soil labile C

becomes depleted by increased respiration in response to
warming, which leads to a subsequent reduction in the rate of soil
respiration10. In this study, several lines of evidence suggest that
the decreased temperature sensitivity of microbial respiration was
not mainly due to warming-induced substrate depletion. First,
available C substrates are a tiny fraction of total soil C stocks and
have rapid turnovers, but our BIOLOG results revealed that, after
7 years of warming, microbial metabolism underpinning the
utilization ability of most available C substrates were considerably
higher under warming than control (Supplementary Fig. 5). A
reasonable explanation for the result is that soil C stocks, espe-
cially labile C pools as the sources of available C substrates39,40

were relatively stable without substantial reduction, and can
provide equal or more available C substrates after long-term
warming, compared to the controls. Second, NEE was higher
under warming than control (Fig. 1c), suggesting that more soil
labile and/or recalcitrant C input as plant litter, root biomass or
exudates counteracted the consumption of soil available C sub-
strates by microbial respiration. Third, the unchanged annual soil
C from 2010 to 2016 (Supplementary Fig. 1c) indicated the sta-
bility of soil total C under the long-term warming, which does not
support the expectation garnered from the substrate depletion
hypothesis. Altogether, these results suggested that the turnover
of soil labile C may be accelerated by warming, but warming did
not lead to the depletion of soil labile C. Therefore, the reduced
temperature sensitivity of soil respiration appears to be less likely
due to warming-induced substrate depletion, although the effects
of substrate depletion could not be completely ruled out.

Warming-induced adaptive changes in microbial community
composition and functional structure could also lead to the
reduced temperature sensitivity of microbial respiration. To test
this hypothesis, soil microbial communities of individual samples
from 2010 to 2016 were all analyzed with deep amplicon
sequencing of the 16S rRNA gene for bacteria and archaea, and
the ITS for fungi, metagenomic shotgun sequencing, and
functional gene arrays (GeoChip 5.0; Supplementary Table 1).
Permutational multivariate analysis revealed that experimental
warming significantly (p < 0.03) shifted microbial community
taxonomic and functional structure (Table 1). These shifts were
tightly linked to environmental factors as revealed by the Mantel
test (Fig. 2a and Supplementary Fig. 6) and canonical correspon-
dence analyses (CCA) (Supplementary Fig. 7). Interestingly,
considerably less unexplained community variations were
obtained based on GeoChip data (59.2%) than 16S (73.0%), ITS
(77.4%) and shotgun sequencing data (73.3%) (Supplementary
Fig. 8), indicating that GeoChip-based detection could be more
effective in indicating the community dynamics in response to the
changes in plant diversity, soil conditions, and time.

Generally, temperature is a primary driver of biological
processes and can impact soil microbial communities at different
organizational levels, based on the metabolic theory of ecology

Table 1 Significance tests of the effects of warming and time on microbial community structures with permutational multivariate
analysis of variance.

Effects 16 S ITS GeoChip Metagenomic
sequencing

Metagenome EcoFUN-
MAP

F P F P F P F P F P

Warming (W) 4.200 0.001 2.314 0.001 2.505 0.026 8.059 0.001 2.924 0.001
Year (Y) 2.432 0.001 1.595 0.001 12.216 0.001 4.398 0.001 2.323 0.001
W × Y 1.178 0.092 1.055 0.224 1.385 0.092 1.350 0.170 1.135 0.084

Permutational multivariate analysis of variance (Adonis) was used based on Bray–Curtis dissimilarity matrices. The two-way repeated measures ANOVA model was set as dissimilarity~warming × year
+ block using function adonis in R package vegan. The degree of freedom was 1 for warming treatment, 6 for year and 39 for residuals. Significant effects (P≤ 0.05) were shown in bold text. EcoFUN-
MAP is a method designed for annotating metagenomic sequences by comparing them with functional genes used to fabricate GeoChip.
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(MTE)12,25,41. The rising temperature under warming could act
as a deterministic filtering factor to impose environmental
selection on microorganisms, which can lead to significant shifts
of soil microbial communities25. Consistent with these previous
studies, soil temperature significantly (p < 0.05) correlated with
the shifts of microbial composition and functional structure
(Fig. 2a, Supplementary Fig. 6, 7). Furthermore, structural
equation modeling (SEM)-based analysis indicated that soil
temperature significantly influenced microbial functional struc-
ture through its effects on microbial diversity, further affecting
soil Rh (Fig. 2b). However, the shifts of microbial communities
and soil Rh may not be solely explained by the rising temperature
under warming, since significant decreases of soil moisture were
observed under warming, and strong correlations occurred
between soil moisture and microbial composition and functional

structure (Figs. 1b, 2a). Previous studies provided clear evidences
that soil moisture limitation can weaken the stimulation of
warming on soil respiration4,42. Congruously, our SEM-based
analysis suggested that soil moisture significantly (p < 0.05)
affected soil Rh through shifting microbial functional structure
(Fig. 2b). It is highly possible that severe soil moisture limitation
played more important role in changing soil microbial commu-
nity and Rh than temperature in the extremely drought year
(2011), which led to no significant temperature sensitivities of soil
microbial respiration observed in the year (Supplementary Fig. 3).
In addition, warming can also alter soil microbial community
structure indirectly through changing plant community structure,
because the quantity and quality of soil C input from the plants
differ depending upon the species43. In this study, C3 plant
biomass was significantly (p < 0.05) decreased by warming and
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exhibited a direct effect on soil microbial function structure in the
SEM-based analysis (Fig. 2b). All of these results indicated that
the adaptive changes in microbial community composition and
functional structure resulted from the combined effects of the
increase of soil temperature, decrease of soil moisture, and
changing plant community structure under long-term warming.

