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A small climate-amplifying effect of climate-carbon
cycle feedback
Xuanze Zhang 1,2✉, Ying-Ping Wang 3,4✉, Peter J. Rayner 5, Philippe Ciais 6, Kun Huang2, Yiqi Luo 7,

Shilong Piao 8, Zhonglei Wang9, Jianyang Xia 2, Wei Zhao10, Xiaogu Zheng11, Jing Tian1 &

Yongqiang Zhang 1✉

The climate-carbon cycle feedback is one of the most important climate-amplifying feedbacks

of the Earth system, and is quantified as a function of carbon-concentration feedback para-

meter (β) and carbon-climate feedback parameter (γ). However, the global climate-

amplifying effect from this feedback loop (determined by the gain factor, g) has not been

quantified from observations. Here we apply a Fourier analysis-based carbon cycle feedback

framework to the reconstructed records from 1850 to 2017 and 1000 to 1850 to estimate β

and γ. We show that the β-feedback varies by less than 10% with an average of 3.22 ± 0.32

GtC ppm−1 for 1880–2017, whereas the γ-feedback increases from −33 ± 14 GtC K−1 on a

decadal scale to −122 ± 60 GtC K−1 on a centennial scale for 1000–1850. Feedback analysis

further reveals that the current amplification effect from the carbon cycle feedback is small (g

is 0.01 ± 0.05), which is much lower than the estimates by the advanced Earth system

models (g is 0.09 ± 0.04 for the historical period and is 0.15 ± 0.08 for the RCP8.5 scenario),

implying that the future allowable CO2 emissions could be 9 ± 7% more. Therefore, our

findings provide new insights about the strength of climate-carbon cycle feedback and about

observational constraints on models for projecting future climate.
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W ith increasing atmospheric CO2 and a warming
climate during the industrial era, land and ocean
reservoirs have together absorbed >50% of anthro-

pogenic CO2 emissions1, playing a significant role in reducing
anthropogenic warming2. Whether the ocean and land sinks
will continue to take up a similar fraction in the future
remains uncertain, and one of the major causes for that
uncertainty is the feedback between the carbon cycle and the
physical climate system3–5. Global climate change affects
carbon uptake by land and oceans, which impacts the rate of
increase in atmospheric CO2 and, in turn, climate change.
This feedback loop between the physical climate system and
the global carbon cycle of the Earth system was quantified
using a modeling approach6–9.

Previous studies quantified the climate–carbon cycle
feedback as a function of the carbon-concentration feedback
response parameter (β) and the carbon–climate feedback
response parameter (γ)7,10. The β (GtC ppm−1) and γ
(GtC K−1) are also defined as the rates of change in land and
ocean carbon storages relative to a fixed reference time to
atmospheric CO2 concentration increase and to global climate
change that is often quantified by the global-mean surface
temperature change, respectively. From the perspective of the
land and ocean reservoirs, β is positive, and γ is negative.
Therefore, β-feedback reduces the impact of CO2 emissions on
atmospheric CO2 concentrations and then global warming,
while γ-feedback amplifies global warming. The combined
effects of the β-feedback and the γ-feedback and the nonlinear
interaction between them determine the strength of the
climate–carbon cycle feedback loop which is known as the
feedback gain factor (g).

Both β and γ were previously quantified using physical climate
models coupled with the global carbon cycle under idealized
experiments7,10,11. Based on the experiments by the advanced
Earth system models, the last two successive assessments by the
International Panel on Climate Change (IPCC) found that the
uncertainty of the climate–carbon cycle feedback was dominated
by β12,13. These Earth system models under idealized experi-
ments did not account for the biophysical effect of land-use
change on climate and ecological effects on the residence time of
carbon in the land biosphere. Modeling experiments showed that
in a high CO2-induced warming climate system, the nonlinear
carbon–climate feedback can reduce the ocean carbon uptake by
3.6–10.6% based on the simulations of seven Earth system
models14.

On the other hand, observations can be used to constrain the
estimated climate–carbon cycle feedbacks. Applying an emerging
constraint-based approach to instrumental records, Cox et al.15

estimated γ for tropical land to be −53 ± 17 GtC K−1 by 2100.
Using data from three ice cores and multiple temperature
reconstructions from tree ring data over 1050–1800, Frank
et al.16 reported a ΔCA/ΔTA (defined as η in this study) of
7.7 ppm K−1 with a likely range of 1.7–21.4 ppm K−1, which was
much lower than previous estimates (e.g., ~40 ppm K−1)17,18.
However, the η is not truly comparable with γ, because their
relationship also depends on β (see Eq. (3) below). In quantifying
the response of climate to an increase in atmospheric CO2

concentration or anthropogenic emissions, two other quantities
are frequently used in the studies of carbon–climate interactions:
the sensitivity of climate to atmospheric CO2 (α≡ ΔTA/ΔCA, in
K GtC−1, which is equivalent to 1/(2.12 η) in this study)7,19, and
the transient climate response to cumulative CO2 emission
(TCRE ≡ ΔTA/ΔCE, in K GtC−1)20. The values of β, γ, α, and
TCRE are related to each other through one equation (see Eq.
(7))10,21, and that equation is applicable to any individual fre-
quency (or timescale) (see “Methods”).

Results
Estimates of β and γ across timescales. Based on the previous
studies7,10,14,19, the climate–carbon cycle feedback framework
with a nonlinear feedback term as a function of β and γ para-
meters, i.e., f(β,γ) in a unit of GtC ppm−1 K−1 or GtC GtC−1 K−1,
in a CO2 emission-driven coupled climate–carbon cycle system,
can be expressed as:

ΔCE ¼ ΔCA þ βΔCA þ γΔTA þ f ðβ; γÞΔCAΔTA ð1Þ
where ΔCE, ΔCA, and ΔTA are changes in cumulative CO2

emissions, atmospheric CO2, and global surface temperature,
respectively, during a time interval (Δt). Here, we applied a
Fourier analysis-based spectral decomposition approach to
observations or reconstructed records of global surface tem-
perature and atmospheric CO2 to quantify how the two feedback
parameters vary over different periods of time, or across different
timescales (1/frequencies) over the same time period. As shown
in the “Methods” section, the relationship among the four para-
meters at any given timescale (k) is given by

ðTCRE�1Þk ¼ ð1þ βkÞðα�1Þk þ γk* ð2Þ
where γ* ¼ γþ f β; γ

� �
ΔCA represents the combined carbon–

climate feedback from the linear γ-feedback and the nonlinear
impact of atmospheric CO2 on the carbon–climate feedback (see
“Methods”). Equation (2) also shows that variations of TCRE−1

and α−1 for a given timescale are linearly related, with a slope of
1+ βk and an intercept of γk*. Our result from modeling
experiments (see Supplementary Table 4) showed that the non-
linear feedback term f(β, γ) is relatively small, and its contribution
(f(β, γ)ΔCA) to the γ* is 15 ± 23%, while its contribution (f(β, γ)
ΔTA) to the β-feedback is negligible (3 ± 3%). Thus, we indicate
that the nonlinear feedback term has negligible effect on the
estimate of the slope of 1+ βk.

We estimated (TCRE−1)k from the ratio of the variability in CE

to the variability in TA, and (α−1)k from the ratio of the variability
in CA to the variability in TA on a given timescale (see
“Methods”). In Fourier analysis, the variabilities of CE, CA, and
TA were represented by the amplitudes of their harmonics at a
given frequency or period (Supplementary Fig. 1), which
were then used to calculate TCRE−1 and α−1 across different
timescales (see “Methods”). Different from the previous
approaches based on a Taylor series expansion and modeling
experiments (hereafter referred to as the FEA approach, see Eqs.
(22–25) in “Methods”)7,10,14, the estimated β and γ using Fourier
analysis-based approach do not depend on a reference time that
was used to compute changes in ΔCE, ΔCA, and ΔTA as in the
FEA approach.

