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Covering only ~3% of the Earth’s land surface, peatlands store 
one-third of the global soil carbon1. Peat is formed through 
a slow accumulation of detritus with litter input exceeding 

decomposition rates in waterlogged environments. In pristine peat-
lands, a shallow water table or permanently waterlogged condition 
causes oxygen deficiency, allowing the accumulation of organic 
matter over millennia. These anaerobic conditions favour methano-
genesis, and peatlands thus act as a global source of methane (CH4) 
of around 0.8 GtCO2-eq yr−1 (1 Gt = 1015 g) (ref. 2). CH4 is a green-
house gas (GHG) with a global warming potential that is 25 times 
that of carbon dioxide (CO2) over a 100-year time horizon3. Pristine 
peatlands are a sink of CO2 of around 0.4 GtCO2 yr−1 at the global 
scale2. The balance between CO2 sinks and CH4 emissions deter-
mines the net climatic impact of peatlands. This balance is highly 
sensitive to changes in hydrology, particularly the water-table posi-
tion that regulates aerobic versus anaerobic conditions in the soil 
column and therefore the production and consumption processes 
of CO2 and CH4 in the soil profile4.

Human-induced drainage, over-extraction of groundwater 
and climate drying have substantially altered peatland hydrol-
ogy and resulted in a widespread downward movement of water 
tables. Around 51 Mha of the world’s peatlands have been drained 
for agriculture or forestry5. Water-table drawdown and associ-
ated land subsidence have been observed in warm and wet peat 
regions such as Indonesia, Malaysia, Thailand, Florida (Everglades); 
in specific summer dry regions such as California (Sacramento 
delta) and Israel (Lake Hula)6,7; and in temperate countries like 
the Netherlands8. Peatlands across Europe have also undergone 
substantial and widespread drying in recent centuries9. Globally, 

drainage and subsequent conversion of natural peatlands to agri-
culture and forestry are estimated to emit 0.31–3.38 GtCO2-eq yr−1 
GHGs (see Supplementary Table 1 for a summary of GHG emis-
sions on degraded peatlands). These estimates rely on peatland area 
and GHG emission factors. Both the area and emission factors and 
their upscaling are highly uncertain5,10,11. It is unclear to what extent 
and how water-table drawdown directly regulates changes of GHG 
emissions as it is challenging to separate compounding effects of 
other variables such as land clearing and carbon input to the soil 
from the new land use types.

Field manipulation experiments provide the opportunity to 
quantify the direct impact of lowering the water table on peatland 
GHG emissions. We compiled data from 376 pairs of data points 
measuring net ecosystem exchange of CO2 (NEE), 532 pairs for CH4 
emissions, 209 pairs for gross primary production (GPP) and 407 
pairs for ecosystem respiration (or soil respiration in the absence of 
live plants, RES). The data were extracted from 130 field sites as doc-
umented in 96 publications (Supplementary Fig. 1). NEE is jointly 
controlled by soil and vegetation (NEE = GPP + RES). Lowering of 
water tables is expected to accelerate peat decomposition and soil 
CO2 release by exposing carbon-rich upper soil layers to oxygen. 
However, some studies measured either a decrease or no change in 
decomposition rates12. Individual studies have also observed vegeta-
tion CO2 uptake (GPP) increase, decrease and have no significant 
change when the water table was lowered. Correspondingly, the 
sign of NEE changes in response to water-table drawdown varies 
among studies (Supplementary Fig. 11). However, studies mostly 
reported reductions in CH4 emissions by lowering the water table 
(Supplementary Fig. 11). With highly uncertain soil emissions and 
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plant uptake of CO2 but generally lower CH4 emissions, the net 
GHG balance, therefore the global climatic impact of water-table 
drawdown remains highly variable13,14.

In order to deal with the heterogeneity of experimental results, 
we conducted a meta-analysis based on random effect models to 
quantitatively summarize results across multiple studies. Our sign 
convention is a positive sign for CO2 or CH4 emissions to the atmo-
sphere, and a positive sign for a water-table depth (WTD) becom-
ing deeper. ∆CO2,WTD represents the difference of NEE resulting 
from a drawdown of WTD, and ∆CH4,WTD is the same for the dif-
ference of CH4 emissions. ∆CH4,WTD is expressed as its CO2 equiva-
lence assuming its global warming potential is 25 times that of CO2 
over a 100-year time span3. The net GHG balance is defined by 
∆GHG,WTD = ∆CO2,WTD + ∆CH4,WTD. Note here that ∆GHG,WTD, ∆CO2,WTD 
and ∆CH4,WTD vary with the magnitude of water-table drawdown.

