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Abstract

Aims Terrestrial ecosystem carbon (C) uptake is remarkably regulated by nitrogen (N) availability in the soil. 
However, the coupling of C and N cycles, as reflected by C:N ratios in different components, has not been well 
explored in response to climate change.

Methods Here, we applied a data assimilation approach to assimilate 14 datasets collected from a warming 
experiment in an alpine meadow in China into a grassland ecosystem model. We attempted to evaluate how 
experimental warming affects C and N coupling as indicated by constrained parameters under ambient and 
warming treatments separately.

Important Findings The results showed that warming increased soil N availability with decreased C:N ratio in 
soil labile C pool, leading to an increase in N uptake by plants. Nonetheless, C input to leaf increased more 
than N, leading to an increase and a decrease in the C:N ratio in leaf and root, respectively. Litter C:N ratio 
was decreased due to the increased N immobilization under high soil N availability or warming-accelerated 
decomposition of litter mass. Warming also increased C:N ratio of slow soil organic matter pool, suggesting a 
greater soil C sequestration potential. As most models usually use a fixed C:N ratio across different environments, 
the divergent shifts of C:N ratios under climate warming detected in this study could provide a useful benchmark 
for model parameterization and benefit models to predict C–N coupled responses to future climate change.

Keywords Bayesian probabilistic inversion, Markov-Chain Monte-Carlo (MCMC), warming, carbon and 
nitrogen cycles, stoichiometry, alpine meadow

增温对高寒草甸生态系统碳氮循环耦合关系的影响

摘要：陆地生态系统碳吸收受土壤氮素可用性的调节。然而，全球变化背景下的不同生态系统组分的碳

氮比及其所反映的碳氮循环耦合关系尚不十分清楚。本文运用数据同化的方法，将一个高寒草甸增温试

验的14组数据同化到草地生态系统模型中，从而评估了增温如何影响陆地生态系统的碳氮循环耦合关

系。研究结果表明，增温提高了土壤氮素的有效性，降低了土壤活性碳库的碳氮比，导致植物对土壤氮

的吸收增加。但是由于植物叶片吸收的碳比吸收的氮增加更多，使得叶片中碳氮比增加，而根部的碳输

入增加则低于氮的增加，导致根部的碳氮比减少。同时，增温降低了凋落物碳氮比，可能是在土壤高
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氮有效性的条件下，凋落物氮的固定得到增强；而且增温加速了凋落物的分解。同时增温还增加了慢速

土壤有机质的碳氮比，使得该土壤碳库的碳固存潜力增大。由于大多数模型在不同的环境中通常使用相

对固定的碳氮比，本研究所发现的气候变暖条件下碳氮比的差异变化可为模型参数化提供一个有效的参

考，有利于模型对未来气候变化背景下生态系统碳氮耦合关系响应的预测。

关键词：贝叶斯反演，马尔可夫链蒙特卡尔理论(MCMC)，增温，碳氮循环，化学计量，高寒草甸

INTRODUCTION
Global air temperature has sharply increased in 
recent decades (Cox et  al. 2000). This increase has 
been shown to have a great influence on terrestrial 
ecosystems (Root et  al. 2003), especially in alpine 
regions where the ecosystem is highly sensitive to 
temperature changes (Cheng and Wu 2007; Liu and 
Chen 2000; Wang et al. 2000; Xu and Liu 2007). Many 
studies have been devoted to understand effects of 
climate warming on carbon (C) and nitrogen (N) 
cycles (Beier et al. 2008; Dawes et al. 2017; Melillo et al. 
2002). However, most of them specifically focused 
on how warming affects C or N cycle, separately. We 
have limited knowledge on the response of C and N 
interactions to climate warming i.e. essential for fully 
understanding the C cycling of terrestrial ecosystems 
and its feedback to climate change.

While the formation of organic matter requires 
a certain amount of N, the processes of plants 
absorbing and assimilating C and N are closely related 
(Raven et al. 2004). This relationship is reflected by 
relatively consistent C:N ratios of various ecosystem 
components within stoichiometric flexibility (Hessen 
et  al. 2004). This proportional relationship controls 
plant C production and soil organic C decomposition, 
consequently changing ecosystem C sequestration 
and its feedback to climate change (Luo et al. 2004). 
If plant C:N ratio keeps relatively stable under climate 
change, the variation of productivity would be very 
limited unless the biologically available N is changed 
(Gruber and Galloway 2008). In contrast, if C:N ratio 
alters systematically under climate change, ecosystems 
may undergo large changes in productivity without 
the need to alter the amount of available N.