In the following, we apply the Fourier analysis-based approach
to observed time series of CE, CA, and TA to estimate βk and γk for
the industrial period (1850–2017). By ignoring the timescale
dependence of β, and using the value of β for the industrial
period, we estimated γk at different timescales using large
ensembles based on combinations of ice-core atmospheric CO2

records (CA) and reconstructed surface air temperature (TA)
datasets (“Methods”) over the period 1000–1850. Finally, we
compare the observation-based estimates of β and γ, and
corresponding feedback gain factor (g) with those estimated
from the simulations from multiple Earth system models.

Estimates of β and γ* for the industrial period (1850–2017).
Figure 1 shows the observed increase in atmospheric CO2 (ΔCA)
from ~285 ppm in 1850 to 405 ppm in 2017 in response to the
increase in cumulative CO2 emissions (ΔCE), including fossil fuel
combustion22 and land-use change23,24, which amounted to
~630 ± 42 GtC by 2017 since 1850, with respect to a concurrent

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22392-w

2 NATURE COMMUNICATIONS |         (2021) 12:2952 | https://doi.org/10.1038/s41467-021-22392-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


increase in global-mean annual temperature (ΔTA) of ~1.1 K over
the same period based on the averages of the four global tem-
perature datasets. Using Fourier analysis, we found that the
amplitudes of CE, CA, and TA for the industrial period increased
nonlinearly with timescale (Fig. 2a and b), but the variations in
(TCRE−1)k and (α−1)k with timescale were linearly related to
each other (R2= 0.99, P < 0.001) with a slope (mean ± 1 standard
deviation) of 2.52 ± 0.15 (see Fig. 2c and Supplementary Table 1
for individual estimates). Across different timescales from inter-
annual to multi-decadal (e.g., k from 2 to 90 years) for the
1880–2017 period, (α−1)k varied from 50 to 250 GtC K−1 and
(TCRE−1)k from 125 to 600 GtC K−1 (Fig. 2c).

The slope of the linear regression between (TCRE−1)k and
(α−1)k across different timescales can be used to estimate (1+ βk)
based on Eq. (2). The result in Fig. 2c shows that the value of βk is
approximately constant across different timescales, with an average
value of 3.22 ± 0.32 GtC ppm−1 (or 1.52 ± 0.15 GtCGtC−1)
throughout the industrial period in 1880–2017 (Supplementary
Table 1). The uncertainty in β results from the uncertainties in CE

from fossil fuel combustion and land-use change estimates and

errors in the temperature datasets and the regression (see
“Methods”). Using the estimated β for the industrial period, we
estimated the corresponding γ* to be −10.9 ± 3.6 GtC K−1 for the
period 1880–2017 based on Eq. (6).

To diagnose the constancy of β estimated from the industrial
period and the reliability of our Fourier analysis-based approach,
we used a box model to predict changes in temperature and CO2

concentration with CO2 emissions as forcing input (see
“Methods”, Eqs. (29)–(30)). We ran the box model using the
estimate of two parameters based on observations (i.e., β= 3.22
GtC ppm−1 and γ*=−10.9 GtC K−1) and the annual cumulative
emissions over 1850–2017. The model predictions fitted very well
to the observed values of atmospheric CO2 concentration and
surface temperature (R2= 0.99, RMSE= 3.5 ppm for CO2, and
R2= 0.96, RMSE= 0.17 K for temperature) (see Supplementary
Fig. 2). The greater trend of the predicted global surface
temperature relative to the observed after 1980s (Supplementary
Fig. 2) is likely associated with γ* being treated as a constant,
while in reality γ* could vary with internal climate variability and
across different timescales. Using the box model predicted annual
CO2 and temperature, we in return, estimated a nearly constant β
(3.42 GtC ppm−1) and a γ* (−12.2 GtC K−1) for the period
1880–2017 based on our approach of Eqs. (1) and (2). Both values
of β and γ* estimated from the predicted CO2 and temperature
time series by the box model fall within the uncertainties of
observation-based β and γ*, suggesting that the β for 1880–2017
being nearly constant is robust.

As the γ* for the industrial period consists of the γ-feedback
and the nonlinear feedback effect of f(β, γ)ΔCA, which results
from the multi-decadal climate variability and anthropogenic
CO2 emissions. Because of the relatively short records over the
industrial period, we could not separate the γ-feedback parameter
directly from the γ* using our analysis framework. The η (or α−1)
for the industrial period includes a possibly significant contribu-
tion from an emissions-driven increase in atmospheric CO2

concentration to the climate–carbon feedback. As a result, the
mean value of η for 1850–2017 is 109 ppm K−1, much higher
than the estimates of 7.7–40 ppmK−1 during the preindustrial
period before 1850s16,17 that is considered to be at quasi-
equilibrium with small variation in greenhouse gas forcing.
The reason for this large discrepancy in η between the
preindustrial and industrial periods is likely a consequence of
the nonlinear dependence of radiative forcing on atmospheric
CO2 concentrations25, and the temperature change in response to
the increase in atmospheric CO2 during the industrial era has not
reached steady state, as large part of atmospheric CO2 increase
during industrial period was driven by emissions not due to
warming-induced CO2 release from land and ocean reservoirs. It
is also well known that equilibrium climate sensitivity is often
considerably larger than the transient climate sensitivity26. In the
following, we used reconstructed records of atmospheric CO2 and
surface temperature during the preindustrial last millennium
from 1000 to 185016–18,27,28 to estimate the γ.

Timescale dependence of γ over the preindustrial last millen-
nium (1000–1850). The preindustrial last millennium
(1000–1850) climate could be considered as a quasi-equilibrium
state with very little change in CO2 emissions, therefore the ΔCA

during 1000–1850 was largely driven by carbon–climate feedback
without the complication of concurrent increase in CE as the
industrial period. We ignored the possible influences of CO2

emissions from the early land-use29 on global surface temperature
during 1000–1850. As the atmospheric CO2 was relatively stable
(280 ± 8 ppm) during the 1000–1850 period, i.e., ΔCA was only
~3% of atmospheric CO2 concentration (Fig. 1a), we assumed

Fig. 1 Variability in atmospheric CO2 concentration and temperature over
the past millennium. a Variations in atmospheric CO2 concentrations over
1000–1850 from three Antarctic ice-core records at Law Dome, WAIS
Divide, and Dronning Maud Land. The subplot in a shows changes in
atmospheric CO2 concentrations and cumulative anthropogenic CO2

emissions over 1850–2017 with respect to values in 1850. The cumulative
anthropogenic CO2 emissions with an uncertainty of ±1σ confidence interval
(red-shaded) include CO2 release from both fossil fuel combustion and
land-use change (unit was converted to ppm from GtC). b Variations in
northern hemispheric-mean temperature anomalies from five
reconstructions (PAGES2k, Frank2010, Mann2009, MannEIV, and
Moberg2005). The subplot in b shows global-mean temperature anomalies
calculated from land surface air temperature and sea surface temperature
with respect to the average of 1961–1990 from datasets of HadCRUT4 and
Berkeley Earth for 1850–2017, and GISTEMP and NOAA GlobalTemp for
1880–2017. The reconstructions of 1000–1850 in (a) and (b) were
smoothed with 30-year splines. Temperature anomalies in 1850
(1880)–2017 in (b) were smoothed with 5-year splines.
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that its effects on β-feedback and γ-feedback were small
(e.g., f(β, γ)ΔCAΔTA ≈ 0). For the 1000–1850 period with ΔCE ≈ 0,
Eq. (2) can be further simplified as