The estimated mean value of ∆CO2,WTD (Fig. 1) is 62 mgCO2 m−2 h−1 
(47 to 77), all ranges are 95% confidence intervals (CI), mean-
ing an increase of CO2 emissions (or a decreased sink) for a water 
table becoming deeper. This estimated mean is significantly 
positive because the 95% CI does not overlap zero (Methods; 
Supplementary Fig. 3) despite individual values of ∆CO2,WTD vary-
ing from −497 to 1,234 mgCO2 m−2 h−1 across sites (Supplementary 
Fig. 11). Complex responses and interactions of biotic and abiotic 
processes make it difficult to identify a unifying mechanism for 
NEE responses. Vegetation coverage, species composition, photo-
synthetic capacity, biomass allocation, substrate quality, nutrient 
availability, environmental conditions (for example, soil tempera-
ture, water availability and aeration status), peat physicochemical 
properties, microtopography, extent of changes in water level and 
experimental duration (short-term versus long-term) are possible 
dominant factors on NEE responses from individual experiments. 
Overall, water-table drawdown induced an increase in CO2 emis-
sions from respiration exceeding that of GPP uptake (Fig. 1b). By 
contrast, the estimated mean value of ∆CH4,WTD shown in Fig. 1 is 
−26 mgCO2-eq m−2 h−1 (95% CI: −35, −20), revealing a significant 
reduction of CH4 emissions or an increase in the CH4 sink resulting  

from deceased methanogenesis and/or enhanced methanotrophy 
(Fig. 1; Supplementary Fig. 3). ∆CH4,WTD across sites ranges from 
−1,120 to 484 mgCO2-eq m−2 h−1 (Supplementary Fig. 11). Using 
data from experiments that measured both NEE and CH4 emis-
sions, we estimated a significantly positive mean value of ∆GHG,WTD 
equal to 33 mgCO2-eq m−2 h−1 (9 to 57), which implies that lowering 
WTD leads to a net increase of radiative forcing. The result of an 
overall positive ∆GHG,WTD is robust and consistent among different 
estimating methods (Supplementary Fig. 3).

We then quantified the sensitivities of GHG fluxes to the 
magnitude of water-table drawdown (∆WTD), and found that the 
overall average sensitivity to a 1 cm water-table drawdown was 
4.1 (3.3 to 5.0) mgCO2 m−2 h−1 for CO2 (NEE) and −2.9 (−3.6 
to −2.2) mgCO2-eq m−2 h−1 for CH4 (Methods, Supplementary 
Fig. 4). The average sensitivity of ∆GHG,WTD was 1.6 (0.8 to 
2.3) mgCO2-eq m−2 h−1 cm−1 based on a subset of experiments 
that measured both NEE and CH4. No significant pattern in the 
regional values of ∆GHG,WTD was found (Supplementary Figs. 5–10; 
Supplementary Discussion), because of the large inter-site vari-
ability of the observed fluxes, small sample sizes in Arctic, tropi-
cal and coastal regions, and non-linear responses to ∆WTD. The 
average sensitivity of ∆CH4,WTD to unit water-table drawdown was 
smaller (less reduction) in tropical than boreal and temperate peat-
lands (Supplementary Fig. 6). The difference between these regions 
was significant (95% CIs did not overlap) according to one of the 
weighting approaches considered. Respiration of coastal regions 
had a greater average sensitivity than non-coastal regions, while dif-
ferences of NEE (or CH4) were inconsistent (Supplementary Fig. 8). 
Undisturbed coastal regions are more likely to experience frequent 
flooding and anoxic conditions, leaving more labile peat suscep-
tible to decomposition if the water table was lowered. Among dif-
ferent peatland types, the mean ∆CO2,WTD per unit ∆WTD was higher 
in swamps than bogs and fens (not significant, Supplementary Fig. 
10). Fens had higher mean ∆CO2,WTD and mean ∆GHG,WTD per unit 
∆WTD than bogs.