In the past two decades, some CO
2
 enrichment 

and N addition experiments have been conducted 
to test C–N interactions under global change. These 
previous studies have indicated that elevated CO

2
 

increased C:N ratios of some ecosystem components 
while elevated N input decreased C:N ratios (Finzi 
et al. 2006; LeBauer and Treseder 2008; Sullivan et al. 
2007; Yang and Luo 2011). These results show that 

the shifts of C:N ratios will adjust or alleviate the 
effects of CO

2
 enrichment or N addition, resulting in 

the nonlinear effects of different gradient C and N 
enrichment on ecosystem C storage. In those CO

2
 and 

N addition studies, shifts in C–N coupling parameters 
under climate warming are seldomly explored (Finzi 
et al. 2011; Williamson et al. 2016; Xu and Yuan 2017). 
Warming influences C cycle by altering the rate of 
photosynthetic CO

2
 uptake and ecosystem respiration 

(Brooks and Farquhar 1985; Luo 2007; Zhou et  al. 
2007). Moreover, warming usually influences N cycle 
via promoting soil microbial activity and organic N 
mineralization (Chapin et  al. 1995; Ma et  al. 2015), 
thus N could be conveyed from mineral soil to plant 
and changes the C:N ratios of different pools.

Some of the Earth system models have been 
developed to combine N process and C cycle to 
more accurately predict future changes in C cycling 
(Bentsen et  al. 2013; Jin et  al. 2020; Kloster et  al. 
2012). However, the key parameters that control C 
and N coupling were usually set as constant and have 
large uncertatinties in land models (Luo and Schuur 
2020). To minmize these uncertainties, ecologists 
introduced data assimilation methods into ecological 
models by using empirical data to constrain model 
parameters (Luo et  al. 2011). The constrained 
parameters, instead of constant ones, have proved 
to be useful and largely improve the accurancy of 
model predictions in terrestrial ecosystem C and 
N cycles under global change (Braswell et al. 2005; 
Shi et  al. 2016; Wang et  al. 2001; Weng and Luo 
2011). Besides, these constrained parameters can 
systematically quantify some unmeasurable processes 
(i.e. interactions between multiple soil C pools) (Yuan 
et al. 2012). But this method requires a high integrity 
of dataset that includes ecosystem C and N fluxes and 
pool sizes in different components such as leaf and 
root, litter, frost floor, mineral soil and microbe (Shi 
et al. 2016). As a result, data assimilation approach 
has not yet been widely used in terrestiral ecosystem 
studies (Niu et  al. 2014). Especially, this approach 
has not been applied to examine changes in C and N 
coupling parameters under climate warming.
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In this study, we used data assimilation to perform 
an inverse analysis of coupled C and N cycles, 
expecting to reveal the changes of C and N coupling 
parameters under climate warming. The Bayesian 
probabilistic inversion was used in this study to 
estimate the C and N coupling parameters (i.e. the 
C:N ratio of different ecosystem components) and 
some other key parameters (e.g. N uptake and input, 
N allocation coefficient, N loss) with the constrains 
of field observations in a warming expeirment 
conducted in an apline meadow on Qinghai-Tibet 
Plateau from 2015 to 2018. The specific questions we 
addressed in this study included: (i) how does climate 
warming change the C–N coupling (mostly indicated 
by C:N ratios) of different ecosystem components? 
(ii) How will the shifts in C and N coupling influence 
terrestrial ecosystem C cycle.

MATERIALS AND METHODS

C–N coupled model

The C and N coupled model used in this study was 
revised from TECO-CN used by Shi et  al. (2016). 
The model we used was designed for grassland so 
we referred it as GECO (Grassland ECOsystem). 
Different from other full TECO-CN models with 
canopy module, the C input of our model was from 
field measurement and eddy covariance tower 
observation (see Datasets for details), while the 

other parts of our model are consistent with the 
full model. There are seven C and N pools and one 
more mineral nitrogen pool in our model, which 
include leaf (X1, N1), roots (X2, N2), standing litter 
(X3, N3), surface litter (X4, N4), fast (X5, N5), slow 
(X6, N6), passive soil organic matter (SOM, X7, N7) 
and mineral N pool (Fig. 1). In the GECO model, 
CO

2
 in the atmosphere entered the ecosystem by 

canopy photosynthesis. Some of the photosynthate 
was used by plants’ respiration, and the remaining 
was allocated in leaf (X1) and root (X2). The detritus 
of dead plants then flowed to the litter pool, which 
contained standing litter (X3) and surface litter (X4). 
And the underground litter was partly respired by 
microbes while the rest was converted to fast SOM 
(X5) and slow SOM (X6). The CO

2
 released by 

the decomposition of soil C eventually returns to 
the atmosphere. Similarly, plant absorbed N from 
mineral soil. Then, N was converted to seven N pools 
which were same as C, and finally returned to soils 
by microbial mineralization.

