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Abstract

Background: An increasing number of ecological processes have been incorporated into Earth system models.
However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation
uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a
theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a
new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the
sources of inter-model variations on the terrestrial C cycle in Earth system models.

Methods: A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model
evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models
from the Coupled Model Intercomparison Project (CMIP6).

Results: The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models.
For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4
folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which
mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary
productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in
ecosystem C storage in most land grid cells.

Conclusion: TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a
new tool for the next generation of model evaluation.
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Introduction
Earth system models are an essential tool for understat-
ing and predicting the interactions between ecological
processes and environmental changes at the global scale
(Eyring et al. 2016a; Bonan and Doney 2018). In the past
three decades, the structural complexity of models has

been increasing rapidly, which is featured by the incorp-
oration of more and more ecological processes (Xia
et al. 2020). However, the comprehensive and systematic
model evaluations usually lag behind the fast develop-
ment of Earth system models, leading to a pervasive un-
certainty in Earth system models on key ecological
processes, especially terrestrial carbon (C) cycle (Frie-
dlingstein et al. 2006; Bonan et al. 2019; Fisher and
Koven 2020; Xia et al. 2020). For example, the large un-
certainty on global land C sink has been existing in
Earth system models since the 3rd assessment report of
IPCC (Arora et al. 2020; Zarakas et al. 2020). One key
challenge is that how model evaluation can increase its
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pace to systematically trace the model uncertainty back
to the key sources. For the land C cycle in Earth system
models, the varied model structure among models
(Bonan and Doney 2018), parameterization of C-related
processes (Cui et al. 2019; Luo and Schuur 2020), and
external climate forcings (Ahlström et al. 2012; Hoffman
et al. 2014) are three major uncertainty contributors.
Thus, a traceability analysis tool for efficiently evaluating
terrestrial C cycles in Earth system models is useful to
accelerate the pace of model inter-comparisons and
model-data comparisons as well as their feedbacks to
model developments.
A few new analytical tools have been recently devel-

oped to facilitate the evaluation of Earth system models,
such as the International Land Model Benchmarking
(ILAMB) System (Hoffman et al. 2016; Collier et al.
2018), the Earth System Model Evaluation Tool (ESM-
ValTool) (Eyring et al. 2016b; Eyring et al. 2020), and
the Land surface Verification Toolkit (LVT) (Kumar
et al. 2012). The evaluation methods of these tools
mainly focus on measuring the biases of a specific pre-
dicted variable across models or between models and
observations using statistical metrics. For example, the
ILAMB system uses a set of statistical methods to con-
struct a data-driven scoring system to benchmark global
C cycle models (Collier et al. 2018). These new tools
have greatly increased the efficiency of model evalua-
tions for Earth system models (Eyring et al. 2019). Even
so, it is still difficult to quantitively trace the structural
sources of uncertainty among models. For the terrestrial
C cycle, a traceability analysis has been developed to
diagnose the inter-model variations in the land C cycle
based on its fundamental properties (Xia et al. 2013; Luo
et al. 2017). This method provides a traceability frame-
work that can decompose the land C dynamics into a
few traceable components, such as net primary product-
ivity (NPP), C residence time, and environmental factors
(temperature and precipitation). The traceability analysis
has been applied to some local-level model evaluations
(Jiang et al. 2017; Rafique et al. 2017). However, it re-
mains unclear whether the traceability analysis is applic-
able to Earth system models, which simulate the
terrestrial C cycle at a global scale. Thus, developing the
traceability analysis as an available tool for analyzing
Earth system models, especially those who have partici-
pated in the Coupled Model Intercomparison Project
(CMIP), can effectively facilitate the simulations of the
global terrestrial C cycle and its feedbacks to climate
change.
The model evaluation process usually consists of three

steps: downloading the model output data and archiving
them locally, pre-processing the data to be suitable for
analyses, and utilizing a dedicated program to finish the
evaluation. Both the data volumes of model outputs and