Responses of GHG emissions to WTD were non-linear and 
covaried with peatland types, regions, land use and manage-
ment histories, hydrology, vegetation characteristics, climate, and 
physicochemical properties of peat4,13,15–17. Therefore, upscaling 
above-estimates to the global scale can be problematic. To further 
understand how different factors regulated ∆CO2,WTD and ∆CH4,WTD, 
we built random forest models18 for these two quantities (see 
Methods). The random forests were built against site data using 
as predictors ∆WTD, WTD, CO2 (NEE) and CH4 emissions under 
the high (shallow) water-table treatment (WTDinitial, CO2,initial and 
CH4,initial in short), climatic, topographic, edaphic, biotic, manage-
ment and experimental factors (Methods; Supplementary Tables 
2 and 3). We show in Fig. 2 that CO2,initial, ∆WTD and WTDinitial are 
the most important predictors of ∆CO2,WTD, accounting for 53% of 
the Gini-based relative importance (Supplementary Table 4; Fig. 2; 
Supplementary Figs. 13 and 15). Variations in ∆CH4,WTD are mostly 
explained by CH4,initial, ∆WTD and WTDinitial (relative importance: 
88%; Supplementary Table 5; Fig. 2; Supplementary Figs. 14 and 15). 
The models predict that peatlands with a stronger initial CO2 sink 
capacity (CO2,initial), a shallower WTDinitial, and a larger ∆WTD have a 
more positive ∆CO2,WTD value (Fig. 2, red lines), and that peatlands 
with a larger CH4,initial flux to the atmosphere and a bigger ∆WTD 
experience a stronger reduction in their CH4 emissions, that is, a 
more negative ∆CH4,WTD value (Fig. 2, red lines).

By scaling up using the random forest models, we found that 
Arctic peatlands were more likely to have both positive and nega-
tive ∆CO2,WTD when conditions varied (Supplementary Fig. 16). The 
average response curves showed that Arctic peatlands were more 
sensitive to ∆WTD and CO2,initial over the whole predictor space 
(Supplementary Fig. 17). ∆CH4,WTD of tropical peatlands could be less 
or more than boreal peatlands when CH4,initial varied (Supplementary 

−100

0

100

200

∆
C

,W
T

D
 (

m
gC

O
2-

eq
 m

–2
 h

–1
)

CH4
n = 532

n = 224
GHG

n = 376
CO2

a

−100

0

100

200

GPP
n = 209

n = 407
RES

b

Fig. 1 | effects of water-table drawdown on peatland CO2 and CH4 fluxes. 
a, The net exchange of CO2 (NEE), CH4 and their combination (GHG). b, 
Ecosystem respiration (or soil respiration in the absence of live plants, RES) 
and photosynthetic CO2 uptake (GPP). n is the number of experiments. 
Mean effect sizes were obtained through our meta-analysis. Error bars 
correspond to 95% CI. The CH4 is expressed as its CO2 equivalence 
assuming its global warming potential is 25 times that of CO2. We define a 
positive sign for emissions to the atmosphere and vice versa.
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Figs. 16 and 17). Overall, both ∆CO2,WTD and ∆CH4,WTD were highly 
sensitive to ∆WTD when ∆WTD was small (<10 cm), and also became 
highly sensitive to WTDinitial when WTDinitial was around the surface. 
∆CO2,WTD stayed relatively constant when WTDinitial was 10 cm above 
the surface or 80 cm below the surface. ∆CH4,WTD was not respon-
sive to WTDinitial for strong drying or wetting when WTDinitial got 
typically more than 33 cm below the surface or 21 cm above the sur-
face (Fig. 2, Supplementary Figs. 16 and 17). That being said, the 
above-mentioned broad patterns that emerged from our analyses 
may not hold under some specific environmental conditions, due to 
the strong nonlinearity of response curves. Apart from these aver-
age responses, each individual paired experiment carried a unique 
response pattern as an outcome of complex interactions involv-
ing peatland characteristics, climate and other environmental fac-
tors (Fig. 2, grey lines; see Supplementary Figs. 13 and 14 for the 
responses to different factors).

Based on future WTD predicted by de Graaf et al.19 under 
their ‘business-as-usual’ water demand scenario and the RCP8.5 
climate change scenario (Methods), we used the trained ran-
dom forest models to compute global gridded CO2 (NEE) and 
CH4 emissions in response to future water-table drawdown. We 
found both an increase of global peatland NEE, that is, a larger 
CO2 source or a smaller sink by 1.13 (95% probability interval: 
0.88–1.50) GtCO2 yr−1 and a reduction of peatland CH4 emissions 
by 0.26 (0.14–0.52) GtCO2-eq yr−1, which together amounts to a net 
increase of GHG of 0.86 (0.36–1.36) GtCO2-eq yr−1 by 2100 (see Fig. 
3 and Supplementary Figs. 21, 23, 25 and 27). This estimated net 
GHG budget was 0.73 (0.2–1.2) GtCO2-eq yr−1 under the RCP2.6 
climate scenario by 2100 (see Fig. 3 and Supplementary Figs. 22, 
24, 26 and 28). Under the scenario assuming a 40% less reduction 
of WTD than the de Graaf et al.19 prediction, the global ∆GHG,WTD 
reached 0.74 (0.5–1.29) GtCO2-eq yr−1. An 80% smaller reduction of 
WTD than the de Graaf et al.19 prediction yields a global ∆GHG,WTD 
of 0.53 (0.34–0.85) GtCO2-eq yr−1. The RCP2.6 climate scenario and 

an 80% smaller reduction of water-table drawdown together brings 
the global ∆GHG,WTD down to 0.42 (0.22–0.74) GtCO2-eq yr−1. Note 
that these estimates do not account for anthropogenic impacts other 
than water-table drawdown, such as land use change or fires.