GECO model uses matrix-based first-order 
differential equations to describe the process of 
carbon transfer between ecosystem carbon pools, 
which could be represented by:

d

dt
X(t) = Aξ(t)KX(t) + BU(t) (1)

X(0) = X0

Figure 1: Carbon and nitrogen pools and pathways of carbon and nitrogen cycles in GECO model. Blue arrows show 
carbon cycling processes, while red arrows indicate nitrogen cycling processes. Abbreviation: SOM = soil organic matter.
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where X = (x1 x2 x3 x4 x5 x6 x7)
T, in which x

i
 represents 

the C pools in leaves, roots, standing litter, surface 
litter, fast, slow and passive SOM at time t, respectively. 
Matrix A represents the proportional relationship of 
carbon transfer between libraries (Xu et al. 2006).

A =




-1 0 0 0 0 0 0
0 -1 0 0 0 0 0
f3,1 0 -1 0 0 0 0
1-f3,1 1 f4,3 -1 0 0 0
0 0 0 f5,4 -1 f5,6 f5,7
0 0 0 f6,4 f6,5 -1 0
0 0 0 0 f7,5 f7,6 -1




K is a 7 × 7 diagonal matrix with diagonal entries. The 
elements on the diagonal indicate the C decay rate 
from each pool, which is the inverse of the turnover 
time t

i
 of C in the pools (i = 1, 2, …, 7). U represents 

the C produced by canopy photosynthesis. B is the 
proportion of photosynthetic products distributed to 
leaves and roots, the rest of photosynthetic products 
are consumed by plant’s autotrophic respiration. ξ(t) is 
an influence function of C decomposition to account 
for temperature and moisture effects (Luo et al. 2003).

The N processes can be described by this formula:

d

dt
N(t) = Aξ(t)KR−1N(t) + KuNmin(t)Π (2)

N(0) = N0

where N = (n1 n2 n3 n4 n5 n6 n7)
T
, in which n

i
 repre-

sents the N pools in leaves, roots, standing litter, surface 
litter, fast, slow and passive SOM at time t, respectively. 
R is a 7 × 7 diagonal matrix with diagonal entries, the 

elements on the diagonal indicate the C:N ratio of 

each pool. Π = (π1 1− π10 0 0 0 0)
T is an allocation 

coefficient vector of N from mineral soil to leaves and 
roots. K

u
 is N uptake rate, N

min
(t) is the amount of soil 

available N at time t. The dynamic balance of mineral 
soil N is determined by the input of mineralization, 
biological fixation, atmospheric deposition and the 
output of plants input, leaching and gaseous N fluxes, 
which can be described by:

d

dt
Nmin(t) = − (Ku + KL)Nmin(t)

+ Aξ(t)ϕ∗
1KR

−1X(t) + F(t) (3)

Nmin(0) = Nmin,0

In formula (3), K
u
 and K

L
 represent rates of N uptake 

and loss, respectively. Aξ(t)ϕ∗
1KR

−1X(t) represent 
N mineralization, and F(t) is N input by biological 
fixation and atmospheric deposition.

In general, parameters used in our model can be 
divided to three types. They are C decay rates (i.e. 
c

1
, c

2
, …), transfer coefficients (i.e. f

3,1
, f

4,3
, …) and 

C&N coupling parameters (i.e. n
1
, n

2
, …). C decay 

rates determine the outflow from corresponding C 
and N pools, and the transfer coefficients determine 
the distribution of the outflow and usually measure 
microbial C or N use efficiencies. C&N coupling 
parameters link the C cycle and N cycle. These three 
sets of parameters, combined with the dynamic C 
pools, make the operation of the entire C–N coupling 
model (Fig. 1).