data products have been increased rapidly in the recent
CMIPs (Overpeck et al. 2011; Stockhause and Lautens-
chlager 2017). It becomes more and more time-
consuming for the routine evaluation of single or mul-
tiple models through downloading, managing, prepro-
cessing, and analyzing the data comprehensively on their
local equipment (Bai and Di 2012; Xu et al. 2019). Fortu-
nately, cloud-based technology facilitates the processing
of distributed big data and provides user-friendly web in-
terfaces. Such web-based technology has been used in
the field of ecological modeling and model evaluation
(Abramowitz 2012; Huang et al. 2019). The advantage of
the web-based cloud technology can help the researchers
to focus on the scientific questions rather than process-
ing the data.
Here, we introduce a new online traceability analysis

system for model evaluation (TraceME v1.0), which can
be applied to analyze the uncertainty of the terrestrial C
cycle in the ongoing CMIP6. The specific aims of this
study are (1) describing the design and workflow of Tra-
ceME, including the overview of TraceME, the introduc-
tion of the traceability analysis method, and the available
data; (2) using TraceME to evaluate the performance of
seven CMIP6 models in simulating terrestrial C cycle;
and (3) discussing the potential applications and the im-
plications of TraceME for the next generation of model
evaluation.

Materials and methods
Design of the TraceME
TraceME (v1.0) is an online framework for automatically
analyzing and evaluating the performance of models
using the traceability analysis. It is built on a collabora-
tive analysis framework for distributed gridded environ-
mental data (Collaborative Analysis Framework for
Environmental data, CAFE; more details are described in
Xu et al. (2019)) with different core functions and fo-
cuses. The basic cyberinfrastructure of TraceME consists
of one central server (node) and more than one work
node (Fig. 1). Work nodes can be set up in different data
centers and can archive the data stored in these data
centers. The central node is used to archive the descrip-
tive information of each node and the information about
the data stored on it and get the task request of users
and send it to corresponding work nodes. In each node,
it contains the data analysis module and the data man-
agement module. The data analysis module includes an
analysis launcher, a command executor, and the trace-
ability analytic script, to realize the traceability analysis
and output the corresponding analysis results. The data
managing module includes the data index submodule
and task managing submodule. The data index submo-
dule manages the descriptive information about data
(data file name, storage path, and data attributes) stored
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on each worker node. The task managing module is used
for task submission, task dispatching, and task status/re-
sults query services on each node.
The web-based technology provides a straightfor-

ward way for users to interact with the system
through a web browser and the model evaluation
process of TraceME runs in the background. Users
only need to filter data of interest from the entire
system, and the selected data is then packaged into a
task and delivered to the assigned work node for data
processing, which includes data pre-processing, trace-
ability analysis, and evaluation, and finally, the evalu-
ation results are output and visualized for the users.
The scientific workflow is essential for TraceME to
realize online automated model evaluation.

Traceability analysis
The core functionality of TraceME is based on the
framework of traceability analysis that is developed by
Xia et al. (2013). This framework is extended to the
transient dynamic by decomposing the C storage dy-
namics into a three-dimensional parameter space (Luo
et al. 2017). The latter can be further partitioned into
traceable components to track the sources of model un-
certainty. In the framework of traceability analysis,

terrestrial C storage is at dynamic disequilibrium, which
is collectively influenced by internal C-related processes,
environmental forces, and their interactions (Luo and
Weng 2011). Under given environmental conditions, the
C storage of an ecosystem can reach the steady-state,
which can be defined as C storage capacity (XC). In the
land C cycle model, we can obtain the XC by spinning
up the model to the steady-state (Xia et al. 2012). Be-
cause the external forces, such as climate, are never at
steady state, so the XC always deviates from the realistic
C storage in natural ecosystems. Such deviation or dif-
ference between the transient C storage and XC was de-
fined as C storage potential (XP) (Luo et al. 2017). The
positive XP means the potential of an ecosystem to store
additional C while the negative XP means the potential
to lose C (Luo et al. 2017). Hence, the transient C stor-
age of an ecosystem can be determined by XC and XP.
Then, XC is jointly determined by ecosystem C input
(e.g., net primary production, NPP) and ecosystem C
residence time (τE). As the net ecosystem C input, NPP
is decomposed into gross primary production (GPP) and
C use efficiency (CUE). CUE describes the capacity of an
ecosystem to effectively absorb C from the atmosphere,
which is defined as the ratio of NPP to GPP (DeLucia
et al. 2007; Xia et al. 2017). The τE can be further traced