Across different latitudes, regions with high CH4 reductions 
generally have high ∆CO2,WTD and ∆GHG,WTD. Mid-to-high north-
ern latitudes and tropics dominate the global response of GHG 
budgets to water-table drawdown due to their large areas (Fig. 3; 
Supplementary Figs. 21 and 22). Inferred from several drained peat 
sites in Finland, Laine et al.14 suggested a reduced GHG emission 
from northern peatlands under future drying because of lower 
CH4 emissions and enhanced vegetation CO2 uptake offsetting 
peat CO2 emissions. We found negative ∆GHG, WTD over Finland 
(Supplementary Figs. 23 and 24). Across northern peatlands, posi-
tive ∆GHG,WTD outweighs negative ∆GHG,WTD, resulting in the posi-
tive (warming) feedback on future climate. We acknowledge large 
uncertainties in predicting future GHG emissions over northern 
peatlands. In particular, permafrost thawing, a critical process that 
has dramatic impacts on the climate system20, was not included as 
a predictor in our model. Arctic warming and permafrost thaw can 
alter peatland hydrology. Thermokarst peatlands form as a result 
of permafrost thaw. Thermokarst peatlands are known for their 
localized patchy landscape with distinguished dry–wet zones and 
irregular hummocks and hollows. Considering the big sensitivity of 
GHG to ∆WTD in Arctic peatlands, widespread alterations of hydrol-
ogy could dramatically change Arctic GHG budgets.

Peatlands in Scandinavia, coastal regions or along river net-
works are predicted to experience high reductions in CH4 emis-
sions in response to future water-table drawdown (Supplementary 
Figs. 25 and 26). Latitudinal average CH4 reductions are higher in 
tropics than high latitudes. High CH4 fluxes, relatively large change 
of WTD, and its warm environment make Amazonian peatlands 
the largest contributor to total CH4 reduction in tropics. This pre-
diction is subject to large uncertainties because of limited field  
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observations in Amazonnian peatlands. Few field studies in 
Amazonian peatlands have documented high CH4 fluxes21,22. The 
spatiotemporal variability, hydrologic and biogeochemical con-
trols of CH4 emissions across Amazonian peatlands remain poorly 
understood. Southeast Asian peatlands show low CH4 emissions in 
comparison to temperate and boreal peatlands13, most likely due to 
poorer substrate quality (lower carbohydrate and greater aromatic 
content) of tropical peats23. It remains largely unclear whether the 
low CH4 fluxes are widespread across tropics, or biases from lim-
ited sample size and coverage. Boreal and temperate peatlands had 
experienced widespread drainage and peat conversion before the 
twenty-first century, while tropic peatlands are subject to large-scale 
disturbance in the future24. The recent discovery of the world’s larg-
est tropical peatland in the Congo basin25 highlights the need for 
additional field observations in tropics to understand hydrological 
controls on CH4 emissions.

A less controversial issue in tropics is the higher CO2 emis-
sions following water-table drawdown. Tropical peatlands contain 
about 5–10% of global soil carbon26. Ours and earlier13 syntheses 
(Supplementary Fig. 6) found an increase in emission of at least 
10 mgCO2 m−2 h−1 by respiration for each 1 cm of water-table draw-
down. Many tropical peatlands are occupied by swamp forests, and 
some of them were converted into agricultural land uses with a 

lowering of the WTD, which would result in an increase in CO2 
emissions27. In Southeast Asia, 25% of deforestation occurs in peat 
swamp forests27. Water-table management and conservation of trop-
ical swamp forests are critical for climate mitigation in the tropics, 
due to the high CO2 emissions from swamp forests and the posi-
tive feedbacks among water-table drawdown, GHG emissions and 
climate warming. Under RCP8.5 where CO2 emissions continue to 
rise throughout the twenty-first century with warmer climate con-
ditions, global ∆GHG,WTD is predicted to increase by 18% more than 
under the less warm RCP2.6 scenario. These estimates are rather 
conservative, because we did not account for the effect of lower-
ing the water table under a warm and drying climate on ∆GHG,WTD. 
Positive contributions of water-table drawdown to GHGs accelerate 
future GHG emissions through climate feedback.