Study area

The Hong Yuan field station was located on the 
eastern of Qinghai-Tibet Plateau (32°84′ N, 102°58′ 
E), which had a continental plateau frigid temperate 
monsoon climate. The mean annual precipitation 
is 747  mm with the mean annual temperature of 
1.5  °C, the sunshine duration in a year is about 
2000–2400 h, the growing season spans from April 
to October. The main vegetation type in the study 
site is alpine meadow, and the soil type is subalpine 
meadow soil and boggy soil (Song et al. 2014). This 
area is dominated by Deschampsia caespitosa (Linn.) 
Beauv., Koeleria cristata (Linn.) Pers., Gentiana sino-
ornata Balf. f., Potentilla anserina L.  and Anemone 
rivularis Buch.-Ham (Quan et al. 2018).

Experiment and data

Eddy covariance measurements

CO
2
 flux was measured by an eddy covariance 

measurement system installed at a height of 2 m 
above ground. Meteorological data were measured 
simultaneously with the eddy covariance system. 
Soil volumetric water content and soil temperature 
(T

soil
) were monitored at a depth of 10 cm. In this 

study, we used the daily net ecosystem exchange 
(NEE), gross primary productivity (GPP) and 
meteorological data from 2015 to 2018. The NEE 
data quality control, gap-filling and partitioning 
were according to the method used by Chen et al. 
(2019).

Warming experiments

We used experimental data from a warming 
experiment near the eddy covariance tower. 
Block design with two warming treatments (A, 
ambient temperature; W, warming treatment) 
(five replications each) was used in this study. In 
order to minimize the spatial heterogeneity, five 
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replicates per treatment are randomly distributed 
in experimental plots. The warmed plots were 
continuously heated by infrared radiators (MSR-
2420, Kalglo Electronics Inc., Bethlehem, PA, USA) 
suspended 1.5 m above the ground since June 
2014. The output power was 2000 W, increased 
soil temperature at 10  cm on average by 2.8  °C 
(Quan et  al. 2018). GPP and soil respiration (SR) 
were measured twice a month by static chambers 
(LI-6400XT, LI-COR Environmental, Lincoln, NE, 
USA) in plots with different treatments in growing 
season from 2015 to 2018. Biometric data were 
retrieved once a year, including biomass of plant 
leaves and roots, standing litter, surface litter, and 
microbes, soil C content, total N content of microbe 
and soil, and soil inorganic N concentration.

Datasets

The data used for this study included two types: 
the data to drive the model and the data to be 
assimilated to constrain parameters of the model. 
The drive data contain daily climate data of study 
site from 2015 to 2018, such as soil temperature 
and soil moisture. In addition, we used daily GPP 
as C input in the model. The measured GPP at the 
nearby eddy covariance tower was used as GPP at 
ambient temperature. Daily GPP at the warming 
treatment was estimated from correlation analysis 
between eddy covariance measured GPP and static 
chamber measured GPP from the ambient plot in the 
experiment. The response ratio of GPP between the 
ambient and warming plots was used to interpolate 
daily GPP values for different warming treatments. 
The data to be assimilated for parameter constraint 
include C and N contents in leaf, root, standing litter, 
surface litter, microbial, mineral soil, and autotrophic 
and heterotrophic respiration.

Data assimilation

We used Markov-Chain Monte-Carlo (MCMC) 
method to estimate parameters in the GECO. The 
method considers the unknown parameters as 
random variables that conform to a certain prior 
probability distribution. In this study, N-related 
parameters (i.e. C:N ratio of different ecosystem 
components, N uptake, N loss) are targeted 
parameters of the data assimilation (Supplementary 
Table S1). Besides these key parameters, the C decay 
rates, C allocation and transfer coefficients can also 
be estimated (Supplementary Table S2). According 
to the Bayesian theorem, the prior knowledge of the 
parameter and information contained in data are 

fused together to generate posterior distributions of 
parameters (Xu et al. 2006) as

P( p|Z) ∝ P(Z|p)P( p) (4)

In formula (4), P(p) and P(p|Z) represent the prior 
probability density function (PDF) and posterior 
PDF of parameters, respectively. P(Z|p) represent 
conditional probability density of observation 
under the prior parameters, which also called the 
likelihood function of p. We assume that the random 
error is normally distributed with zero mean, so the 
likelihood function can be presented by:

P(Z|p) ∝ exp

{
−

7∑
i=1

∑
t∈Zi

[Zi(t)− ϕiX(t)]
2

2σ2
i (t)

}
 (5)

In formula (5), Z
i
(t) and ϕiX(t) represent measured 

value and simulated value of observational 
variable i at time t, and σ

i
 is the standard deviation 

of observational variable i. In this study, i from 
1 to 7 represent the C or N contents of leaf, root, 
annual litter, grass floor, microbe, mineral soil and 
heterotrophic respiration, respectively. φ

i
 can transfer 

the value of X and N (in formulas (1) and (2)) to the 
variable that i represent. According to the C and N 
pool structure of the GECO model and the existing 
empirical knowledge, the mathematical relationship 
between the size of the carbon pool and each analog 
quantity is determined, and the observation operator 
φ is expressed as:

Leaf C and N: ϕ1 = (1 00 0 00 0)
Root C and N: ϕ2 = (0 10 0 00 0)
Standing litter C and N: ϕ3 = (0 01 0 00 0)
Surface litter C and N: ϕ4 = (0 00 0.5 0 0 0)
Microbial C and N: ϕ5 = (0 00 0 10 0)
Mineral soil C and N: ϕ6 = (0 00 0 11 1)
Heterotrophic respiration: 

ϕ7 = (0 00m4c4m5c5m6c6m7c7), in this formula

m4 = 1 -f5,4 -f6,4
m5 = 1 -f6,5 -f7,5
m6 = 1 -f5,6 -f7,6
m7 = 1 -f5,7

Autotrophic respiration (Ra): Ra = (1− b1 − b2)U(t)

SR (Rs): Rs(t) = ξ(t)ϕ8X(t) + Ra

Soil mineralization: 
ϕ8 = (0 0m3c3m4c4m5c5m6c6m7c7)

We used the Metropolis–Hastings (M–H) algorithm 
as the (Hastings 1970; Metropolis et al. 1953) MCMC 
sampler. This method randomly samples the new 
parameter value p

new
 according to the recommended 

posterior distribution, then simulates and introduces it 
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into the model to calculate the new parameter posterior 
probability p

new
, and compares it with the previous 

parameter posterior probability p
k−1

. We accept the p
new

 

only if R = P(pnew|Z)
P(pk−1|Z) > a random number from 0 to 1, 

or the p
new

 will be rejected and we let p
k
 = p

k−1
 to start 

the sampling of next parameter. The M–H algorithm 
will be repeated until 300 000 sets of parameter values 
are accepted, and then all accepted parameter values 
will be used to construct the probability distribution 
functions (PDFs) (Weng and Luo 2011; Xu et  al. 
2006). When the model is stable, the lower the overall 
variance is between the simulated and measured 
values, the better the effect of the model simulation, 
and it is easier for p

new
 to be accepted.

RESULTS

Model performance as indicated by parameter 
constraints and observation data fitting

From the shapes of posterior PDFs, we found that 
parameters like C:N ratios of root, leaf, standing litter, 

surface litter, fast SOM, slow SOM, plant N uptake 
(K

u
) and external N input (F(t)) were well constrained 

under all three treatments (Fig. 2). While the C:N 
ratio of passive SOM, the N allocation coefficient to 
root (π

1
), the rate of N loss (K

L
) and the initial value 

of mineral N pool (N
min

(0)) were poorly constrained 
(Supplementary Figs S3 and S4). The allocation 
coefficients of C to root and leaf (b1 and b2), three 
decay rates from surface litter, microbe and slow SOM 
were well constrained. In contrast, the decay rates 
of root, leaf, standing litter, passive SOM and almost 
all the transfer coefficients between the different C 
pools were not well constrained (Supplementary 
Figs S1 and S2).We chose 100 groups of best fitted 
parameters which were picked from about 140 000 
sets of upgraded parameters to ran GECO model and 
simulate the C and N dynamics during the period 
of 2015–2018. The model result showed that the 
simulation of C pools, as well as N pools, in leaf, 
standing litter, surface litter and soil matched the 
observations well both in the ambient and warming 
condition (Fig. 3). However, the simulations of root C 

Figure 2: Posterior distributions of carbon–nitrogen coupling parameters under ambient and warming conditions. (a) C:N 
ratios of root, (b) leaf, (c) standing litter, (d) surface litter, (e) fast SOM, (f) slow SOM, (g) rate of N input and (h) uptake. 
F

t
 = rate of N input, K

u
 = rate of N uptake, SOM = soil organic matter.
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under the ambient condition, and microbe biomass C 

under either ambient or warming condition (Fig. 3), 

did not match the observations. We also simulated 

other factors, including SR, autotrophic respiration 

(Ra) and heterotrophic respiration (Rh) (Fig. 4). 

Compared with the observations, most simulations 

of SR fitted well with the exception of a few lower 

estimates in 2017.