γk ¼ �m 1þ β
� �

ηk � f β; γ
� �

ΔCA � �m 1þ β
� �

ηk ð3Þ
where m= 2.12 GtC ppm−1 is a factor for converting atmo-
spheric CO2 in ppm to GtC. As the β is found to be nearly
constant during the industrial period, we assumed that the con-
stant value is applicable to the 1000–1850 period. This is rea-
sonable, as the error sensitivity analysis showed that the
uncertainty in the estimated γ for 1000–1850 induced from the
uncertainty in β is still smaller than those from the difference in
the estimated γ from ice-core CO2 records and reconstructed
temperatures (Supplementary Fig. 5). Thus, using 15 combina-
tions of 3 ice-core CO2 records28,30,31 and 5 temperature
reconstructions16,32–35 as shown in Fig. 1 and Eq. (3) with β of

3.22 ± 0.32 GtC ppm−1, we estimated that the γ at a 100-year
timescale (γ100yr) for 1000–1850 was −122.8 ± 60.2 GtC K−1

(Fig. 3b and Supplementary Table 2). Furthermore, γk increases
with timescale, varying from −33 ± 14 GtC K−1 on timescales of
10–70 years to −110 ± 40 GtC K−1 over timescales of 200–800
years (Supplementary Fig. 6).

Using another set of >1500 combinations of 521 reconstructed
temperature records from 1000 to 185016 and 3 ice-core CO2

records (see “Methods”, Supplementary Fig. 4), we calculated
much larger ensemble (>1500) estimates (EnOBS) of ηk and γk
using the Fourier analysis-based approach. Our results confirmed
that ηk systematically increased with timescale, varying from 6 ± 6
ppmK−1 on timescales of 10–70 years to 20 ± 8 ppmK−1 over
timescales of 200–800 years due to the increased γk on magnitude
with timescale (Supplementary Fig. 6). The range of the EnOBS-
based η100yr for 1000–1850 was 7–23 ppmK−1 with a median of

Fig. 2 Linear relationship between 1
α and

1
TCRE across timescales. a Amplitude spectrum from Fourier analysis for annual atmospheric CO2 (ΔCA) and

cumulative anthropogenic CO2 emissions (ΔCE) for 1880–2017. b Same as (a) but for annual global-mean temperature from four observational datasets
(HadCRUT4, GISTEMP, Berkeley Earth, and NOAA GlobalTemp) for 1880–2017. c Estimates of 1

α (=ΔCA/ΔTA) across timescales against 1
TCRE (=ΔCE/ΔTE)

for four observational global-mean temperature datasets with atmospheric CO2 records (or anthropogenic emissions) for 1880–2017. The solid line with
the shaded area between the dashed lines is the linear regression of all datasets with a slope (p) of 2.52 ± 0.15 ppm ppm−1, which indicates that the carbon-
concentration feedback parameter β is 3.22 ± 0.32 GtC ppm−1.

Fig. 3 Ensemble estimates of climate–carbon cycle feedback parameters from observations and models. a Histogram of the β estimates (error bars for
mean ± 1σ) derived from four instrumental temperature and CO2 datasets for 1880–2017 (in gray), βBGC derived from 11 C4MIP models7 for 1880–2017 (in
dodger blue) and for 2018–2100 (in navy blue), and βBGC derived from nine CMIP5 models11 for the 140-year 1pctCO2 experiment (in deep pink). b Boxplot
of the γ* derived from four instrumental temperature and CO2 for 1880–2017 (in gray), and γ100yr estimates derived from an ensemble of 15 members (3
ice-core CO2 records × 5 reconstructed temperature, in black) and from the EnOBS for 1000–1850 (in green), and γCOU-BGC derived from 11 C4MIP models
for 1880–2017 (in dodger blue) and for 2018–2100 (in navy blue), and γCOU-BGC derived from nine CMIP5 models (in deep pink). In b, the large ensemble
estimates of the γ100yr from the EnOBS also provides probability distributions (right panel) of the cooler period of Little Ice Age (LIA, 1400–1700) and the
warmer period of Medieval Climate Anomaly (MCA, 1000–1300), compared to those of the full preindustrial last millennium (PILM, 1000–1850). c Same
as (a), but for the feedback gain factor (g) derived from the β and AF estimates.
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9 ppmK−1, consistent with the estimate of η (1.7–21.4 ppmK−1)
by Frank et al.16. The resulting γ100yr of EnOBS for 1000–1850 was
−82 ± 42 GtC K−1, varying from a minimum of −260 GtC K−1 to
a maximum of −15 GtCK−1 (Fig. 3b). The EnOBS-based γ100yr
over timescales of 200–800 years was −80 ± 50 GtC K−1 (Supple-
mentary Fig. 6), which is 30% smaller than the estimate of γ100yr
from 3 ice-core CO2 records × 5 temperature reconstructions.
These results suggest that the timescale or temporal dependance of
η over the 1000–185016 is largely driven by the positive feedback
of terrestrial and oceanic carbon pools to climate (i.e., the γ
feedback), implying that on longer timescales, warming of the
climate would cause more release of CO2 into the atmosphere and
in return, amplify warming.

The estimate of γ also depends on the mean climate state
(quasi-equilibrium or transient). Here we compared estimates of
γ between the warmer period of the Medieval Climate Anomaly
(1000–1300) with a mean temperature anomaly of −0.18 ± 0.09 K
and the cooler period of the Little Ice Age (1400–1700) with a
mean temperature anomaly of −0.41 ± 0.03 K, and both anoma-
lies were calculated relative to the mean global surface
temperature from 1961 to 1990. We further analyzed probability
distributions of the EnOBS-based γ100yr for three different
periods: 1000–1850, 1000–1300, and 1400–1700. The estimates
of γ100yr for the cooler period of 1400–1700 had a comparable
probability distribution with the 1000–1850 period (Fig. 3b).
However, the γ100yr for the warmer period of 1000–1300
showed a much narrower distribution with a less negative
mean (−38 ± 17 GtC K−1, or 50% smaller) than that for
1400–1700 (−72 ± 56 GtC K−1), suggesting that γ100yr feedback
is sensitive to the state of the mean climate. The higher γ100yr for
1400–1700 resulted from a colder climate and some drastic
fluctuations in CO2 (e.g., larger ΔCA leads to more nonlinear
feedback contribution from f(β, γ)ΔCA), especially the strong dip
at ~1600 AD, while the lower γ100yr for 1000–1300 is associated
with smaller variations in CO2 and a warmer climate (Fig. 1). The
CO2 drop in the Little Ice Age (1400–1700) may have been driven
not only by natural disturbances (e.g., volcanic eruptions) but also
probably by human-induced land-use effects36, which could have
led to a more negative estimate of γ100yr for 1400–1700.

Comparisons of observation-based and model-based estimates
of feedback parameters. Previous studies have noted the time-
scale dependence of η (i.e., ΔCA/ΔTA) and the relationship
between η and the climate–carbon cycle feedback parameters
(β and γ)10,16,37. Here we further quantified the different timescale
dependence of β and γ. Using an observation-based constraint18,
Cox and Jones estimated that β was between 3 and 5 GtC ppm−1

and γ fell between −250 and −50 GtC K−1. For the β-feedback of
land, recent studies estimated that the CO2 fertilization effect on
global plant biomass carbon only was 25 ± 4 GtC year−1 for a
100 ppm ΔCO2 over 1980–201038, and for the global terrestrial C
sink was 3.5 ± 1.9 GtC year−1 per 100 ppm ΔCO2 over 1959
to 201039, which is equivalent to a land β-feedback of 1.75 ±
0.95 GtC ppm−1 over the same period. Our findings indicate
that observation-based (land+ ocean) β is approximately constant
across different timescales at 3.22 ± 0.32 GtC ppm−1 for
1880–2017. While magnitudes for γ increased with timescale from
decadal to multi-centennial, and our estimate of γ100yr had a
narrower uncertainty than previous estimates, with an average of
−122.82 ± 60.16 GtCK−1 from the 3 ice-core CO2 records × 5
temperature reconstructions and of −81.91 ± 41.90 GtC K−1 from
EnOBS for 1000–1850. Uncertainties related to the estimated
γ100yr from the two datasets (15 members versus >1500 members
of EnOBS) did not overlap, which may suggest the uncertainty in
γ100yr was from −180 to −40 GtC K−1.