Warming-induced shifts of microbial functional diversity and
structure led to significant changes of biogeochemical cycling
processes, including C cycling (e.g., C degradation, C fixation)
and nutrient-cycling processes (e.g., N fixation, denitrification,
nitrification), phosphorus utilization and sulfur metabolism.
Overall, the total abundance of biogeochemical cycling genes
significantly (p < 0.05) stimulated by warming were considerably
higher (58–80%) than those significantly inhibited by warming
(20–42%) in all years except 2015 (Fig. 2c), although the
interannual variations of environmental factors greatly influenced
the composition of biogeochemical cycling genes. Similar pattern
was also observed in microbial functional genes involved in C
degradation, including those important for degrading starch (e.g.,
amyA encoding α-amylase), hemicellulose (e.g., ara encoding
arabinofuranosidase), cellulose (e.g., cellobiase), chitin (e.g.,
chitinase) and vanillin/lignin (e.g., mnp encoding manganese
peroxidase) (Supplementary Figs. 9a, 10). More specifically, larger
numbers of individual genes involved in degrading various soil
organic C were significantly increased by warming (95%
confidence interval; Fig. 2d and Supplementary Fig. 9a) in most
of the years, despite that warming effects on these C-degrading
genes substantially changed across different years. The significant
enrichment of C-degrading genes under warming may potentially
enhance soil C degradation. In addition, the total abundances of
warming-stimulated genes involved in N cycling (e.g., N fixation,
denitrification, and nitrification), phosphorus utilization, and
sulfur metabolism were higher than those of warming-inhibited
genes in most of the years (Fig. 2d and Supplementary Fig. 9b–d),
suggesting that the rates of nutrient-cycling processes could be
stimulated by warming. Further analyses by CCA and Mantel test
revealed that most of the genes important to C degradation and
nutrient cycling had strong correlations to the Rh, Rt, and Q10

(Supplementary Table 2 and 3), indicating that these functional
genes are important in controlling the dynamics of soil
respirations. In general, GeoChip hybridization data exhibited
stronger correlations to various functional parameters than
shotgun sequencing data, particularly for the heterotrophic Q10

(Supplementary Tables 2, 3). All the above results indicate that
the changes of microbial community composition and function
are crucial for the reduced temperature sensitivity of soil Rh under
long-term experimental warming.

Incorporating functional genes into ecosystem models. Due to
the importance of microbes in controlling soil Rh, as an
exploratory effort, we further attempted to incorporate omics
data into ecosystem models. Since traditional ecosystem models
do not explicitly represent most microbial processes44, the MEND
model was employed, which explicitly represents microbial phy-
siology and SOM decomposition catalyzed by oxidative or
hydrolytic enzymes36. Because MEND model requires absolute
quantitative information on hydrolytic and oxidative enzymes for
SOM decomposition36, GeoChip hybridization-based data were
used, which is more effective to catch the community dynamic
changes (Supplementary Fig. 8) as illustrated above.

The MEND model was calibrated with or without functional
gene information. We referred the former to as gene-informed
MEND (gMEND) and the latter as traditional MEND (tMEND).
We constrained gMEND by achieving the highest correlation
between MEND-modeled mean annual enzyme concentrations

and GeoChip-detected annual oxidative and hydrolytic gene
abundances in addition to a best fit between observed and
simulated Rh. Our results showed high correlations (r= 0.74 and
0.81 for oxidative and hydrolytic enzymes, respectively) between
simulated enzyme concentrations and GeoChip-detected gene
abundances (Supplementary Fig. 11a, b) in the control plots. Also,
relatively low Mean Absolute Relative Errors (MARE= 14 and
22%, Supplementary Fig. 11c, d) were achieved between
simulated and expected enzyme concentrations under warming
conditions, which were the product of simulated enzyme
concentrations under control and the warming-to-control ratio
of GeoChip-detected gene abundances. The above modeling
results indicated good agreements on the 7-year interannual
variabilities between simulated enzyme concentrations and
GeoChip-detected gene abundances.