Shifts in the coupled C and N cycles inferred 
from estimated parameters

Warming had no significant effects on C:N ratio of 
passive SOM, N input to ecosystem or the allocation 
coefficients of N to plants (P < 0.05, Fig. 5; Table 1). 
On the other hand, warming significantly decreased 
C:N ratio of root, standing litter, surface litter and 
the microbe but increased C:N ratio of leaf and slow 

Figure 3: The comparisons of modeled versus measured C and N pools in various ecosystem components under ambient 
and warming treatments. The red points, black lines and shaded areas represent the observation data, model simulated 
lines and the range of 25% and 75% quantiles of model simulation, respectively.
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SOM (P < 0.05). At the same time, the N loss and 
the relative plants N uptake were also significantly 
decreased by warming. Furthermore, our results 
showed that most of the decomposition rates of 
ecosystem components and the distributions of C 
and N were significantly shifted under warming. 
Warming led to the increase of C decay rates in 

standing litter and fast SOM, which mean the 
decrease of C residence time in these ecosystem 
components. By contrast, warming resulted in the 
decrease of C decay rate in fine roots and slow 
SOM, leading to slower turnover under warming. In 
contrast, the C decay rates in foliage, surface litter 
and the allocation coefficients of GPP partitioned 

Figure 4: The comparisons of modeled versus measured SR (a, b). The red points, black lines and purple shaded areas 
represent the observation data, model simulated lines and the range of 25% and 75% quantiles of model simulation, 
respectively. Autotrophic respiration (Ra) simulation and the range of 25% and 75% quantiles (c, d), heterotrophic 
respiration (Rh) simulation and the range of 25% and 75% quantiles (e, f) under the ambient (left panels) and warming 
(right panels); (g) the accumulative respiration of Ra and Rh, where white column is Rh, orange column is Ra, and unfilled 
column represents ambient condition, diagonal stripes represent warming condition.
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Figure 5: Key parameters of carbon–nitrogen interaction under the ambient and warming treatments. Error bars represent 
standard deviations of parameters. (a) Shifts in C:N ratios of different ecosystem components under warming treatment; 
(b) rate of N loss (K

L
) and rate of N input (F

t
); (c) the proportion of N distributed from plant to leaf (π

1
) and relative rate of 

plant N uptake from soil (K
u
). Asterisks show significant differences at the level of P < 0.05.

Table 1: The boundaries of priori uniform distributions and the maximum likelihood estimates (MLEs) of the posterior 
probability functions of some well constrained parameters

Parameter Symbol

Priori MLE

Minimum Maximum Ambient Warming

C:N ratio of root n
1

20 80 41.8 41.4

C:N ratio of leaf n
2

10 60 30.9 31.4

C:N ratio of standing litter n
3

1 100 40.2 31.2

C:N ratio of surface litter n
4

5 160 38.0 36.2

C:N ratio of fast SOM n
5

1 20 6.1 5.4

C:N ratio of slow SOM n
6

10 15 11.5 11.9

C:N ratio of passive SOM n
7

10 30 — —

N uptake to leaves π
1

0 0.5 — —

Rate of N uptake (g N g N−1 d−1) K
u

0 0.4 0.29 0.21

Rate of N loss (10–5 g N g N−1 d−1) K
L

1 20 — —

Rate of N input (10−3g N m−2 d−1) F
t

0.8 4 2.6 2.5

Initial value of available N pool (g N m−2) N
min

(0) 0.05 0.5 — —
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to root and leaf were not significantly changed 
under warming (Supplementary Fig. S5). Warming 
stimulated SR on average by 10.6% in our system, 
and the stimulation magnitude kept increasing 
with year. Similarly, Rh and Ra under the warming 
treatment were 10.4% and 10.9% higher than the 
ambient treatment, respectively (Fig. 4).

DISCUSSION
This study used the data assimilation approach 
to reveal the changes of coupled C and N cycles 
in a grassland ecosystem under climate warming. 
Although the C:N ratios in some ecosystem 
components (different soil pools) and the related C 
and N cycle in our model cannot be measured directly 
and some of the observations are also incomplete 
(e.g. N fixation, N input), data assimilation can merge 
measurements with a model to estimate the states 
or processes of a system that could not be directly 
measured. By the means of data assimilation, we can 
improve the effectiveness of limited measurements 
by using a model and increase the accuracy of model 
estimates (Lary 1999; Luo et al. 2011). In this study, 
we used the observations of N pools in different 
ecosystem components and some prior knowledge 
about N cycling to infer N fixation, input and loss, 
which were not directly measured. Based on the 
constrained parameters, the model simulations 
indicated that warming significantly shifted some key 
processes in ecosystem C and N cycle. Those shifts of 
C and N coupled processes under warming can help 
us better understand the C–N interaction in grassland 
ecosystem and improve the reliability of the C and N 
coupling models.