Fig. 1 Schematic overview of TraceME (v1.0). The online collaborative framework of TraceME (v1.0) consists of one central node (Central server)
and several work nodes (NODE). Users trigger the tasks of model evaluation through the browser and the tasks can be transferred by the
application-programming interface. The work nodes consist of the data managing module, the data analysis module, and the data archiving
function. The central node collects all information about the work nodes, the data stored in those nodes, and the information of the tasks

Zhou et al. Ecological Processes           (2021) 10:12 Page 3 of 14



to the baseline C residence time (τ
0
E ) and the environ-

mental scalar (ξ). τ
0
E represents the ecosystem C resi-

dence time under optimal environmental conditions,
which is usually determined by the preset soil properties
and vegetation characteristics in the model (Xia et al.
2013). The ξ is influenced by several factors, such as cli-
mate, oxygen concentration, and land cover. The climate
is the most common limiting factor in the land C cycle
model. In this study, we focus on the effect of climate
forcing (i.e., temperature and precipitation) on the eco-
system C residence time. The detail of the traceability
analysis method is described in Xia et al. (2013), Luo
et al. (2017), and Zhou et al. (2018).
Under the framework of traceability analysis, land

C storage is ultimately attributed to its traceable
components, which are related to the natural proper-
ties expressed by the model (Fig. 2). For example,
GPP is the photosynthetic property of vegetation;
baseline C residence time is related to the soil attri-
butes (Fig. 2). To quantify the contributions of these
traceable components to the uncertainty of models,
we use a hierarchical partitioning method (Chevan
and Sutherland 1991) to decompose the uncertainty
of simulated C storage dynamics. This method can
be used to calculate the independent effect of each
explanatory variable (x1, x2, x3 … xk) on a single
dependent variable (y). The independent effect of xl
(Ixl) means the contribution of xl to the variable y,
which is calculated by comparing the fit of all
models (2k possible models) including xl to that
lacking xl by the hierarchical partitioning (Chevan
and Sutherland 1991; Murray and Conner 2009). In

our system, we calculate the variance contribution of
the variables using the “hier.part” package in R.
Based on the relationships built by traceability, we
first calculate the relative contributions of XC and
XP to X. Then, the contributions of NPP and τE to
XC are calculated in their logarithmic form: ln(XC),
ln(NPP) and ln(τE). Third, the variation contribu-
tions of the components of NPP and C residence
time are calculated in the same way. Finally, the
contributions of these traceable components (GPP,
CUE, baseline C residence time, temperature, and
precipitation) can be calculated.

CMIP6 and modeling outputs
TraceME (v1.0) can be compatible with any model output
that follows the NetCDF Climate and Forecast (CF) Meta-
data Convention (http://cfconventions.org/), for example,
all data from CMIP5 and CMIP6. TraceME (v1.0) is a sys-
tematic framework for uncertainty analysis on the terres-
trial C cycle for CMIPs. It requires a multivariable dataset
to analyze and trace the sources of uncertainty in simulat-
ing ecosystem C storage. The time-series data of total eco-
system C storage are needed, which generally consist of
living biomass C, litter C, and soil C pools. The time-
series data of NPP, GPP, and forcing data (temperature
and precipitation) are also used for further model inter-
comparisons. In this study, the TraceME (v1.0) used
CMIP6 model outputs as examples to describe the work-
flow of this platform. All data is from seven CMIP6
models (the release data before July 2019) and collected
from ESGF (http://esgf.llnl.gov/) as shown in Table 1.