We then compared our observation-based estimates of β and γ
using Fourier analysis-based approach with those from Earth
system models. Estimates of β and γ from Earth system models
were calculated from three sets of model simulations: the
biogeochemically-coupled (BGC), radiatively coupled (RAD),
and fully coupled (COU) simulations based on the FEA
approach7,14 (see “Methods”). Eleven first-generation coupled
climate–carbon cycle models (C4MIP) were driven with the
prescribed CO2 emissions from the historical period (1860–2005)
and the future period (2006–2100) under the IPCC SRES
A2 scenario without land-use change7. Only COU and BGC
simulations were conducted for the C4MIP models.
The subsequent analysis used nine models from phase 5 of
the Coupled Model Inter-comparison Project (CMIP5) used
1% year−1 increasing CO2 for 140 years, no land-use change (or
the 1pctCO2 experiment)11. β and γ were estimated from three
simulations (COU, BGC, and RAD) by each participating model.
Because of the nonlinear feedback, the changes in size of carbon
pools (land, ocean, and atmosphere) in the COU simulation were
not equal to the sum of the simulated changes of those pool sizes
in the RAD and BGC simulations14,40,41. According to “Meth-
ods”, we calculated the direct β-feedback from the COU-BGC
simulations (βGC � ΔCBGC

B =ΔCBGC
A ) and the direct γ-feedback

from the COU-RAD simulations (γRAD ¼ ΔCRAD
B =ΔTRAD

A ) and
the total γ-feedback (direct plus indirect) from the COU-BGC
simulations (γCOU�BGC � ΔCCOU

B � ΔCBGC
B

� �
=ΔTCOU

A , in theory
this is the γ*) using the FEA approach, for the observation-
overlapped period of 1880–2017 and the future emission scenario
of 1880–2100 for the C4MIP models, and the 1pctCO2 140-year
period for the CMIP5 models, respectively. We also estimated the
nonlinear feedback term from the difference between COU
simulations and the BGC and RAD simulations
(f β; γð Þ � ½ΔCCOU

B � ΔCBGC
B þ ΔCRAD

B

� ��=ΔCCOU
A ΔTCOU

A ) and its
contribution to γ-feedback (f β; γð ÞΔCCOU

A ) for the CMIP5 models
(“Methods”).

The estimated βBGC from 11 C4MIP models for 1880–2017
using the FEA approach was 3.07 ± 0.68 GtC ppm−1 which is
close to the observation-based β (3.22 ± 0.32 GtC ppm−1) for the
same period using historical CO2 emissions as forcing. Previous
studies demonstrated that the carbon-concentration feedback was
strongly dependent on the growth rate of atmospheric CO2 and
hence on emission scenarios10. When extending the calculation to
the future high emission scenario of the IPCC SRES A2 (close to
the RCP8.5 pathway, the mean CO2 growth rate was about 0.72%
year−1), we found that βBGC from C4MIP models was largely
reduced by 19.5% to 2.47 ± 0.60 GtC ppm−1 for the period of
1880–2100 (Fig. 3a, Supplementary Table 3). As the 1pcCO2

experiments of CMIP5 models were configured under a higher
emission scenario (1% year−1 of the CO2 growth rate), we found
that the estimated βBGC from nine CMIP5 models using the FEA
approach was 1.71 ± 0.44 GtC ppm−1, which is 45% smaller than
the observation-based or C4MIP-based β for the historical period
1880–2017 (Fig. 3a), indicating that carbon-concentration feed-
backs became smaller under higher growth rates of CO2 in the
climate–carbon cycle system.

The γCOU-BGC is theoretically the γ* in this study, as the
γCOU-BGC was calculated from all feedback effects in COU
simulations minus the direct β-feedback in BGC simulations. We
found that the estimated γCOU-BGC from 11 C4MIP models were
on magnitude increased from −27.52 ± 11.93 GtC K−1 for
1880–2017 to −52.18 ± 26.54 GtC K−1 for 1880–2100, when the
βBGC was decreased for 1880–2100 (Fig. 3a, b, Supplementary
Table 3). The estimated γCOU-BGC from nine CMIP5 models was
−70.14 ± 32.43 GtC K−1, which theoretically came from direct
feedback γRAD (−65.08 ± 30.74 GtC K−1) and the nonlinear
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feedback contribution f ðβ; γÞΔCA (−9.6 ± 10.03 GtC K−1, ~15 ±
17% of the γ-feedback) under the high emission scenario of the
1pctCO2 experiments (Fig. 3b, Supplementary Table 4). Without
CO2 impact, the estimated nonlinear feedback parameter f ðβ; γÞ
was −11.22 ± 11.72 × 10−3 GtC ppm−1 K−1 (Supplementary
Table 4). On the other hand, as the observation-based γk for
1000–1850 and the model-based γCOU-BGC refer to different
periods and timescales which exaggerates their differences owing
to the timescale dependency of γ-feedback, it should be noted that
there is limited comparability between them.

To further assess whether β varies with timescale, we estimated
βBGCk and γRADk by applying the FEA approach to the simulations
from the nine CMIP5 models from inter-annual to centennial
timescales (see “Methods” and Supplementary Texts 1, 2). The
results supported that β-feedback was approximately constant
across different timescales while γ-feedback increased signifi-
cantly with timescale for most models (Supplementary Fig. 7a, b).
Similar timescale dependences were also found for βBGCk and γRADk
by applying the FEA approach to the simulations from C4MIP
models (Supplementary Fig. 8).

Estimates of feedback gain (g) for 1880–2017 and high CO2

emissions scenarios. For further comparisons, we estimated the
observational and model-based airborne fraction (AF) of cumu-
lative CO2 emissions (AF ¼ ΔCA=ΔCE) and climate–carbon cycle
feedback gain factor (g) across timescales (g ¼ 1� 1=½AFð1þ βÞ�,
see “Methods”). We estimated AFk over different timescales from
amplitudes of atmospheric CO2 concentration and cumulative
CO2 emissions using Fourier analysis (Fig. 2a), then calculated
the average and standard deviation of AF from AFk over time-
scales (Supplementary Fig. 7). We showed that the observation-
based AF for the period 1880–2017 was nearly constant across
timescales with an average of 0.40 ± 0.05 (Supplementary Fig. 7c),
suggesting that about 60% of CO2 emission was taken up by land
and ocean. Previous studies found the relationship between AF
and the two feedback parameters: AF= 1/(1+ β+ αγ*)10. As for
the period 1880–2017, we found a relatively smaller contribution
of αγ* (~0.05 GtC GtC−1) from α (0.005 K GtC−1) and γ*
(−10.9 GtC K−1) compared to β (~1.52 GtC GtC−1) from the
observational estimates, i.e., β≫ αγ*, suggesting that the carbon-
concentration feedback (β) dominated the relatively stable
cumulative airborne fraction over the industrial period.