This study reveals that despite water-table drawdown reducing 
global peatland CH4 emissions, increased CO2 flux outweights the 
climate benefits of reduced CH4 in terms of global warming poten-
tial. Many other adverse environmental and ecological impacts 
associated with peatland water-table drawdown have already moti-
vated national and international actions to preserve pristine peat-
lands and rewet drained peatlands. Controlling the magnitude 
of future water-table drawdown is an effective measure as future 
∆CO2,WTD and ∆CH4,WTD are largely regulated by ∆WTD (Supplementary 
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Tables 6–8). Rewetting to ~10 cm above-surface greatly reduces CO2 
emissions, it may also increase CH4 emissions, especially in regions 
where pristine peatlands are strong CH4 emitters. Instead of rewet-
ting all drained peatlands, care must be taken in regional implemen-
tation, as the tradeoff between CO2 decrease and CH4 increase is 
dependent on many local factors. Climate change mitigation strat-
egies outside peatlands that aim to limit global warming are also 
critical for lowering peatland GHG emissions. Finally, despite sub-
stantial progresses in peatland studies over recent decades, there are 
still large uncertainties in quantifying peatland CO2 (NEE)28,29, CH4 
emissions30 and WTD19 dynamics over large spatial scales. Arctic, 
coastal and tropical regions are highly vulnerable, but largely under-
studied, especially in the area of long-term vegetation adaptation. 
Dominant control on the response of peatland carbon to water-table 
drawdown may also vary with timescales. As a first step, we assessed 
the uncertainty of our prediction through combining different 
datasets to account for currently known major uncertainty sources, 
which is yet to be all inclusive. Additional observations especially 
from those under-sampled regions will enable us to reduce the 
uncertainty in the estimated response of peatland to climate change 
and developing appropriate mitigation strategies in the future.
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Methods
Data collection. We extracted values of GHG fluxes for NEE, ecosystem 
respiration (or soil respiration in the absence of live plant), GPP, CH4 emissions, 
WTD and ancillary environmental variables from water-table manipulation 
experiments carried out through mesocosms or in situ field conditions. Mesocosm 
experiments normally enclose relatively large intact peat monoliths to manipulate 
WTD in well-controlled conditions. In situ field experiments alter WTD 
through draining, ditching, precipitation exclusion, flooding, building dams or 
groundwater extraction. Difference in ∆CO2,WTD and ∆CH4,WTD between these two 
types of experiments is not significant (95% CI overlap). We do not separate 
mesocosm experiments from experiments without peat enclosure. We treat them 
as different approaches to manipulate WTD. We used the ISI Web of Science 
database to conduct a literature search for papers published before October 2020 
with query terms including ‘water table’, ‘carbon’, ‘methane’, ‘respiration’, ‘NEE’, 
‘primary production’, ‘drain’ and ‘peatland’. More papers were identified through 
the Chinese CNKI platform. Studies included in our database were selected 
according to several criteria. The study should measure at least WTD and one flux 
of CO2 or CH4 under both low- and high water-table treatments over the same 
time period in the same geographic region and have the same natural background 
and land use type. Studies that compare ecosystem responses under altered water 
table during different time periods, for example, from Merbold et al.31, were not 
incorporated. Studies using laboratory peat columns, with synthetic/repacked 
soils, artificial additions (ameliorant, biochar or compost) or through incubations 
or have a treatment less than 1 month were also excluded. Around one-third of 
studies experienced water-table disturbance 10 years earlier. Some papers reported 
ecosystem responses to several water-table treatments at the same location. In 
these cases, we rearranged and paired the datasets to have different combinations 
of low versus high water-table treatments. For those papers reporting multiple 
values across several years, we compared results from meta-analysis that separates 
versus lumps each year’s mean response. Differences are minor, and we reported 
results without lumping. In total, we obtained 96 papers that cover 130 locations, 
mostly in the Northern Hemisphere (Supplementary Figs. 1 and 2). A pair of data 
points reflecting ∆WTD effects on carbon flux includes target GHG data from two 
treatments corresponding to a low and high WTD in a specific site. In total, we 
have 376 pairs on NEE (CO2), 532 pairs of CH4, 209 pairs of GPP and 407 pairs of 
ecosystem respiration (or soil in the absence of live plants, RES) measurements.

For carbon fluxes, we extracted mean values of emission for each treatment, 
standard deviations (SD) and sample sizes from each published study. If 
standard error (SE) rather than SD was reported, SD was calculated from SE. For 
experiments that did not document SD or SE (3–20% of the experiments), we 
estimated the variance through scaling the mean of each experiment by the average 
coefficient of variation within each treatment and each GHG. We also extracted 
mean WTD before and after water-table manipulation and other ancillary 
information (Supplementary Tables 2 and 3).