Fig. 2 The theoretical framework of traceability analysis. The transient carbon (C) storage dynamic (X) can be decomposed into carbon storage
capacity (Xc) and potential (Xp). Then, the net primary productivity (NPP) and ecosystem C residence time (τE) can explain the C storage capacity.
NPP can be traced to gross primary productivity (GPP) and carbon use efficiency (CUE). τE can be traced to environmental scalars (ξ) and baseline

C residence time (τ
0
E ). These traceable components can be explained by related attributions
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Results
Temporal dynamics of land carbon storage in CMIP6
models
TraceME (v1.0) provided an automatic traceability ana-
lysis for data of temporal interest, which can be used to
evaluate the temporal dynamics of land C storage simu-
lated by models. We used seven models that had submit-
ted results in CMIP6 to analyze the uncertainty of these
models in simulating historical land C storage from
1850 to 2014. From the results of TraceME, the tem-
poral dynamics of global annual C storage simulated by
different models were first calculated (Fig. 3a). The global
annual C storage varied greatly among the seven models,
ranging from 938.76 ± 11.36 to 2206.76 ± 50.14 Pg C
(Fig. 3a). Decomposing the C storage into C storage
capacity and potential, the C storage potential ranged
considerably from about − 21.66 ± 54.39 to 58.07 ±
57.62 Pg C (Fig. 3a). The C storage capacity of differ-
ent models in response to external force was also
quite different. For example, the lowest simulated C
storage capacity was IPSL-CM6A-LR from 1850 to
2014, which was 944 ± 27.14 Pg C, and the other
models were from about 1677.57 ± 57.21 to 2263.43
± 106.61 Pg C (Fig. 3a). To further analyze the uncer-
tainty of C storage capacity, the results of NPP and C
residence time reflected the net C input capacity
(38.48 ± 2.72 to 68.74 ± 5.88 Pg C year−1) and the C
turnover time of ecosystem (23.22 ± 1.75 to 56.23 ±
3.10 years) in the models (Figs. 3b, c and Fig. 4a). In
detail, the lowest simulated NPP was CESM2 and the
shortest C residence time was IPSL-CM6A-LR, while
CanESM5 had the largest NPP and C residence time
among all models (Figs. 3b, c and Fig. 4a).
GPP and CUE were used to explain the uncertainty

sources of NPP simulated by models (Figs. 3d, e and
Fig. 4b). The differences of GPP and CUE in different
models reflected the model’s photosynthetic capacity
and C transfer efficiency from the atmosphere to eco-
system biomass. Based on this process, TraceME could
quantify the effects of models simulating photosynthesis
and respiration on the uncertainty of NPP. For example,
NPP simulated by CanESM5 and EC-Earth3-Veg had

larger uncertainty, which were 68.74 ± 5.88 and 48.96 ±
2.78 Pg C year−1 respectively during 1850 to 2014,
whereas their GPP was similar, which were 132.22 ± 8.18
and 127.72 ± 4.38 Pg C year−1 respectively (Figs. 3b–e and
Fig. 4b). Therefore, the uncertainty of NPP between the
two models mainly came from CUE (0.52 ± 0.01 and 0.38
± 0.02, respectively), which was related to autotrophic res-
piration. Besides, to show the sources of C residence time,
the uncertainties of baseline C residence time and envir-
onmental scalars were given in TraceME. For example,
IPSL-CM6A-LR had the shortest C residence time (23.22
± 1.75 years) than other models during 1850 to 2014, and
compared with external forces, the main reason was that
it had the shortest baseline C residence time (18 years)
among all models (Figs. 3c, f–i, and Fig. 4c). Hence, the
development of IPSL-CM6A-LR was suggested to pay
more attention to the preset attributes of soil. Further-
more, the environmental scalar in TraceME here was the
global annual scale. Its uncertainty reflected the variability
of interannual variation of temperature and precipitation
used in each model overall models rather than the direct
difference of external forces among models (Figs. 3 f–h
and Fig. 4c, d).
Overall, after analyzing the uncertainties of all traceable