As the MEND model uses different response functions to
represent the effects of soil pH, temperature, and moisture on
various transformation processes (Supplementary Table 5), the
MEND model attempts to derive a Q10 that specifically reflects
the microbial and enzymatic responses to temperature change.
This means that the direct effect of soil temperature may be
distinguished from the effects of other environmental factors
given the current model structure. To demonstrate the differ-
entiation of the effects of soil temperature from moisture, we used
gMEND to estimate the Rh response to a single-factor change in
soil temperature or moisture during the 7 year’s experimental
period. Compared to the MEND-simulated mean Rh under
control, changing soil temperature under warming would result
in a 22.2% increase in Rh, whereas changing soil moisture would
cause a decrease in Rh by 8.1% (Supplementary Fig. 12).
Therefore, both temperature and moisture effects greatly
contribute the MEND-derived thermal adaptation effect, as both
of them were taken into account in MEND simulations.

To test whether the inclusion of gene abundance data could
reduce model uncertainty, we further quantified the uncertainty
in parameters. Almost all of the 11 model parameters were better
constrained by gMEND than by tMEND (Fig. 3a and Supple-
mentary Fig. 13). The average coefficient of variation (CV) of
model parameters was significantly reduced from 77% (tMEND)
to 22% (gMEND) under control and from 39% (tMEND) to 17%
(gMEND) under warming. Also, the MEND-simulated Rh agreed
well with the observed Rh under warming and control (Fig. 3b:
R2= 0.53 and 0.63, respectively). Compared to non-microbial
terrestrial ecosystem model (TECO)45, the MEND model
improved CO2 efflux fitting by 5% under control and by 19%
under warming (Supplementary Fig. 14). We calibrated 10
parameters for TECO and 11 parameters for tMEND and
gMEND, the Akaike information criterions (AIC) of the MEND
models (–14.55 for warming and –38.30 for control) were smaller
than those of the TECO model (–4.14 for warming and –34.79 for
control), suggesting a better fit by the MEND model. In addition,
the MEND-derived Q10 was used to explore how much C loss is
reduced by the thermal adaptation of soil microbial respiration
(Q10) under warming. Our results showed that the thermal
adaptation of microbial respiration in the warming plots would
reduce 11.6 ± 7.5% soil Rh, and thus reduce soil C loss, during the
7-year experimental period, compared to the scenarios without
microbial thermal adaptation (Fig. 4a, b). This evidence for
thermal adaptation in the present study contrasts with a recent
meta-analysis of soil warming experiments, which found few
significant differences in the temperature sensitivity of soil
respiration between control and warmed plots across biomes
and only limited evidence of acclimation of soil respiration to
experimental warming10. This area of research clearly warrants
additional study to understand differences in reported results
among studies.
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It should be noted that the model-derived Q10 values may not
represent the true intrinsic temperature sensitivity of microbial
and enzyme activities. In this study, the MEND-derived Q10

values were confined from 1.20 to 2.42 (tMEND) to a narrow
range of 1.27–2.13 (gMEND), corroborating that Q10 values of 2
or below are usually used in global C cycle modeling29,38. The
MEND-derived Q10 values (1.77 ± 0.12 for control, and 1.39 ±
0.09 for warming) were close to those estimated from the TECO
model in the current study (1.79 ± 0.09 for control, and 1.50 ±
0.15 for warming), as well as a previous study with the TECO
model (1.4–2.5)37. Our model-derived Q10 under warming was
similar to the detrended temperature sensitivity (1.4 ± 0.1)
estimated across 60 FLUXNET sites38. We also compared our

results to a meta-analysis of activation energy (Ea) and Q10 values
for cellulases and ligninases from ca. 60 publications (see
Supplementary Table 11 and Supplementary Fig. 15). The
MEND-derived mean Q10 values under the control treatment
were slightly (e.g., 2.7%) lower than the mean Q10 of those studies
(1.77 vs. 1.82). However, the model-derived mean Q10 value
under warming was at the lower bound of one standard deviation
(1.39 vs. 1.38). We acknowledge that most C-degrading
enzymatic processes have an activation energy of about 50–60
kJ mol–1 (roughly equivalent to a Q10 of 2.0–2.5)4. Therefore, the
model-derived Q10 values may fail to catch the intrinsic
temperature sensitivity of microbial and enzyme activities,
although we have attempted to separate the effects of temperature
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from those of other potential confounding factors (e.g., soil
moisture) through the process-based modeling. There are still
other factors at the ecosystem level that likely limited
the expression of the intrinsic temperature sensitivity of
enzyme activity4, which needs further research in future studies.
In addition, limitations and uncertainties in model structure
and parameterization could further hinder a thorough differen-
tial representation of the effects of multiple confounding factors
(e.g., soil temperature and moisture, substrate supply and litter
quality)46 on enzyme activities and microbial carbon use
efficiency (CUE), though our results showed no significant
correlation between Q10 and the temperature sensitivity of CUE
(Supplementary Fig. 16). Despite that more effort should be
devoted to improving the representation of multi-factor effects
on soil respiration processes as well as confining the uncertainties
in model structure, parameterization, and input data, microbially-
enabled ecosystem modeling renders a significant advance in
our understanding of microbial responses to the changes in
temperature.