Further analysis showed that the observation-based feedback
gain (g) was very small (0.01 ± 0.05) for 1880–2017 (Fig. 3c). We
showed that C4MIP-based AF for 1880–2017 was also nearly
constant (0.45 ± 0.06) across different timescales (Supplementary
Fig. 7c), slightly larger than the observed estimate. However, the
C4MIP-based g for the same period 1880–2017 was 0.09 ± 0.04,
larger than the observational value by about an order of
magnitude (Fig. 3c). As a result, the observation-based and
C4MIP-based feedback amplification G (G= 1/(1−g), see “Meth-
ods”) are 1.01 ± 0.05 and 1.10 ± 0.04, respectively, suggesting the
modeled amplification effect is about 9 ± 7% larger. Under high
emission scenarios, the C4MIP-based g increased to 0.15 ± 0.08
with increased AF (0.56 ± 0.09) for 1880–2100, and the CMIP5-
based g increased to 0.13 ± 0.08 for the 1pctCO2 (Fig. 3c), which
are much higher than the observation-based g.

Discussion
This study expanded the traditional climate–carbon cycle feed-
back framework7,10,14,19 by including a nonlinear feedback term
(see Eq. (1)). Using CMIP5 modeling experiments under a sce-
nario of high CO2 growth rate (1% yr−1), we found that the
contribution of the nonlinear term to land and ocean β-feedback
is relatively small (3 ± 3%), while its contribution to land and

ocean γ-feedback is 15 ± 23%. These estimates are noticeably
smaller than those simulated from previous modeling studies on
land and ocean (20% for β and 45% for γ), or on ocean only (6%
for β and 60% for γ)10,14 (see also Supplementary Text 3 for
detailed discussion). However, the estimated nonlinear con-
tributions vary significantly across CMIP5 models (0.2–9.6% for β
and 0.8–45% for γ, see Supplementary Table 4), which suggests a
large uncertainty in the modeled nonlinear feedback among the
advanced Earth system models.

This study also stated the relationship among the four com-
monly used quantities (β, γ, α, and TCRE) which is consistent to
some similar relationships as stated by previous carbon–climate
feedback studies10,21. Using historical temperature and CO2

records over 1880–2017, we estimated that the carbon-
concentration feedback parameter β is 3.22 ± 0.32 GtC ppm−1

and the climate–carbon cycle feedback gain factor g is 0.01 ± 0.05.
These estimates were nearly constant across inter-annual to
decadal timescales. On the other hand, we also found that
the γ-feedback parameter increased with timescale from
−33 ± 14 GtC K−1 on a decadal scale to −122 ± 60 GtC K−1

on a centennial scale based on reconstructions over 1000–1850.
Furthermore, the estimated climate amplification from
carbon–climate feedback based on observations in this study is
much smaller than the previous estimates by IPCC reports based
on model simulations under high emission scenarios12,13. Our
results based on observations have significant implications for
understanding the strength of the climate–carbon cycle feedback
and the allowable CO2 emissions to mitigate future climate
change. For example, the allowable emissions based on Earth
system models for a 68% probability of limiting warming to
1.5 °C above the preindustrial level by ~2050 as stipulated in the
Paris Agreement42, are ~115 GtC (or 420 Gt CO2)43, using the
much smaller feedback gain of 0.01 ± 0.05 than the C4MIP-based
estimates during the same period, we estimate that the allowable
emissions would be 9 ± 7% more, or 125 ± 8 GtC.

In this study, the observation-based β and AF were found to be
nearly constant (with <10% change), which together determined
the nearly constant feedback gain (g). This can be explained by
the linear system in response to exponential increase of forcing
(LinExp) theory44,45, in which the carbon–climate system over
the industrial period can be approximated as a linear system of
the carbon cycle forced by exponentially growing CO2 emissions
with y= 0.27e0.018t for the 1850–2017 (Supplementary Fig. 9a, b),
then all ratios of responses to forcings are constant44. Using the
simulations over the historical period (1901–2010) from 14 ter-
restrial ecosystem models forced by observational climate, land-
use change, and atmospheric CO2

46, we showed that when
excluding the effects of climate change and land use change, both
annual global GPP and cumulative land carbon sink increased
exponentially in response to exponentially growing atmospheric
CO2 over 1901–2010 (Supplementary Fig. 9c, d). Therefore, the
ratio of the exponential increase in carbon uptake and the
exponential increase in CO2 sustained a nearly constant value of β
over the historical period.

The timescale dependency of the γ-feedback can be used to
reconcile the diverging estimates of γ parameters in the previous
studies. The estimated γ at centennial timescales for the pre-
industrial period (−180 to −40 GtC K−1) was found to be much
more negative than the value of γ* at multi-decadal timescales
(−14 to −7 GtC K−1) for the industrial period, implying that the
climate sensitivity of carbon cycle depends on the base climate
state. If we allow the present transient climate system to reach an
equilibrium state, the estimated climate sensitivity of the carbon
cycle would be more negative. Furthermore, the γ (or γ*)-feed-
back also depends on CO2 emissions scenario. By comparing
observation-based γ* and model-based γCOU-BGC from C4MIP
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models for the industrial period (1880–2017) with the model-
based γCOU-BGC estimate for the future period with higher CO2

emissions, we showed that under the conditions of the higher
CO2 growth and warmer climate states, the γ-feedback and the
nonlinear feedback contribution to the γ* became more negative,
while the β-feedback decreased (Fig. 3, Supplementary Table 3).
The contribution of the nonlinear carbon–climate feedback to
total carbon–climate feedback was estimated to be 15 ± 17% for
the 1pctCO2 high emission scenario as used in the CMIP5 study.
For the ocean, the nonlinear feedback may become greater due to
the decreased downward carbon transport to the deep ocean
owing to reduced overturning in a warmer climate14. The γ
encapsulates both the direct effect of warming on plant and soil
respiration47,48 and sea water solubility (γ gets more negative),
but also the indirect effect of warming on biological productivity
and phenology49 and on stratification/reduction of the
overturning14,41 (γ gets less negative). How the γ-feedback will
change in a warmer climate with high CO2 emissions depends on
the contributions by these competing processes, and the uncer-
tainties in the earth system models used for the analysis4,50.
Overall, the γ-feedback at equilibrium under a high emissions
scenario would become much more negative than the γ-feedback
for the industrial or preindustrial periods, and likely play the
dominant role in the positive net climate–carbon cycle feedback.

Uncertainties in the estimates of β, γ, and corresponding g arise
from the errors in observations, model uncertainties, methodol-
ogy, and study periods chosen. First, we did not consider sepa-
rately the contributions of non-CO2 greenhouse gases (e.g., CH4,
N2O, O3) from those of CO2 on climate variation, which may
have led to some biases in the estimates of β and γ. Second, the
overestimation of C4MIP-based g compared to the observation-
based g for the same period 1880–2017, might be due to several
reasons in model descriptions, e.g., poor descriptions of terrestrial
ecosystem processes (carbon pools, carbon–water coupling, soil
respiration, vegetation phenology, and ecosystem climate adap-
tation, etc.), omission of land-use change, and biases in model
initial climate/carbon pool base-states, etc. Third, errors could
arise from the two approaches (the Fourier analysis approach and
the FEA approach) for estimating observation-based β and γ* or
model-based βBGC and γCOU-BGC and corresponding g. Com-
parative analysis showed that the ensemble means of C4MIP-
based βBGC and γCOU-BGC using the FEA approach are consistent
with those of C4MIP-based β and γ* using the Fourier analysis
approach for the 1880–2017 period, indicating a relatively small
difference of C4MIP-based g between using the two approaches
(Supplementary Fig. 11).