components, TraceME summarized the variance contribu-
tions of the components to the uncertainty of land C stor-
age among models. This framework traced the uncertainty
of land C storage to several sources. For example, the vari-
ation of land C storage among seven CMIP6 models was
mainly from C residence time that contributed 74.8%,
while NPP and the C storage potential contributed
about 20.7% and 4.5%, respectively (Fig. 5). Compar-
ing all traceable components, the variation in C stor-
age simulated by these models was dominated by
baseline C residence time (Fig. 5).

Different spatial distributions of land carbon storage
among CMIP6 models
TraceME (v1.0) provided the ability to analyze the
spatial uncertainty of models. It could trace the sources
of the uncertainty of models in simulating C storage at
each grid. From the results, the mean spatial pattern of

Table 1 The list of seven Earth system models used in this study from CMIP6

Institute Earth system model Land model

Beijing Climate Center, China Meteorological Administration, China BCC-ESM1 BCC-AVIM2

Canadian Centre for Climate Modeling and Analysis, Victoria BC, Canada CanESM5 CLASS-CTEM

National Center for Atmospheric Research, USA CESM2 CLM5.0

IPSL Climate Modeling Centre, France IPSL-CM6A-LR ORCHIDEE

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute, Japan MIROC-ES2L VISIT-e

National Center for Meteorological Research, Météo-France and CNRS laboratory, Toulouse, France CNRM-ESM2-1 ISBA

EC-Earth Consortium, Europe EC-Earth3-Veg LPJ-GUESS
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the seven models showed C storage in boreal regions
was higher than in other regions (Fig. 6a). However,
some models, such as IPSL-CM6A-LR, had no such
spatial pattern (Fig. 7a), and the high variability of C
storage simulated by these models also appeared in the
boreal regions, such as Siberia and northern North
America (Fig. 6b). To further research the sources of the
uncertainty of models in simulating C storage, TraceME
(v1.0) provided the spatial patterns of C storage capacity
and C storage potential (Figs. 6 c–f and Fig. 7).
According to the traceability framework, the spatial

distributions of NPP and C residence time were used to
explain the uncertainty of land C storage capacity among

models (Fig. 7). From the results of seven CMIP6
models, the distribution of the variation in NPP among
these models occurred in the lower latitude region, while
the variation of C residence time was mainly distributed
in the northern high latitude region (Fig. 8a and d). Fol-
lowing the workflow of TraceME (v1.0), the uncertain-
ties of global distributions of NPP had a similar pattern
to that of GPP (Fig. 8a–c). The distribution of the vari-
ation in baseline C residence time was mainly in the
northern high latitude region and the Tibetan Plateau
(Fig. 8e). To better guide model development, model
evaluation needs to provide information on the spatial
distribution of the dominant factor influencing the

Fig. 3 The time series of annual carbon (C) storage (solid lines) and C storage capacity (the contour lines) (a), and the traceable components: b–
h for net primary productivity (NPP), C residence time, gross primary productivity (GPP), C use efficiency (CUE), environmental scalars,
temperature, and precipitation simulated by seven CMIP6 models, respectively. i The baseline C residence time for each model. The shades in (a)
represent the annual variation in C storage potential for models (positive above the solid lines, and negative below the solid lines)
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simulation of land C storage. TraceME (v1.0) could
analyze the variation contributions of all traceable com-
ponents to land C storage at each grid and offered the
spatial pattern of the dominant factor (Fig. 9a). For ex-
ample, the baseline C residence time and GPP were the
major contributors to the global distribution of the vari-
ation of simulated C storage by the seven models from
CMIP6 (Fig. 9a). Compared to GPP, baseline C residence
time dominated the uncertainties of simulated land C
storage in northern high latitude, eastern Asian, and the
northern part of South America (Fig. 9a).