Through field measurements and process model-based simula-
tions, our results demonstrated that thermal adaptation of
microbial respiration persisted over the last 7 years, which is
consistent with a recent long-term study on a forest ecosystem15.
This study provides explicit, robust evidence of the persistence of
thermal adaptation of microbial respiration to warming treat-
ments and associated decreases in soil moisture over long periods.
If this phenomenon holds over larger spatial scales across
different ecosystems, thermal adaptation of soil microbial
respiration globally may have a greater mitigating impact than
expected on climate warming-induced CO2 losses47. Our study
also reveals that warming-induced thermal adaptation of soil
respiration is significantly correlated with the adaptive changes in
microbial community functional structure, which could dampen
the potential positive C-climate feedbacks by reducing consider-
able amount of warming-induced heterotrophic respiration. In
addition, although incorporating complex microbial information
into global change models is extremely challenging22, by
parameterizing the microbial model with omics-based functional
gene information, the uncertainty of key model parameters in
MEND was substantially decreased, and its performance was
considerably improved compared to non-microbial model. Thus,
it is possible to improve the model predictive ability for projecting
future environmental changes via a better representation of
multi-factor effects on soil biogeochemical processes and a
comprehensive assessment of microbial omics-based functional
capacities. However, to generalize whether these microbial
mechanisms and metagenomics-enabled modeling strategy
obtained in this grassland ecosystem are applicable to other
ecosystems requires further long-term studies under realistic field
settings.

Methods
Site description and sampling. This experimental site was established in July 2009
at the Kessler Atmospheric and Ecological Field Station (KAEFS) in the US Great
Plains in McClain County, Oklahoma (34̊ 59ʹN, 97̊ 31ʹW)14,48. Experimental design
and site description were described in detail previously25. Briefly, Ambrosia trifida,
Solanum carolinense and Euphorbia dentate belonging to C3 forbs, and Tridens
flavus, Sporobolus compositus and Sorghum halapense belonging to C4 grasses are
dominant in the site25,48. Annual mean temperature is 16.3 °C and annual pre-
cipitation is 914 mm, based on Oklahoma Climatological Survey data from 1948 to
1999. The soil type of this site is Port–Pulaski–Keokuk complex with 51% of sand,
35% of silt and 13% of clay, which is a well-drained soil that is formed in loamy
sediment on flood plains. The soil has a high available water holding capacity
(37%), neutral pH and 1.2 g cm−3 bulk density with 1.9% total organic matter and
0.1% total nitrogen (N)25,48. Four blocks were used in the field site experiment, in
which warming is a primary factor. Two levels of warming (ambient and +3 °C)
were set for four pairs of 2.5 m × 1.75 m plots by utilizing a real or dummy infrared
radiator (Kalglo Electronics, Bethlehem, PA, USA). In the warmed plots, a real
infrared radiator was suspended 1.5 m above the ground, and the dummy infrared

radiator was suspended to simulate a shading effect of the device in the
control plots.

In this study, eight surface (0–15 cm) soil samples, four from the warmed and
four from the control plots, were collected annually at approximately the date of
peak plant biomass (September or October) from 2010 to 2016. Three soil cores
(2.5 cm diameter × 15 cm depth) were taken by using a soil sampler tube in each
plot and composited to have enough samples for soil chemistry, microbiology and
molecular biology analyses. A total of 56 soil samples were analyzed in this study.

Environmental and soil chemical measurements. Precipitation data were
obtained from the Oklahoma Mesonet Station (Washington Station)48 located
200 m away from our experiment site, and 12-month version of the standardized
precipitation-evapotranspiration index (SPEI-12) was used as annual drought
index49. Air temperature, soil temperature and volumetric soil water content were
described in detail previously25. Specifically, air temperature and soil temperature
at the depth of 7.5 cm in the center of each field plot were measured by using
Constantan-copper thermocouples wired to a Campbell Scientific CR10x data
logger (Campbell Scientific, UT, USA). A portable time domain reflectometer (Soil
Moisture Equipment Corp.) was used to measure soil moisture from the soil
surface to a 15-cm depth once or twice a month. Three measurements of soil
moisture were performed in each plot and the average of three technical replicates
were used in further analyses.

All soil samples were analyzed to determine soil total organic carbon (TOC),
total nitrogen (TN), soil nitrate (NO3

−) and ammonia (NH4
+) by the Soil, Water,

and Forage Analytical Laboratory at Oklahoma State University (Stillwater, OK,
USA). Soil pH was measured using a pH meter with a calibrated combined glass
electrode50.

Aboveground plant communities. Aboveground plant community investigations
were annually conducted at peak biomass (usually September)48,51. Aboveground
plant biomass, separated into C3 and C4 species, was indirectly estimated by a
modified pin-touch method48,51. Detailed description of biomass estimation is
provided by Sherry et al.52. A pin frame used in this study is 1 m long and have 10
pins 10 cm apart at 30° from vertical. Pins with a 0.75 m length were raised within
the frame to count hits up to 1m high (hits over 1 m are negligible at this site). The
pin frame was placed in the center of each plot to record the contact numbers of the
pins separately with C3 and C4 plants (e.g., leaves and stems). The contact numbers
of C3 and C4 plants were then used to estimate plant biomass using calibration
equations derived from calibration plots, which were located near the experimental
plots. Biomass in the calibration plots was clipped at a height of 10 cm above the
ground at approximately the date of peak plant biomass (September or October). All
of the species in plant community within each plot were identified to estimate
species richness. Clipped plant materials were oven-dried and then correlated with
the total contact number. C3 and C4 plant biomasses were estimated by using the
calibration equation of contact number and plant biomass. All of the species within
each plot were identified to estimate species richness of plants.