In addition, although the β-feedback was found to be stable
over the industrial period with the approximately exponential
growth of CO2, applying the same β value to the preindustrial
period may result in bias in estimated γ for the preindustrial
period. Sensitivity analysis found that an overestimation (or
underestimation) of 50% in β would result in an underestimation
(or overestimation) of about 30% in γk at timescales from 10 to
1000 years for the 1000–1850 period (Supplementary Fig. 5). This
change of 30% (~25 GtC K−1) in γ100yr is still smaller than the
uncertainty of γ100yr (a standard deviation of 41.90 GtC K−1) that
was mainly caused by the large divergences in the three ice-core
CO2 records and reconstructed temperatures. Furthermore, this
study ignored the contribution of early land-use change to climate
change (ζ100yr � 0) during 1000–1850, therefore may have over-
estimated the γ100yr, e.g., for the Little Ice Age (1400–1700). The
observed atmospheric CO2 drop in the 1400–1700 period
occurred because of the cooling-induced increase in terrestrial C
uptake27, but it can also be partly explained by enhanced forest
restoration from reduced land-use change as a result of aban-

donment of agricultural land from the collapse of native popu-
lation in the Americas during 1500–165051. Despite these
uncertainties, we demonstrated the nature of the timescale
dependency of γ on climate–carbon cycle feedback and important
implications for observational constraints on earth system models
for projecting future climate changes.

Methods
Anthropogenic CO2 emission data. We calculated the global annual total
anthropogenic CO2 emission flux (FE) as the sum of annual emission fluxes from
fossil fuel combustion and industrial processes (FFF) and from land use and land
cover changes (FLUC) by human activity covering the period 1850–2017, both of
which were obtained from the Global Carbon Project’s annual global carbon
budget report1. The FFF (uncertainty of ±5% for a ±1σ (68%) confidence interval)
was estimated by ref. 22 and the FLUC (uncertainty of ±0.7 GtC year−1 representing
a ±1σ confidence interval) was averaged from emission estimates based on two
bookkeeping models by ref. 23 and ref. 24. We then calculated the cumulative
annual anthropogenic CO2 emission: CE tð Þ ¼ R t

0FEdt ¼
R t
0ðFFF þ FLUCÞdt. Units

were converted from GtC to ppm by dividing m (=2.12 GtC ppm−1) for com-
parison with atmospheric CO2 concentration52. The conversion factor m was also
used for unit conversions of β, γ, α, and η parameters.

Instrumental and ice-core reconstructed atmospheric CO2 records. Global
annual atmospheric CO2 concentration over 1850–2017 was reconstructed from a
combination of ice-core CO2 records and instrumental CO2 measurements since
1950s53,54. Information about the inter-annual variability in the CO2 data covering
1850–1940s from ice-core CO2 would be lost, as ice cores smooth atmospheric CO2

records by firn diffusion, which may lead to some biases in the timescale analysis.
The highly resolved CO2 covering the preindustrial period of 1000–1850 was

compiled from ice-core records in Antarctica including three datasets at Law
Dome30,55, WAIS Divide28, and Dronning Maud Land31, respectively. As the three
records have different resolutions, CO2 values were resampled to the nearest
calendar year and then smoothed using 30-year splines (Fig. 1a). However, large
variations remain among the three records of CO2 from ice-core (see Fig. 1a and
Supplementary Fig. 3a).

Instrumental and reconstructed temperature datasets. All available instru-
mental temperature datasets including HadCRUT456 and Berkeley Earth57 over
1850–2017, and GISTEMP58 and NOAA GlobalTemp59 over 1880–2017 were
used. Global annual temperature anomalies were calculated by area-weighted
averaging over both land (2 m air temperature) and ocean (sea surface tempera-
ture) minus the mean surface air temperature of land and ocean for the period
from 1961 to 1990.

Five reconstructions of Northern Hemispheric temperature were obtained from
four groups which were abbreviated as PAGES2k32, Frank201016, Mann200934,
MannEIV33, and Moberg200535 in this study (Fig. 1b). All temperature
reconstructions were smoothed with 5-year splines, and adjusted to removed-
means with respect to 1961–1990. Northern Hemispheric-mean temperature had
been shown to be highly representative for global-mean temperature variations16.

The ensemble estimates of 521 calibrated temperature reconstructions were
obtained from the Frank201016, in which all amplitude and variability on >30-year
timescales are well preserved for uncertainty analysis. The ensemble estimates were
recalibrated by nine available datasets of Northern Hemispheric-mean temperature
reconstructions using a reconstructing technique based on a state-space time series
and Kalman filter algorithm60. The ensemble means (Fig. 1b) and individual
temperature reconstructions (Supplementary Fig. 4a) by Frank2010 are used for a
large ensemble of >1500 estimates (EnOBS) of the η and γ over the preindustrial
period. Our estimate based on Fourier analysis shows that uncertainty in the η on
centennial timescales (Supplementary Fig. 4b) was consistent with the estimate by
Frank2010 which was based on a lag-regression method (searching highest
correlations) of CO2 and temperature reconstructions which were smoothed with
spline using a range of cutoff time (50, 75,…, 200 years)16.

Theoretical analysis for the climate–carbon cycle feedback. Following previous
analysis7,10, the increase from anthropogenic CO2 emissions (ΔCE) is the sum of
changes in the three stores,

ΔCE ¼ ΔCA þ ΔCL þ ΔCO ð4Þ

where ΔCA, ΔCL, and ΔCO are the changes in carbon storage on atmosphere, land,
and ocean, respectively, over a time period (Δt) evolved from the reference climate
state. For the analysis for industrial period, we calculated ΔCE, ΔCA, ΔCL, and ΔCO

(in a unit of GtC) during Δt since 1880. Note that change in atmospheric CO2

concentration in a unit of ppm can be converted to GtC by a factor of m
(~2.12 GtC ppm−1)52. Within the climate–carbon cycle feedback system, following
the linear carbon cycle feedback framework by refs. 7,10,19 and the nonlinearity of
carbon cycle feedback discovered by ref. 14, we consider the changes in land and
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ocean carbon are the combined effects of carbon-concentration feedback (β) and
carbon–climate feedback (γ) and the nonlinear feedback between climate and
atmospheric CO2,

ΔCL ¼ βLΔCA þ γLΔTA þ fL βL; γL
� �

ΔCAΔTA

ΔCO ¼ βOΔCA þ γOΔTA þ fOðβO; γOÞΔCAΔTA

(
ð5Þ

where βL and βO are the β-feedback on land and ocean, respectively, γL and γO
being the γ-feedback on land and ocean, respectively. βL and βO are in a unit of
GtC GtC−1 and can be converted to a commonly used unit of GtC ppm−1 by
multiplying m (=2.12 GtC ppm−1). γL and γO are in a unit of GtC K−1. fLðβL; γLÞ
and fOðβO; γOÞ are the nonlinear feedback (GtC ppm−1 K−1) as a function of β and
γ feedback parameters on land and ocean, respectively. Combining Eqs. (4) and (5),
we have

ΔCE ¼ ΔCA þ βΔCA þ γΔTA þ f β; γ
� �

ΔCAΔTA ¼ ð1þ βÞΔCA þ γ*ΔTA ð6Þ
where the total β-feedback is βL þ βO , γ-feedback is γL þ γO , and f(β, γ)-nonlinear
feedback is fL βL; γL

� �þ fOðβO; γOÞ. As defined by ref. 14, when assuming the car-
bon stock in biosphere (CB ¼ CL þ CO) at the reference climate state as a function
of climate and CO2: CB ¼ FðCA;TAÞ, then β, γ, and f(β, γ) can be expressed as the
1st order and 2nd order coefficients of the Taylor series of CB since the initial time
(t= 0): β ¼ ∂F

∂CA
j0, γ ¼ ∂F

∂TA
j0, and f β; γ

� �¼ ∂2F
∂CA∂TA

j0 þ 1
2
∂2F
∂C2

A
j0 ΔCA

ΔTA
þ 1

2
∂2F
∂T2

A
j0 ΔTA

ΔCA
þ R3.