Spatiotemporal changes in the dominant uncertainty
sources of simulated carbon storage in CMIP6 models
Assessing the performances of the model over different
periods could provide a more comprehensive under-
standing of the model’s ability to simulate land C stor-
age. For example, the environmental scalars among the
seven CMIP6 models had larger variability at the initial
state (e.g., from 1850 to 1860) than those at the current
state (e.g., 2004 to 2014) (Fig. 3f). It is necessary to
examine whether and how the sources of model uncer-
tainty change with time. For example, the dominant con-
tributor to the inter-model variance of global land C
storage was baseline C residence time from 1850–1860

to 2004–2014 (Fig. 9b, c). However, the contribution of
C storage potential increased from 5.2% over 1850–1860
to 19.1% over 2004–2014 (Fig. 9b, c). In addition, GPP
and C residence time were the major contributors to the
inter-model variance of ecosystem C storage in most
land grid cells (Fig. 9b, c). In the regions at northern
high latitudes, GPP was the dominant contributor in
more grid cells in the period of 1850–1860 than 2004–
2014 (Fig. 9b, c).

Discussion
Evaluations on the uncertainty source of land C dynamics
in CMIP6 models
The increase of model complexity and the rapid expan-
sion of observational data volumes together promote the
model evaluation into the next generation (Collier et al.
2018; Eyring et al. 2019; Xia et al. 2020). In our study,
we introduce a new model evaluation platform, Tra-
ceME (v1.0), which uses traceability analysis and a col-
laborative cloud-based framework. As the core function
of TraceME, the traceability analysis increases the trace-
ability of the model evaluations (Luo et al. 2015). Rather
than simply comparing the differences in simulated C
storage among models, this method can trace and quan-
tify the uncertainties to the traceable ecological

Fig. 4 The traceability decomposition of carbon storage capacity. The contours lines in a–c represent carbon storage capacity, net primary
productivity (NPP), and carbon residence time respectively. Points represent the global annual values for variables
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components (Figs. 3 and 7). For example, the annual C
storage simulated by IPSL-CM6A-LR is much lower
than other models, and TraceME can first track it to C
storage capacity (Fig. 3a). Further analysis shows that the
low estimates of ecosystem C storage capacity on the
global scale in IPSL-CM6A-LR are mainly contributed
from C residence time, especially the baseline C resi-
dence time (Figs. 3 and 4). Thus, TraceME not only
shows the structural sources of the disagreement on glo-
bal land C storage between models but also identifies
the key uncertain component for a specific model for
further development. Recent studies have highlighted
the importance to develop model evaluations to explore
and understand the sources of uncertainties in Earth sys-
tem models (Lovenduski and Bonan 2017; Bonan and
Doney 2018; Bonan et al. 2019). For example, the
ILAMB package used the variable-to-variable relation-
ships between metrics to benchmark Earth system
models. Overall, TraceME gives model evaluation a new
way to systematically trace the structural sources of the
uncertainties in global C cycle models.

Potential applications of TraceME
An advantage from multi-model intercomparison pro-
jects (MIPs) is that model evaluation can provide a

multifaceted understanding of a given model by compar-
ing its performance with its older versions or other
models (Eyring et al. 2016b). Model evaluation needs to
understand whether and how the fidelity of the models
in simulating terrestrial C processes increases at differ-
ent phases of MIP. For example, ESMValTool has been
used to analyze whether the emergent constraints on
equilibrium climate sensitivity in CMIP5 still hold for
CMIP6 (Schlund et al. 2020). ILAMB has benchmarked
and intercompared the terrestrial C cycle simulated by
CMIP5 and CMIP6 models and presented the results in
a detailed assessment report (https://www.ilamb.org/
CMIP5v6/historical/). In our study, we analyzed the spa-
tiotemporal changes in the uncertainty sources of simu-
lated C storage in CMIP6 models at different periods
using TraceME (Fig. 9). It also has the potential to re-
search the terrestrial C cycle dynamic at the two phases
of CMIP from a traceability perspective. Compared with
other tools, it can diagnose whether the source of uncer-
tainty simulated by CMIP6 models has shifted compared
to CMIP5, and which processes cause the change. Fur-
thermore, TraceME can provide detailed reports of
traceability analysis on the performance of specific
models in CMIP5 and CMIP6.
Global C cycle models have incorporated a broad set