Ecosystem C fluxes and soil respiration. Ecosystem C fluxes and soil respirations
were measured once or twice a month between 10:00 and 15:00 (local time) from
January 2010 to December 2016 by following previous methods14,48. One square
aluminum frame (0.5 m × 0.5 m) was inserted in the soil at 2 cm depth in each plot
to provide a flat base between the soil surface and the CO2 sampling chamber. NEE
and ecosystem respiration (ER) were measured using LI-6400 portable photo-
synthesis system (LI-COR). Gross primary productivity (GPP) was estimated as the
difference between NEE and ER. Meanwhile, soil surface respiration was monthly
measured using a LI-8100A soil flux system attached to a soil CO2 flux chamber
(LI-COR). Measurements were taken above a PVC collar (80 cm2 in area and 5 cm
in depth) and a PVC tube (80 cm2 in area and 70 cm in depth) in each plot. The
PVC tube was permanently fixed on the ground to cut off old plant roots and
prevent new roots from growing inside the tube. Any aboveground parts of living
plants were removed from the PVC tubes and collars before each measurement.
The CO2 efflux measured above the PVC tubes represented heterotrophic
respiration (Rh) from soil microbes, while that measured above the PVC collars
represented soil total respiration (Rt) including heterotrophic and autotrophic
respiration (Rh and Ra) from soil microbes and plant root, respectively.

Soil decomposition rate. Weighted cellulose filter paper (Whatman CAT No.
1442-090) was placed into fiberglass mesh bags and placed vertically at 0–10 cm
soil depth in each plot in March 2016. All of decomposition bags were collected
back in September 2016, rinsed and dried at 60 °C for weighing. The percentage of
mass loss was calculated to represent soil decomposition rate.

Molecular analyses of soil samples. The C substrate utilization patterns of soil
microbial communities in 2016 were analyzed by BIOLOG EcoPlateTM (BIOLOG).
The BIOLOG EcoPlateTM contains 31 of the most useful labile carbon sources for
soil community analysis, which are repeated three times in each plate. In this study,
the plates with diluted soil supernatant (0.5 g soil with 45 mL 0.85% NaCl) were
incubated in a BIOLOG OmniLog PM System at 25 °C for 4.5 days. The color
change of each well was shown as absorbance curve. The net area under the
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absorbance versus time curve was calculated to represent physiological activity of
various C sources53. The average value from three replicates was used for analyses
in this study.

Soil total DNA was extracted from 1.5 g soil by freeze-grinding and SDS-based
lysis54, and purified with a MoBio PowerSoil DNA isolation kit (MoBio
Laboratories)25. Then, 10 ng DNA per sample were used for library construction
and amplicon sequencing. Amplicons sequencing was performed with cautions in
terms of experimental preparations and data analyses to ensure sequence
representativeness and semi-quantitative nature55. The V4 region of bacterial and
archaeal 16S rRNA genes were amplified with the primer set 515F (5ʹ-GTGCC
AGCMGCCGCGGTAA-3′) and 806R (5ʹ-GGACTACHVGGGTWTCTAAT-3ʹ),
and fungal ITSs between 5.8S and 28S rRNA genes were amplified with the
primer set ITS7F (5ʹ-GTGARTCATCGARTCTTTG-3ʹ) and ITS4R (5ʹ-TCCTC
CGCTTATTGATATGC-3ʹ). PCR products from different samples were
sequenced on a MiSeq platform (Illumina, Inc.) using 2 × 250 pair-end
sequencing kit. Raw sequences were submitted to our Galaxy sequence analysis
pipeline (http://zhoulab5.rccc.ou.edu:8080) to further analyze according to the
protocol in the pipeline25. Finally, OTUs were clustered by UPARSE56 at 97%
identity for both 16S rRNA gene and ITS. All sequences were randomly
resampled to 30,000 sequences for 16S rRNA gene and 10,000 sequences for ITS
per sample. Representative sequences of OTUs were annotated taxonomically by
the Ribosomal Database Project (RDP) Classifier with 50% confidence estimates.