Response quantification. For each pair of data points, we use the difference 
(ΔC,WTD, in units of mgCO2-eq m−2 h−1) in the mean value (over experimental 
replicates) of each CO2 or CH4 flux under high (shallow) (Ch) and low (deep) water 
table (Cl) (equation (1)) as a metric to quantify the effect of water-table drawdown. 
We chose the difference instead of the odds ratio (log) to incorporate experiments 
in which Ch and Cl vary in sign.

ΔC,WTD = Ch − Cl (1)

We conducted the meta-analysis using the random-effect model (assuming 
that between-study variations are randomly distributed) and the inverse variance 
weighting scheme32 based on the extracted values of SD and sample sizes through 
the Metafor package in R version 3.6.2 (ref. 33). The between-study variance 
(heterogeneity, τ2) was quantified through the restricted maximum-likelihood 
method33. The 95% CI was estimated as the Wald-type (that is, normal) CI if the 
standardized residuals of observations are not strongly deviated from theoretical 
quantiles of a normal distribution. Otherwise, we applied a bootstrapping CI 
estimation. We randomly sampled 90% of the original datasets with replacement 
and estimated the mean effect 1,000 times. The 95% CI was calculated as the 2.5% 
and 97.5% quantiles of the 1,000 estimates in R 3.6.2 (ref. 33). To test the robustness 
of our conclusion towards an overall positive or negative response, we conducted 
additional meta-analyses under alternative assumptions. First, we assessed whether 
the conclusions depended on how individual studies are weighted34. We applied 
the fixed effect model with weighting based on the number of replicates and with 
a uniform weighting. For studies with sample size not published (~20%), we used 
the average sample size from our database for corresponding gases. For the fixed 
effect model, we estimated the 95% CIs of the mean response through 10,000 times 
bootstrapping using the bootES library35. A significant asymmetry of the funnel 
plot indicates the bias in compiled studies, which tend to report more results with 
a significant response compared to studies without. We conducted an asymmetry 
test through the regtest function of the Metafor package. We did not detect the 
publication bias in the combined effect of CO2 and CH4 (p = 0.31). For CO2 or 
CH4 alone, the funnel plot (p < 0.01) is significantly asymmetrical. We corrected 
the publication bias through the trimfill function in Metafor. These tests, the fixed 

effect models and correction of potential publication bias, pointed to consistent 
signs of the overall effects. The average responses are robust (Supplementary Fig. 3).

The average sensitivity of ΔC,WTD to unit change of ∆WTD ( ΔC,WTD
ΔWTD

, mgCO2-eq m−2 
h−1 cm−1) was quantified similarly with the random effect model and the inverse 
variance weighting scheme. Note that we do not account for variance in WTD, 
assuming it is relatively well measured in manipulation experiments. For  
regional analyses, we grouped samples into Arctic (north of 66.5° N), boreal  
and temperate (30° N–66.5° N, 66.5° S–30° S) and tropical regions (30° S–30° N).  
We also compared coastal versus non-coastal regions, and among peatland types 
(bog, fen, marsh, swamp).

Response attribution. Water-table manipulation studies differ in peatland types, 
nutrient status, background climate and other experimental designs (for example, 
initial WTD, drainage duration and the magnitude of drainage). Combining 
driving factors reported from individual studies and the availability of data across 
studies, we tested a list of factors to understand what drive ∆CO2,WTD and ∆CH4,WTD 
through the random forest method. These factors include WTD and carbon 
fluxes under high water-table treatment (WTDinitial, CO2,initial or CH4,initial), the 
magnitude of water-table manipulation (∆WTD), manipulation duration (short: <1 
year; medium: 1–10 years; long: >10 years), experimental type (mesocosm versus 
in situ), land management (managed or not), climatic, topographic (elevation) 
and edaphic properties (Supplementary Tables 2 and 3). Climatic factors include 
mean annual precipitation, mean annual temperature, wind speed, solar radiation, 
vapour pressure, aridity (the ratio between potential evapotranspiration and 
precipitation), potential evapotranspiration and a range of other bioclimatic 
variables characterizing the annual trend, seasonality and extreme climatic 
conditions. Edaphic properties involve bulk density, pH, soil carbon content, 
soil nitrogen, soil phosphorus, soil potassium, cation exchange capacity, base 
saturation, clay content, sand content, silt content and volumetric moisture content.