of terrestrial processes, such as human management and
societal impacts (Fisher and Koven 2020). Model evalu-
ation needs to comprehensively diagnose the effect of
the new modules on the simulations of C cycle processes
(Collier et al. 2018). TraceME has the advantage of trace-
ability to measure which components of the C cycle can be
affected by new processes represented in the model. For ex-
ample, Du et al. (2018) has explored the effect of three dif-
ferent carbon-nitrogen coupling schemes on C storage
capacity based on the framework of traceability analysis. Be-
sides, some plant functional traits have been considered in
models because of the robust relationship between traits
(Wright et al. 2004; Fyllas et al. 2014; Sakschewski et al.
2015; Cui et al. 2020). A traceability framework has been
used to analyze the uncertainty of simulated ecosystem
productivity by linking different vegetation functional prop-
erties (Cui et al. 2019). Thus, TraceME can further update
its traceable framework to evaluate the effect of some new
processes on the performance of models.
Benchmarking analysis is an essential part of model

evaluation. Some model evaluation systems (e.g., ILAMB
and ESMValTool) have built large datasets of observation
data as benchmarks to diagnose the performance of models
(Eyring et al. 2020; Collier et al. 2018). The TraceME pack-
age can be applied together with those existing tools to
offer additional diagnoses on model uncertainty. Recently,
more and more observational products have been gener-
ated with the improvement of measurement means and al-
gorithm technologies. For example, Wang et al. (2019) have

Fig. 5 Variation decomposition of the carbon storage based on
annual data from models (CMIP6). The inner-circle indicates the
carbon storage is decomposed into carbon storage capacity and
carbon storage potential, and their variance contributions. The
middle circle represents the carbon storage capacity is decomposed
into net primary productivity (NPP) and carbon residence time, and
their variance contributions. The outside circle indicates that the NPP
is decomposed into gross primary productivity (GPP) and carbon use
efficiency (CUE), and carbon residence time is decomposed into
baseline carbon residence time and environmental scalars
(temperature and precipitation), and their variation contributions to
carbon storage
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constructed a global soil C residence time database and
used it to evaluate the simulated mean soil C transit times
by Earth system models. Many new global datasets about
other ecological processes based on both field measure-
ments (Salunkhe et al. 2018; Li et al. 2019; Zheng et al.
2020; Zhu & Xia 2020; Ustin & Middleton 2021) and ma-
nipulative experiments (Song et al. 2019) are greatly valu-
able for model evaluation. These observational products
make it possible for TraceME to develop datasets for evalu-
ating those key processes which have not been incorporated
in other tools.

Challenges and future developments of TraceME
Although TraceME (v1.0) provides a traceable and com-
prehensive system for evaluating global terrestrial C

cycle models, some challenges remain in its future devel-
opment. One challenge is the theoretical development of
the traceability analysis in TraceME. The theoretical
foundation of the traceability analysis is developed on
the internal properties of the land C cycle, which can be
described as a matrix equation (Xia et al. 2013; Luo
et al. 2017). Some other terrestrial processes, such as nu-
trient cycles, hydrological processes, and energy fluxes,
are difficult to be incorporated into the matrix equation
(Wei et al. 2019). The second challenge is that it is diffi-
cult to obtain observational data for some traceable
components in the framework of the traceability ana-
lysis, such as baseline C residence time. The third chal-
lenge is from the shortcomings of the
cyberinfrastructure of the current TraceME. For