The nonlinear feedback f(β, γ) in this study represents the 2nd and high-order
terms of the Taylor expansion. As previous studies mainly focused on the non-
linearity of the carbon–climate (γ-) feedback10,14,41, in this study, we combined the
γ-feedback and the atmospheric CO2 change’s impacts on the nonlinear feedback
as γ* ¼ γþ f β; γ

� �
ΔCA. From this definition, the γ* � γ, when ΔCA � 0.

The Eq. (6) can be rewritten as by dividing both sides by ΔTA,

1
TCRE

¼ ð1þ βÞ 1
α
þ γ* ð7Þ

where α � ΔTA=ΔCA is the sensitivity of climate to atmospheric CO2 (in a unit of
K GtC−1), which represents the change in temperature in response to a change in
CO2 concentration7,19. The α is a useful measure to quantify the feedbacks between
climate and carbon cycle over both preindustrial and industrial periods. The
TCRE � ΔTA=ΔCE is transient climate response to cumulative CO2 emission (in a
unit of K GtC−1)20, which quantifies the ratio of change in temperature to
cumulative carbon emissions, providing another useful measure to estimate the
total allowable emissions for a given temperature change, as there is a near-linear
relationship between cumulative CO2 emissions and global temperature change20.

In this study, we notated 1
α as η, i.e., η � 1

α. In some previous studies, the η was
also defined as the sensitivity of atmospheric CO2 to climate for cases of no
anthropogenic CO2 emission involved in the climate–carbon cycle system, e.g.,
over the preindustrial last millennium16–18,37,61. But for the industrial period, this
definition expressing the sensitivity of CO2 to climate could be physically
meaningless, as the CO2 increase over this period is not only due to the climatic
impact on carbon stores, but also is primarily driven by the increasing
anthropogenic CO2 emissions. During the preindustrial period (1000–1850), the
atmospheric CO2 remained very stable (280 ± 8 ppm), with only small
anthropogenic CO2 emissions from the land-use change and negligible
anthropogenic emissions from fossil fuels, and those anthropogenic emissions had
little induced global warming, thus37

γk ¼ �m 1þ βð Þηk � f β; γð ÞΔCA ð8Þ
where m= 2.12 GtC ppm−1 is a factor for converting units in ppm to GtC.

Feedback gain factor g. The gain factor (g) of the climate–carbon cycle
feedback7,10,19 is expressed as

g ¼ �γ*
ð1þ βÞ

ΔTA

ΔCA
¼ �γ*α

ð1þ βÞ ð9Þ

Substituting Eq. (7) into Eq. (9) gives

g ¼ 1� α

TCRE
1

ð1þ βÞ ¼ 1� 1
AFð1þ βÞ ð10Þ

where AF ¼ ΔCA=ΔCE is the airborne fraction of cumulative CO2 emissions. Thus,
we can further estimate the amplification factor G ¼ 1=ð1� gÞ ¼ AFð1þ βÞ. For a
net positive climate–carbon cycle feedback, g > 0 and G > 1.

Estimating β and γ across different timescales from observations. Over the
industrial CO2 emission forcing period (1850–2017), as both changes in anthro-
pogenic CO2 emission (ΔCE) and atmospheric CO2 concentration (ΔCA) are
accumulated over time intervals (Δt). From Eq. (6) with the three unknows β, γ,
and f(β, γ), we can have

ΔCE

Δt
¼ ΔCA

Δt
þ β

ΔCA

Δt
þ γ

ΔTA

Δt
þ f ðβ; γÞΔCA

ΔTA

Δt
ð11Þ

when Δt→ 0, then ΔCA→ 0, the nonlinear feedback contribution is close to zero,
i.e., f β; γ

� �
ΔCA ! 0; hence γ* � γ. Therefore, rewriting Eq. (11) into partial

differential form (Δt→ 0) is

∂CE

∂t
¼ ð1þ βÞ ∂CA

∂t
þ γ*

∂TA

∂t
ð12Þ

As the year-to-year or decade-to-decade variations of CE, CA, and TA in the
climate system are mostly driven by more than one factor (e.g., the El Niño-
Southern Oscillation) at different timescales62,63. Based on the theory of Fourier
analysis, fluctuations of these variables with time (including variability and trend)
thus can be seen as the wave superposition over different frequencies64.

In this study, we then apply the Fourier analysis to the nonlinear
climate–carbon cycle feedback framework to estimate β and γ across different
timescales from observations. Expressing the CE, CA, and TA as functions of time t,
writing them as the sum of periodic basis functions at different frequencies
(Supplementary Fig. 1); this can be written as

CE tð Þ ¼ ∑
k
ak sinðωkt þ φ1;kÞ

CA tð Þ ¼ ∑
k
bk sinðωkt þ φ2;kÞ

TA tð Þ ¼ ∑
k
ck sinðωkt þ φ3;kÞ

8>>><
>>>:

ð13Þ

where k is wavenumber (or with respect to timescale), ωk ¼ 2π k
N is the angular

frequency, and ak, bk, and ak are amplitudes of CE, CA, and TA, respectively, and N
is the time period in years. The time variable t varies from 0 to N. Then,

∂CE
∂t ¼ ∑

k
akωk cosðωkt þ φ1;kÞ

∂CA
∂t ¼ ∑

k
bkωk cosðωkt þ φ2;kÞ

∂TA
∂t ¼ ∑

k
ckωk cosðωkt þ φ3;kÞ

8>>>>><
>>>>>:

ð14Þ

We can substitute Eq. (14) into Eq. (12), which yields,

∑
k
hkðak � 1þ βð Þbk � γ*ckÞωk sin ωkt þ ξkð Þ ¼ 0 ð15Þ

where ξk ¼ arctan � cos φ1;kþcos φ2;kþcos φ3;k

sinφ1;kþsinφ2;kþsinφ3;k

� �
, and

hk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinφ1;k þ sinφ2;k þ sinφ3;kÞ2 þ ðcosφ1;k þ cosφ2;k þ cosφ3;kÞ2

q
≠ 0. We

find that Eq. (15) only holds when

ak � 1þ βð Þbk � γ*ck ¼ 0 ð16Þ
Comparing Eq. (16) with Eq. (7), we notate 1

TCRE as ζ, i.e., ζ � 1
TCRE, and

1
α as η,

then have the solutions of ζ and η over timescales,

ζk ¼
ak
ck

ð17Þ

ηk ¼
bk
ck

ð18Þ
The η can be estimated from ratios of the amplitudes in CE to the amplitudes in

TA at any given timescale. Similarly, the ζ can be estimated from the amplitudes in
CE and TA. Fourier analysis based on fast Fourier transform (FFT)65 is used for
estimating amplitudes for each time series of CE, CA, and TA over industrial or
preindustrial periods (see Supplementary Fig. 1). From Eqs. (16)–(18), we have

ζk ¼ 1þ βð Þηk þ γ* ð19Þ
From Eq. (19) or Eq. (2) and Fig. 2c, we find that the β can be estimated from a

linear regression of ζk and ηk with residual errors (∈)

ζk ¼ pηk þ ϵ ð20Þ
where p ¼ covðζk ; ηkÞ

varðηkÞ , then β ¼ p� 1. The γ* on different timescales (γk*) for the

industrial period can be calculated by Eq. (20) with input from estimates of ζk (or
TCRE�1

k ) and ηk (or α�1
k ) for a given timescale. If considering that the β-feedback

of the climate–carbon cycle system is the same over both the industrial and
preindustrial periods on long-term timescales, e.g., of 100 year, assuming
ζ100yr � 0, from Eq. (8) we have

γ100yr ¼ �m 1þ βð Þη100yr ð21Þ
where the η100yr is estimated on the 100-year timescale from temperature
reconstructions and CO2 ice-core records over 1000–1850.