Random forest is an ensemble machine learning approach that generates a 
number of decision trees18, and is capable of capturing non-linear interactions. We 
sequentially added explanatory variables one at a time and selected the random 
forest model that yielded the highest R2 and the lowest root mean square error 
(RMSE) through leave-one-out cross-validation (LOOCV). Climatic, topographic 
and edaphic factors that are not documented in individual studies were extracted 
from high-resolution data sources listed in Supplementary Table 3. For ∆CO2,WTD, 
the selected random forest model (with LOOCV R2 = 0.52, RMSE = 134 mgCO2 
m−2 h−1, Supplementary Fig. 11) was built through CO2,initial, ∆WTD, WTDinitial, 
soil nitrogen, soil carbon content, potential evapotranspiration, bulk density, 
volumetric water content at −10 kPa, soil pH, wind speed, soil clay content, 
solar radiation and elevation (Fig. 2 and Supplementary Fig. 13). The first three 
predictors accounted for 53% of the relative importance (Supplementary Table 
4). ∆CH4,WTD are predictable (LOOCV R2 = 0.72, RMSE = 81 mgCO2-eq m−2 h−1, 
Supplementary Fig. 11) through CH4,initial, ∆WTD, WTDinitial, wind speed, soil 
nitrogen content, aridity, manipulation duration (Fig. 2 and Supplementary 
Fig. 14). The first three predictors accounted for 88% of the relative importance 
(Supplementary Table 5). Tropics contribute largely to CO2 and CH4 budgets. 
The small sample size of tropical studies makes building regional random 
forest models infeasible. Despite being built over samples around the world, the 
model performance is comparable between tropical samples (∆CO2,WTD, R2 = 0.49, 
RMSE = 121 mgCO2 m−2 h−1; ∆CH4,WTD: R2 = 0.66, RMSE = 48 mgCO2-eq m−2 
h−1; Supplementary Figs. 11 and 12) and the rest of the world. Earlier synthetic 
studies revealed that relationships between water table and peatland greenhouse 
emissions were modified by peatland types, region, disturbance and so on15,16. 
We reconstructed the functional relationship between ∆CO2,WTD (or ∆CH4,WTD) and 
different predictors for each individual study, that is, the individual conditional 
expectation (ICE)36 (grey lines in Fig. 2). Variations among ICE curves capture the 
context-dependent response patterns.

Mapping future impact. ∆CO2,WTD and ∆CH4,WTD at the end of 2100 were predicted 
using the random forest models built above (see Methods ‘Response attribution’), 
with predictors such as ∆WTD, WTDinitial, CO2,initial (or CH4,initial) and future climatic 
conditions (wind speed, solar radiation, potential evapotranspiration, aridity), 
assuming that edaphic and topographic factors (soil carbon, soil nitrogen, bulk 
density, volumetric water content at −10 kPa, soil pH, soil clay content and 
elevation) remain equal to their current levels due to their relatively slow change 
rates. Average ∆CO2,WTD and ∆CH4,WTD were estimated through different (if available) 
predictor datasets (see text below and Supplementary Table 3). To verify that our 
main results are not outcomes of overfitting, we made predictions with the top 
three most important predictors, which yielded a global ∆GHG,WTD of 1.47 GtCO2-eq 
yr−1 (∆CO2,WTD: 1.59; ∆CH4,WTD: −0.12). This value is larger than the prediction 
from the random forest model built in the previous section, and our conclusion 
of an overall positive ∆GHG,WTD is robust. CO2,initial and CH4,initial from predicting 
datasets are within the range spanned by observation datasets used to train the 
random forest models (Supplementary Fig. 20 and Supplementary Table 2). We 
set the upper limit of ∆WTD to be 300 cm. We varied this boundary value from 
100 to 400 cm, and our results stayed the same, as ∆CO2,WTD and ∆CH4,WTD are not 
responsive to increasing ∆WTD beyond 100 cm (Fig. 3b,e). Similarly, we set the 
upper limit of WTDinitial close to the upper limit of the training dataset (around 
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100 cm) to avoid extrapolating. ∆CO2,WTD and ∆CH4,WTD are not sensitive to WTDinitial 
when WTD is deep (Fig. 3c,f). We checked that increasing this boundary value did 
not change our results.