GeoChip 5.0 M, a functional gene array57, was used for all 56 samples from
2010 to 2016. GeoChip hybridization, scanning and data processing were
performed in the Institute for Environmental Genomics, University of
Oklahoma57,58. Specifically, 800 ng of purified soil DNA of each sample was mixed
with 5.5 µl random primers (Life Technologies, random hexamers, 3 µg/µl), diluted
with nuclease-free water to 35 µl, heated to 99 °C for 5 min, and placed on ice
immediately. The labeling master mix (15 µl), including 0.5 µl of Cy-3 dUTP
(25 nM; GE Healthcare), 2.5 µl of dNTP (2.5 mM dTTP, 5 mM dAGC-TP), 1 µl of
Klenow (imer; San Diego, CA; 40 U ml−1), 5 µl Klenow buffer, and 2.5 µl of water,
was added in the sample mixed solution. The samples were incubated at 37 °C for
6 h in a thermocycler, and then incubated at 95 °C for 3 min to inactivate the
enzyme. Subsequently, samples were protected from the light as much as possible.
Labeled DNA was cleaned using a QIAquick purification kit (Qiagen) according
the manufacturer’s instructions and then dried thoroughly in a SpeedVac (45 °C,
45 min; ThermoSavant).

Labeled DNA was resuspended into 27.5 µl of DNase-free water, and then
mixed completely with 99.4 µl of hybridization solution, containing 63.5 µl of
formamide (10% final concentration), 2 × HI-RPM hybridization buffer, 12.7 µl of
10 × aCGH blocking agent, 0.05 μg/µl Cot-1 DNA, and 10 pM CORS58. The mixed
solution was denatured at 95 °C for 3 min, and then incubated at 37 °C for 30 min.
The DNA solution was centrifuged at 6000 × g for 1 min to collect liquid at the
bottom of the tube. 110 µl of the solution was pipetted into the center of the well of
the gasket slide. The array slide was placed on the gasket slide, sealed using a
SureHyb chamber, hybridized at 67 °C for 24 h at 20 rpm in a hybridization oven.
After hybridization, slides were washed in room temperature with Wash Buffer 1
(Agilent) and Wash Buffer 2 (Agilent).

The slides were imaged as a Multi-TIFF with a NimbleGen MS200 Microarray
Scanner (Roche NimbleGen, Inc., Madison, WI, United States). The raw signals
from NimbleGen were submitted to the Microarray Data Manager on our website
(http://ieg.ou.edu/microarray), cleaned, normalized and analyzed using the data-
analysis pipeline. Briefly, probe quality was assessed, and poor or low signal probes
were removed. Probe spots with coefficient of variance (CV; probe signal SD/
signal) >0.8 were removed. Then, the signal-to-noise ratio (SNR) was calculated. As
suggested by Agilent, the average signal of Agilent’s negative control probes within
each subarray was used as the background signal for the probes in that subarray
instead of the local background typically used. The signal intensity for each spot
was corrected by subtracting the background signal intensity. If the net difference
was<0, the spots were excluded from subsequent analysis57. The average signal
intensity of CORS was calculated for each subarray, and the maximum average
value among all subarrays was used to normalize the signal intensity of samples in
each array. Second, the sum of the signal intensity was calculated for each array,
and the maximum sum value was used to normalize the signal intensity of all spots
in each array, which produced a normalized value for each spot in each array.

Metagenomic library of all samples was prepared using a KAPA Hyper Prep Kit
and sequenced at the Oklahoma Medical Research Foundation’s Genomics Core
using the Illumina HiSeq 3000 platform with a 2 × 150 bp paired-end kit. A total of
8.18 billion reads were obtained from all 56 samples, and 80 million reads were
randomly resampled from each sample to perform data processing. Open reading
frames (ORFs) were predicted on non-16S encoding reads using FragGeneScan
with the 0.5% Illumina sequencing error model and the default settings. The
predicted amino acid (a.a.) sequences for ORFs were then searched against the
M5NR database using BLAST, with the following settings: a.a. identity >30%,
aligned length >20 a.a., and e-value <1e−10. Read matching genes was
incorporated in the SEED database. The numbers of annotated reads were taken as
a proxy of abundance of the SEED subsystems57. Meanwhile, all reads were also
submitted to our EcoFUN-MAP pipeline (http://www.ou.edu/ieg/tools/data-
analysis-pipeline.html) to fish out shotgun sequence reads of important
environmental functional genes used to fabricate GeoChip according to the
protocol in the pipeline59.

Model simulations (TECO and MEND model). Daily GPP values were obtained
from a corrected 8-day GPP product based on the MODIS GPP (MOD17A2/
MOD17A2H)60. We assign the same daily GPP values for the 8-day period.
Meanwhile, datasets measured in both control and warmed plots across all years
were also used for model simulations, including soil temperature and moisture,
heterotrophic respiration, and the GeoChip-detected enzyme densities.

To examine temperature sensitivity of microbial heterotrophic respirations, the
measured field Rh in warmed and control plots was fitted with the exponential
equation4 (Eq. (1)) on yearly basis or across all years. In the equation, R is Rh, T is
soil temperature, R(Tref) is the respiration rate at the reference temperature (Tref).
The Q10 estimated by the observed respiration data was called apparent Q10 of
respiration in this study.

R Tð Þ ¼ RðTref Þ ´Q T�Trefð Þ=10
10 : ð1Þ

In the MEND model, the parameter Q10 is used to characterize the
unconfounded temperature sensitivity of SOM decomposition and heterotrophic
respiration. Constrained Q10, which is the model-derived Q10, is estimated by
model fitting constrained by available observations including respiration and gene
abundances, were obtained for the control and warming plots by incorporating
respiration and microbial information into the MEND model parameterization
process, which we called the model-derived Q10 of soil respirations38. The model-
derived Q10 can represent the direct response to temperature versus the
confounded effects of multiple factors, such as soil moisture and substrate
availability.