Estimating β and γ and f(β, γ) from C4MIP and CMIP5 simulations. We fol-
lowed the FEA approach based on a Taylor series expansion as defined in Frie-
dlingstein et al.7, Arora et al.11, and Schwinger et al.14 of estimating β and γ and
over a time period of N years from the biogeochemically-coupled (BGC) and
radiatively coupled (RAD) CMIP5 simulations, respectively, using the COU-BGC,
COU-RAD experiment pairs for Δt=N. In this study, we used the COU-BGC
approach:

βBGC ¼ ΔCBGC
B ΔTCOU

A � ΔCCOU
B ΔTBGC

A

ΔCBGC
A ΔTCOU

A � ΔTBGC
A

� � � ΔCBGC
B

ΔCBGC
A

ð22Þ
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γCOU�BGC ¼ ΔCCOU
B � ΔCBGC

B

ΔTCOU
A � ΔTBGC

A

� ΔCCOU
B � ΔCBGC

B

ΔTCOU
A

ð23Þ

and the COU-RAD approach:

βCOU�RAD ¼ ΔCRAD
B ΔTCOU

A � ΔCCOU
B ΔTRAD

A

ΔCCOU
A ΔTRAD

A

� ΔCCOU
B � ΔCRAD

B

ΔCCOU
A

ð24Þ

γRAD ¼ ΔCRAD
B

ΔTRAD
A

ð25Þ

where ΔCCOU
A ¼ ΔCBGC

A for CMIP5 or C4MIP simulations. To calculate the non-
linear feedback parameter f(β, γ), we also defined:

f β; γ
� � ¼ ΔCCOU

B � ðΔCBGC
B þ ΔCRAD

B Þ
ΔCCOU

A ðΔTCOU
A � ΔTBGC

A Þ � ΔCCOU
B � ðΔCBGC

B þ ΔCRAD
B Þ

ΔCCOU
A ΔTCOU

A

ð26Þ

We set the reference time at 1880 and then calculated the βBGC, γRAD,
γCOU-BGC, and f(β, γ) for the observation-overlapped period of 1880–2017 and
the future emission scenario of 1880–2100 for the C4MIP models, and the 1pctCO2

140-year period for the CMIP5 models, respectively.

A box model for diagnosing the climate–carbon cycle feedback parameters.
The coupled climate–carbon cycle system can be simplified as the combination of
variations in temperature (TA= T0+ ΔTA) and CO2 (CA= C0+ ΔCA) over time
intervals (Δt). The change in TA is assumed to increase logarithmically with
CO2

17,66,

ΔTA ¼ s
lnð2Þ � ln

CA

C0

� �
þ ε ð27Þ

where s is the impact of CO2 on the temperature that is suggested to be 1.5–4.5 K
by the IPCC reports67, and ε is the residual term from climate internal variability.
From Eq. (6),

ΔCA ¼ ΔCE � γ*ΔTA

1þ β
ð28Þ

We then have the three parameters box model with input from CO2 emissions,

CA ¼ C0 þ
ΔCE � γ*ðTA � T0Þ

1þ β
ð29Þ

TA ¼ T0 þ
s

lnð2Þ ln
CA

C0

� �
þ ε ð30Þ

where C0 and T0 are initial values at the first year, here referenced to 1850. To
validate the estimated β and γ* for the industrial period, we applied this box model
to predict temperature and CO2 over 1850–2017 using annual cumulated CO2

emissions, by setting β= 3.22 GtC ppm−1= 1.52 GtC GtC−1, γ*=−10.9 GtC K−1,
s= 3 ± 1.5 K and ε being the detrended TA anomaly time series from HadCRUT4
(Supplementary Fig. 2). Result shows that the increasing trend in predicted annual
CO2 is very close to the observation (R2 ¼ 0:99; RMSE ¼ 3:5 ppm), while
predicted temperature has a larger trend since 1980s (R2 ¼ 0:96; RMSE ¼ 0:17K),
compared to observed records (Supplementary Fig. 2).

Uncertainty. We quantified the uncertainty by a ±1σ (standard deviation) that
represents a 68% confidence interval. The uncertainty in CE (Fig. 1) resulted from

the uncertainty in FE (σFE ) that was calculated by σFE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2FFF þ σ2FLUC

q
. The

uncertainty in FFF (σFFF ) was ±5% of FFF22. This is consistent with a more detailed
recent analysis of uncertainty for FFF68. The uncertainty in FLUC (σFLUC ) was ±0.7
GtC year−1 at each year1. To estimate the β and its uncertainty (σβ), we first
estimated the βi and σβ;i (i ¼ 1; � � � ; 4) for each combination of 1 CO2 × 1 CO2

emission × 4 temperature datasets (HadCRUT4, GISTEMP, Berkeley Earth, and
NOAA GlobalTemp) that included uncertainty on CE and the regression. We then

estimated the mean value of β by β ¼ 1
4∑βi and the σβ by σβ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffi
∑σ2βi

q
(Sup-

plementary Table 1). Similarly, we estimated uncertainty in γ (σγ) for the industrial

period at a given timescale by σγ ¼ 1
4

ffiffiffiffiffiffiffiffiffiffi
∑σ2γi

q
. As the uncertainty in γ (σγ) for the

preindustrial period arises from uncertainties in ice-core CO2 records and tem-
perature reconstructions, we estimated the σγ over 1000–1850 or 1400–1700, or
1000–1300 periods at a given timescale by calculating the standard deviation of the
ensemble of γ from 3 ice-core CO2 records × 5 temperature reconstructions (or the

EnOBS): σγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1∑
n�1
i¼1 ðγi � γÞ2

q
(Supplementary Table 2, Fig. 3c, d). The esti-

mated uncertainties in β and γ for C4MIP or CMIP5 models were calculated as the
standard deviations of their ensembles of β and γ for each model (Supplementary
Tables 3, 4). As G ¼ 1

1�g � 1þ g, uncertainty in G (σG) was σg, and uncertainty in

relative change of G from C4MIP models compared to OBS ((GMOD−GOBS)/GOBS)

was GMOD
GOBS

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σGMOD
GMOD

� �2
þ σGOBS

GOBS

� �2
r

.

Data availability
Resulting data that support the findings in this study are available in the Supplementary
Tables, and more related datasets can be downloaded at https://github.com/
xuanzezhang/climate–carbon-cycle-feedback. Global Carbon Project report 2018 dataset
(including anthropogenic CO2 emission): https://www.icos-cp.eu/GCP/2018. Observed
atmospheric CO2 is available at http://wwww.esrl.noaa.gov/gmd/ccgg/trends/global.html.
Ice-core CO2 and temperature reconstruction datasets are retrieved from their published
papers listed in References. The HadCRUT4 is available at https://www.metoffice.gov.uk/
hadobs/hadcrut4/. The GISTEMP is retrieved from https://data.giss.nasa.gov/gistemp/.
NOAA GlobalTemp is retrieved from https://climatedataguide.ucar.edu/climate-data/
global-surface-temperature-data-mlost-noaa-merged-land-ocean-surface-temperature/.
Berkeley Earth temperature is available at http://berkeleyearth.org/data/. The coupled/
uncoupled simulations of C4MIP and CMIP5 models are available at https://www.c4mip.
net.

Code availability
The NCL processing codes are available via GitHub at https://github.com/xuanzezhang/
climate–carbon-cycle-feedback (https://doi.org/10.5281/zenodo.4575812) or from the
corresponding author upon request.
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