Warming shifts ecosystem C:N ratios

Our results showed that warming significantly 
changed most coupled C–N processes. The C:N ratios 
of different ecosystem components shifted under 
warming, but with different response direction 
and magnitude. Meanwhile, some key processes 
associated with ecosystem N cycle also had a dramatic 
shift. We found that warming decreased C:N ratio 
but increased soil N availability in fast SOM pool, 
which are consistent with some previous reports 
(Gill et al. 2002; Hungate et al. 2003; Wang et al. 2014; 
Xu and Yuan 2017). Increased N availability in this 
ecosystem contributed to an elevated accumulation 
of soil N, leading to a larger N loss even though the 
relative proportion of N loss (K

L
) had decreased. On 

the other hand, because plants absorbed larger N 

amount from soils, and more N was allocated to root 
under warming, combining with increased C input 
to both leaf and root from photosynthesis, leading 
to a higher C:N ratio of leaf and a lower C:N ratio of 
root under warming compared with those under the 
ambient. The increased leaf C:N ratio under warming 
condition indicates that warming might increase the 
long-term nitrogen use efficiency of plants leaves, 
which is in line with previous empirical observations 
taken by Yang and Luo (2011) and Niu et al. (2010).

High N availability in soil could decrease C:N ratio 
of surface litter by increasing N immobilization (An 
et al. 2005). Previous studies showed that microbes 
imported N into decomposing litter during initial 
decay (Gosz et  al. 1973; Staaf and Berg 1982), 
indicating that higher N content in microbe under 
warming also contributes to the decrease of surface 
litter C:N ratio. The microbe C and N turnover rate 
increased under warming, which might reduce the 
size of microbe C and N pools, as well as the transfer 
coefficient from microbe to slow SOM. Those in 
combination contributed to the reduced flux from 
fast SOM pool (lower C:N ratio) to slow SOM pool 
(higher C:N ratio), and then the increased C:N ratio 
of slow SOM. In contrast, C:N ratio of passive SOM 
was relatively stable, warming have limited influence 
on it, which may be due to the fact that passive SOM 
is chemically stable and has a protracted turnover 
time, which meant that it would take longer time to 
change stoichiometry (Parton et al. 1993; Trumbore 
1997).

Those shifts of C:N ratio revealed the mechanism 
underlying warming effects on ecosystem C–N 
interaction. In contrast to many N deficiency 
ecosystem, which have to raise their C:N ratio to 
increase N use efficiency and thereby alleviate N 
limitation under warming (Niu et  al. 2010), alpine 
meadow ecosystem has sufficient soil nitrogen 
content (Zhao and Zhou 1999). Warming alleviates 
the temperature limitation on SOM decomposition 
(Chapin et  al. 1995; Dalias et  al. 2002), which 
increases soil N availability and then influences the 
whole ecosystem N cycle (Thornton et  al. 2009). 
This increase of N released to ecosystem from soil 
organic pool reduces C:N ratios of most ecosystem 
components, thus relieving N limitation in this 
ecosystem.

Constraints of parameters by observation

In this study, 8 out of 12 C–N coupled parameters 
were well constrained by the observed data from 
the warming experiment. Parameters like C:N 
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ratio of root, leaf, standing litter, surface litter, 
microbe and slow SOM were well constrained, 
which is similar to the study reported about the 
effect of elevated CO

2
 on terrestrial ecosystem 

carbon cycling (Shi et  al. 2016). Whether model 
parameters could be well constrained depends 
on the critical information contained in the 
observation data (Richardson et al. 2010; Xu et al. 
2006). C:N ratio of leaf, root, surface litter, standing 
litter, fast SOM and slow SOM can be constrained 
well mainly because those parameters are critical 
for C and N predictions in GECO model, and 
they have high sensitivity to model performance 
and thus provide constraints on key processes. In 
addition, the poorly constrained parameters may 
result from the lack of information in the existing 
datasets (Richardson et al. 2010; Shi et al. 2016; Xu 
et al. 2006). Therefore, developing more specific or 
useful datasets are very essential and promising for 
better understanding ecosystem biogeochemical 
cycle. At the same time, some other factors may 
also impact the constraining of parameters, such as 
the length of observations, as short-term data may 
not able to provide enough information for some 
ecosystem components that need longer term to 
turn over (Lichter et al. 2008). For example, in this 
study, the passive SOM has a long turnover time, 
short-term experiment cannot capture C cycle 
processes related to this pool. Therefore, long-term 
experiments are invaluable in establishing models 
and to detect more subtle changes that cannot be 
captured by short-term experiments. Moreover, 
some information from other sources like isotope 
labeling can also provide more accurate and precise 
data to comprehend some biogeochemical cycle 
processes (Kuzyakov et al. 2000), especially those 
related to soil and microbial mechanisms which are 
not easily to be detected by traditional methods.