The non-microbial terrestrial ecosystem (TECO) model is a variant of the
CENTURY model61 that is designed to simulate C input from photosynthesis, C
transfer among plant and soil pools, and respiratory C releases to the atmosphere
(Supplementary Fig. 4b). C dynamics in the TECO model can be described by a
group of first-order ordinary differential equations, where the turnover rates are
modified by soil temperature (T) and moisture (W)45. Prior ranges of turnover
rates were based on Weng and Lu62. The prior ranges of Q10 were based on the
ranges of apparent Q10 of Rh per treatment4. We assumed that the parameters
distributed uniformly in their prior ranges8. We used the Shuffled Complex
Evolution (SCE) algorithm to determine model parameters36. We also applied the
probabilistic inversion (Markov Chain Monte Carlo) to quantity parameter
uncertainties63. By performing TECO modeling, daily heterotrophic respiration
was simulated for both warmed and control plots from 2010 to 2016. The
coefficient of determination (R2) was used to estimate the model performance
between observed and simulated respiration64.

The Microbial-ENzyme Decomposition (MEND) model (Supplementary
Fig. 4a) describes the SOM decomposition processes by explicitly representing
relevant microbial and enzymatic physiology36. The SOM pool consists of two
particulate organic matter (POM) pools and one mineral-associated organic matter
(MOM) pool. The two POMs are decomposed by oxidative and hydrolytic
enzymes, respectively. The MOM is decomposed by a generic enzyme group (EM).
Model state variables, governing equations, component fluxes and parameters are
described in Supplementary Table 6–9, respectively. A model parameter (reaction
rate) in MEND may be modified by soil water potential, temperature, or pH36.
MEND represents microbial dormancy, resuscitation, and mortality and enzymatic
decomposition in response to changes in moisture, as well as shifting of microbial
and enzymatic activities with changing temperature35. The temperature response
functions are described by the monotonic exponential equation (characterized by
the activation energy) or the Q10 method65, where the Q10 method was used in
this study.

The model parameters are determined by achieving high goodness-of-fits of
model simulations against experimental observations, such as heterotrophic
respiration (Rh), microbial biomass carbon (MBC), gene abundances of oxidative
(EnzCo) and hydrolytic enzymes (EnzCh) in this study (Supplementary Table 10).
We implemented multi-objective calibration of the model35. Each objective
evaluates the goodness-of-fit of a specific observed variable, e.g., Rh, MBC, or gene
abundances (Supplementary Table 10). Note that the GeoChip gene abundances
were used to constrain the MEND modeling as additional objective functions. The
parameter optimization is to minimize the overall objective function (J) that is
computed as the weighted average of multiple single-objectives (Supplementary
Table 9)36

J ¼
Xm
i¼1

wi � Ji; ð2Þ

Xm
i¼1

wi ¼ 1 with wi 2 ½0; 1�; ð3Þ

where m denotes the number of objectives and wi is the weighting factor for the ith
(i= 1,2, …, m) objective (Ji). In this study, Ji (i= 1, 2, 3, 4) refers to the objective
function value for Rh, MBC, EnzCo, and EnzCh, respectively. Because we have far
more Rh observations (e.g., 74 in control or warmed cases) than the other variables
and Rh is the most important variable in soil C studies, we assign a much higher
weighting factor to Rh than the other three objective functions (MBC, EnzCo, and
EnzCh), i.e, w1= 5/8 and w2= w3= w4= 1/8.

As the overall objective function J is minimized in the parameter optimization
process, the individual objective function Ji may be calculated as (1−R2), (1−r), or
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MARE:

R2 ¼ 1�
Pn

i¼1½Ysim ið Þ � Yobs ið Þ�2Pn
i¼1½Yobs ið Þ � �Yobs�2

; ð4Þ

MARE ¼ 1
n

Xn

i¼1

Ysim ið Þ � Yobs ið Þ
Yobs ið Þ

����
����; ð5Þ

r ¼
Pn

i¼1½Yobs ið Þ � �Yobs� � ½Ysim ið Þ � �Ysim�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½Yobs ið Þ � �Yobs�2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½Ysim ið Þ � �Ysim�2

q ; ð6Þ

where R2 denotes the Coefficient of Determination36,66. The R2 quantifies the
proportion of the variance in the response variables that is predictable from the
independent variables. A higher R2 (R2 ≤ 1) indicates better model performance.
MARE is the Mean Absolute Relative Error (MARE) and lower MARE values
(MARE ≥ 0) are preferred36,67. MARE represents the averaged deviations of
predictions (Ysim) from their observations (Yobs). r is Pearson correlation
coefficient and higher r values (|r | ≤1) means better model performance. n is the
number of data; Yobs and Ysim are observed and simulated values, respectively; and
�Yobs and �Ysim are the mean value for Yobs and Ysim, respectively.