Fig. 6 The spatial distribution of the mean land carbon storage (a), land carbon storage capacity (c), and potential (e) simulated by seven models
from CMIP6 during 1850 to 2014, and the standard deviation of land carbon storage (b), land carbon storage capacity (d), and potential (f) from
these models
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example, the efficiency of the evaluation process of Tra-
ceME significantly depends on the performance of the
computer where the node of TraceME is located. More-
over, the installation of working nodes requires some
specific environment settings in the operating system.
The development of TraceME is ongoing. Many efforts

are being made to improve the framework of traceability
analysis, to build up the observational datasets for bench-
marking analysis, and to improve the infrastructure of the
TraceME. In terms of developing the traceability analysis,
some works can be considered. For example, recent stud-
ies have shown that GPP is jointly controlled by plant
phenology and physiology, and it can be decomposed into
the CO2 uptake period (CUP) and the maximal GPP dur-
ing the CUP that represents a property of plant canopy

physiology (Xia et al. 2015; Huang et al. 2018). Both of the
phenological and physiological processes are influenced by
environmental factors, such as temperature and water
availability (Jaworski and Hilszczański 2013; Xie et al.
2015; Piao et al. 2019). Meanwhile, other environmental
factors besides temperature and water, such as oxygen
and nutrients availability, also affect C residence time
(Tian et al. 1999; Wu et al. 2003; Melillo et al. 2011; Van
Groenigen et al. 2014; Wieder et al. 2015). These traceable
processes and factors still need to be added to the Tra-
ceME. On the other hand, the new advances in machine
learning methods could be useful to produce datasets for
some components in the framework of the traceability
analysis. For example, Shi et al. (2020) has used the ma-
chine learning method to link the measurements of

Fig. 7 The global distribution of the mean of carbon storage and its traceable components simulated by seven CMIP6 models for the historical
period 1850–2014. a Carbon storage (kg C m−2). b Carbon storage capacity (kg C m−2). c Carbon storage potential (kg C m−2). d Net primary
productivity (NPP, kg C m−2 year−1). e Carbon residence time (year). f Gross primary productivity (GPP, kg C m−2 year−1). g Carbon use efficiency
(CUE). h Baseline carbon residence time (year). i Temperature scalar. j precipitation scalar
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radiocarbon with environmental factors to get the age dis-
tribution of global soil C. Finally, the infrastructure of Tra-
ceME is expected to evolve into a more open community
for users and developers, so some aspects need to be fur-
ther improved, such as version-control mechanism, inter-
mediate analytical result, and encryption techniques (Xu
et al. 2019). Developing an offline package is also one way
to make TraceME more effective. Moreover, the databases
in TraceME (v1.0) need to be updated in a timely and au-
tomated manner, especially since the amount of both ob-
servational and modeling data is increasing rapidly (Xia
et al. 2020).

Conclusions
We developed an online tool for analyzing and evaluating
the performance of CMIP6 models on the land C cycle
using a traceability analysis (i.e., TraceME). TraceME can
effectively diagnose the source of uncertainty of land C
cycle models. As shown in this study, TraceME can accel-
erate the pace of model evaluation on land C cycle, and its
evaluation results can be useful for specific models to fur-
ther improve their representation of some ecological pro-
cesses. Overall, new model evaluation tools like TraceME
will provide new opportunities to understand the large un-
certainty in the complex Earth system models.

Fig. 8 The global distribution of the variations of the traceable variables simulated by seven models from CMIP6 for the historical period of 1850–
2014. a–f The standard deviation of net primary productivity (NPP), gross primary productivity (GPP), carbon use efficiency (CUE), carbon
residence time, baseline carbon residence time, and environmental scalars, respectively
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Fig. 9 The global distribution of the dominant variable for the variation in simulated land carbon storage by the models from CMIP6 at different periods:
a 1850–2014, b 1850–1860, and c 2004–2014. The subplot of each panel is the variation decomposition of the carbon storage based on annual data
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