Future WTDs were projected through a physically based global hydrology 
and water-resources model, PCR-GLOBWB, which was coupled to the global 
groundwater flow model (MODFLOW) with future climate forcing (HadGEM2-ES) 
under the RCP8.5 GHG emission scenario and ‘business-as-usual’ water 
consumptions from de Graaf et al.19,37. By business-as-usual, per capita water 
demand for industry, domestic and livestock uses as well as irrigated areas were 
assumed to remain constant after 2010. Per unit irrigation demands vary with 
projected climate change. Total future water consumption varies with the projected 
trends in population growth and economic development. HadGem2-ES was 
chosen to capture the average climatic conditions predicted from GCMs within 
the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, https://www.
isimip.org). RCP8.5 was used to represent climatic conditions under the worst-case 
scenario for future GHG emissions. This coupled modelling tracks a range of key 
processes that are critical in global hydrology and water-table dynamics, particularly 
precipitation, evapotranspiration, runoff, infiltration, surface-groundwater 
interactions, capillary rise, groundwater discharge, recharge and lateral flows, 
water-use by agriculture irrigation, industries, households and livestock, and 
return flows of unconsumed withdrawn water, and showed robust estimates, as 
compared to observations37. This is considered as the best available dataset on 
future WTD while we acknowledge potentially large uncertainties. ∆WTD is the 
difference between the average WTD during 2050–2100 (future) versus 1960–2010 
(historical). To assess the impact of uncertainties in future ∆WTD quantifications, we 
conducted additional predictions with future ∆WTD being 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 
1.6 and 1.8 of previous quantifications (Supplementary Table 8).

We used FLUXCOM NEE to estimate CO2 (NEE) before water-table drawdown 
(CO2,initial). FLUXCOM NEE merged eddy covariance and remote-sensing 
observations through three machine learning techniques (MARS, ANN, RF)29. In 
addition, we incorporated an ensemble (18 in total) estimation of NEE generated 
by land models LPJ-GUESS, LPJML, ORCHIDEE-DGVM, ORCHIDEE, VEGAS 
and VISIT driven by different climate forcing within the ISIMIP framework 
(Supplementary Table 3). CH4 emissions are higher over wetland compared to 
upland soils38. We used gridded dataset from the Wetland CH4 Inter-comparison 
of Models Project (WETCHIMP), which quantified CH4 emission rate per 
wetland area from seven models (LPJ-Bern, CLM4Me, DLEM ORCHIDEE-ALT, 
ORCHIDEE, SDGVM and LPJ-WSL) to cover uncertainties in CH4,initial (refs. 30,39). 
Peatland is defined through the PEATMAP40, which combines geospatial 
information from a variety of peatland-specific databases and histosol distributions 
from the Harmonized World Soil Database V1.2 (HWSD) in the regions where 
peatland-specific information is not available. The total global peatland area is 
4.23 million km2 from PEATMAP. We assume no changes in future peatland 
distribution while acknowledging uncertainties in peatland area and that future 
peatland area may expand or shrink with new discoveries, under future climate 
change or land use. We tested the duration of water-table manipulation with the 
manipulation variable, going from long (>10 years), medium (1–10 years) to 
short-terms (≤1 year). The impact of manipulation duration is not big, and we 
reported results with long-term duration.

Future climatic conditions were predicted from GCM runs driven by RCP8.5 
(worst) and RCP2.6 (optimistic) emission scenarios (see ISIMIP). We chose 
simulations from three GCM models that is, the GFDL-ESM2M (wettest), the 
HadGEM2-ES (average) and the MIROC-ESM-CHEM (driest) to account for 
climate uncertainties. Future potential evapotranspiration (PET) and the aridity 
index (the ratio between precipitation and PET) were estimated using the Penman 
Monteith equation for a hypothetical short grass as the reference surface (Python 
package, PyETo, https://github.com/Evapotranspiration/ETo).

We applied bootstrap resampling and ensemble prediction to estimate 
prediction uncertainties. For ∆CO2,WTD, we randomly sampled 80% of our 
observation samples to build one random forest model. This random model 
was then used to make future predictions with different combinations of 
predictor datasets. We repeated this bootstrap resampling, random forest 
model building and future prediction 200 times. In total, we had 25,200 
(200 × 21CO2,initial × 2WTDinitial × 3 climate) ensemble members and we calculated 
the 95% probability interval as the indicator of prediction uncertainty. Bootstrap 
resampling provides reasonable estimation of prediction uncertainty for random 
forest models41 and the ensemble approach can take into account uncertainties 
from both random forest algorithms and predictor variables. Similarly, we 
conducted 8,400 predictions for ∆CH4,WTD through 200 bootstrap resamplings, 7 
CH4,initial datasets, 2 WTDinitial datasets and 3 climate datasets (Supplementary Table 
3). To quantify contributions to future ∆CO2, WTD and ∆CH4, WTD, we conducted a 
series of predictions (Supplementary Tables 6 and 7) through sequentially replacing 

climate, ∆WTD, WTDinitial and CO2,initial (or CH4,initial) by corresponding reference level 
datasets listed in Supplementary Table 3.
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