Implications for ecosystem carbon cycle and 
model development

This study reveals that alpine meadow ecosystem 
responds to warming by both changing C:N ratios of 
ecosystem components and increasing soil available 
N content. Changing C:N ratios of different ecosystem 
components reflects different adjustment strategies 
of ecosystem processes and functions in response 
to warming. Previous studies on N regulation of C 
cycling under climate warming mainly considered 
the direct dependence of mineralization and soil N 
availability on temperature, but neglected changes 
in C:N ratios in a warmer environment (Sokolov 

et al. 2008; Thornton et al. 2009). This may lead to 
an incongruous representation of the N cycle and its 
impact on C feedback to climate warming. Warming-
induced changes in C:N ratio will also strongly 
affect C balance, even transfer the ecosystem from 
C source to C sink. For instance, a slight but a 
significant increase in C:N ratio of slow SOM under 
warming indicates that soil may have more carbon 
storage potential. Meanwhile, we found that C loss 
rate of the slow SOM pool slowed down under 
warming treatment with a decrease of slow SOM 
decomposition rate, which may reduce C emission 
from the soil. This shift in soil C cycle may benefit 
more C accumulation in slow SOM instead of being 
emitted as a greenhouse gas.

Changes of C and N coupled parameters under 
warming revealed in this study also have important 
implications for the establishment of ecosystem 
models to simulate C–N coupled processes. Because 
these shifts of C–N coupling parameters with 
warming have hardly seen to be incorporated into 
global-coupled C and N models used to predict 
C–N interactions in terrestrial ecosystems (Finzi 
et al. 2011; Liang et al. 2018; Luo and Schuur 2020; 
Sistla et  al. 2014; Williamson et  al. 2016; Xu and 
Yuan 2017). If those changes were ignored, land 
surface models may overestimate the N limitation on 
terrestrial ecosystems C dynamics and underestimate 
the C storage in slow SOM pool (Hungate et al. 2003). 
Biogeochemical models need to use dynamic C:N 
ratios under climate warming, instead of constant 
ones. Especially in some N limited areas, the modified 
C:N ratios may benefit ecosystem C sequestration in 
slow SOM under climate warming, which cannot be 
captured by models if they use a constant C:N ratio. 
We thus expect that the uncertainty of predictions 
will be largely reduced with the constrained model 
parameters under different climate scenarios. 
Furthermore, if the parameters under continuous 
environmental changes are constrained by further 
data assimilation based on the manipulative 
experiments, models will perform better by using 
those dynamic and correct parameters to simulate 
the ongoing and growing environmental change in 
the future, and it will become more feasible to adjust 
parameters for different sites with heterogeneity to 
carry out global-scale assessment.

CONCLUSIONS
Based on a 4-year field warming experiment and 
the data assimilation method, this study carried out 
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an inverse analysis of coupled C and N cycles and 
revealed the changes of C and N coupling parameters 
under climate warming. We found most of those 
C–N coupled parameters in the model could be well 
constrained by the observations. Warming not only 
increased soil N availability but also shifted C:N 
ratios in the majority of ecosystem components. 
These changes would benefit a large C sequestration 
potential due to the increases of C:N ratio in slow 
SOM. The findings could provide a useful benchmark 
for model parameterization and improve terrestrial 
ecosystem models to predict responses of C–N 
coupled dynamics to future climate warming from a 
systematic perspective.

Supplementary Material
Supplementary material is available at Journal of 
Plant Ecology online.
Figure S1: Posterior distributions of model parameters 
under ambient.
Figure S2: Posterior distributions of model parameters 
under warming.
Figure S3: Posterior distributions of carbon–nitrogen 
coupling parameters under ambient conditions.
Figure S4: Posterior distributions of carbon–
nitrogen coupling parameters under warming 
conditions.
Figure S5: Some key parameters under different 
treatments.
Table S1: The N related of model and their prior ranges.
Table S2: The free parameters of model and their 
prior ranges.
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