Different objective functions are used to quantify the goodness-of-fit for
different variables (Supplementary Table 9), depending on the measurement
method and frequency of variables. The R2 is used to evaluate the variables (e.g.,
soil respiration) that are frequently measured and the absolute values can be
directly compared between observations and simulations. The MARE is used to
evaluate the variables (e.g., microbial biomass and enzyme concentrations) with
only a few measurements and the absolute values can be directly compared. When
the absolute values cannot be directly compared, the correlation coefficient (r)
between original or transformed (e.g., logarithmic transformed) observations and
simulations will be used. For example, the gene abundances from metagenomics or
GeoChip analysis cannot be directly compared to the enzyme concentrations or
activities in the MEND model. However, we may assume correlation could be
found between the measured and modeled values with a certain transformation or
normalization.

We used the Shuffled Complex Evolution (SCE) algorithm to determine model
parameters for the control soil and the warming soil respectively. SCE is a
stochastic optimization method that includes competitive evolution of a “complex”
of points spanning the parameter space and the shuffling of complexes68.

The parameter uncertainty in the MEND model was quantified by the Critical
Objective Function Index (COFI) method36. The COFI method is based on a global
stochastic optimization technique (e.g., SCE in this study). It also accounts for
model complexity (represented by the number of model parameters) and
observational data availability (represented by the number of observations). The
confidence region of parametric space were determined by selecting those
parameter sets resulting in objective function values (J) less than the COFI value
(Jcr) from the feasible parameter space36.

To examine how much soil C loss is reduced by the soil microbial thermal
adaptation under warming, we further calculated heterotrophic respiration (Rh)
under warming without thermal adaptation (w/o Adaptation). That is, we
estimated the mean Rh changing with soil temperature that under warming,
however, we kept the same range of Q10 as that under control13,15. The Rh changing
with soil temperature is described by the Q10 method similar to Eq. (1):

Rh Tð Þ ¼ RhðTref Þ ´Q T�Trefð Þ=10
10 ; ð7Þ

where Rh(T) and Rh(Tref) are the Rh (g Cm–2 d–1) at soil temperature (T) and
reference temperature (Tref), respectively; and Tref= 10 °C in this study.

We quantified the thermal adaptation effect (w/Adaptation) by taking into
account the uncertainties in model-derived Q10 estimated by the MEND model.
First we calculated the Rh fluxes (g Cm−2 d−1) at the mean annual soil temperature
under control, e.g., RCT

h under T= 17 °C and Q10= 1.77 with 95% confidence
interval (CI) of 1.70–2.13. Second we calculated Rh under warming with thermal
adaptation (RwA

h under T= 20 °C and Q10= 1.39 with 95% CI of 1.27–1.59) and Rh

under warming without thermal adaptation (RwoA
h under T= 20 °C and Q10= 1.77

with 95% CI of 1.70–2.13). We then calculated the reduction in Rh due to thermal
adaptation as

ΔRwoA�wA
h ¼ RwoA

h � RwA
h : ð8Þ

Finally, we calculated the thermal adaptation effect as the percent reduction in
Rh due to thermal adaptation relative to the baseline Rh, i.e, the mean Rh in the
control plot (RCT

h )

%ΔRh ¼ ΔRwoA�wA
h =RCT

h ´ 100%: ð9Þ

Statistical analysis. All statistical analyses were carried out using R software 3.1.1
with the package vegan69 (v.2.3-5) and pgirmess70 (v.1.5.8) unless otherwise
indicated. The difference of various variables between warming and control was
tested by repeated measures analysis of variance (ANOVA). The non-parametric
multivariate analysis of variance (Adonis) were used to test the difference of
microbial community taxonomic and functional structures considering the blocked

split-plot design25. CCA and Mantel test were performed to examine the linkage
between environmental variables and microbial community structure/subcategories
of functional genes. The significance of the CCA model was tested by analysis of
variance (ANOVA). CCA-based variation partitioning analysis (VPA) was per-
formed to evaluate how much different types of environmental variables influences
microbial community phylogenetic and functional structures14. Structural equation
model (SEM) was used to explore how warming-induced environmental variables
affected soil microbial communities and heterotrophic respiration. Response ratio
(RR) was used to compute the effects of warming on functional genes involved in C
cycling and nutrient-cycling processes from GeoChip data using the formula RR=
ln (warming/control)59. The non-parametric Kruskal–Wallis method70 was used to
test the significance of difference in model parameter values or the Rh under
different scenarios at a significance level of 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
DNA sequences of 16S rRNA gene and ITS amplicons were available in NCBI Sequence
Read Archive under project no. PRJNA331185. Raw shotgun metagenomic sequences are
deposited in the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under study
no. PRJNA533082. GeoChip signal intensity data can be accessed through the URL
(https://www.ou.edu/ieg/publications/datasets). All other relevant data are available
in Supplementary Information. Source data are provided with this paper.

Code availability
MEND model codes are accessible at https://github.com/wanggangsheng/MENDokw.git.
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