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Abstract. Understanding the dynamics of peatland methane
(CH4) emissions and quantifying sources of uncertainty in
estimating peatland CH4 emissions are critical for mitigat-
ing climate change. The relative contributions of CH4 emis-
sion pathways through ebullition, plant-mediated transport,
and diffusion, together with their different transport rates and
vulnerability to oxidation, determine the quantity of CH4 to
be oxidized before leaving the soil. Notwithstanding their
importance, the relative contributions of the emission path-
ways are highly uncertain. In particular, the ebullition pro-
cess is more uncertain and can lead to large uncertainties
in modeled CH4 emissions. To improve model simulations
of CH4 emission and its pathways, we evaluated two model
structures: (1) the ebullition bubble growth volume threshold
approach (EBG) and (2) the modified ebullition concentra-
tion threshold approach (ECT) using CH4 flux and concen-
tration data collected in a peatland in northern Minnesota,

USA. When model parameters were constrained using ob-
served CH4 fluxes, the CH4 emissions simulated by the EBG
approach (RMSE= 0.53) had a better agreement with obser-
vations than the ECT approach (RMSE= 0.61). Further, the
EBG approach simulated a smaller contribution from ebul-
lition but more frequent ebullition events than the ECT ap-
proach. The EBG approach yielded greatly improved simu-
lations of pore water CH4 concentrations, especially in the
deep soil layers, compared to the ECT approach. When con-
straining the EBG model with both CH4 flux and concen-
tration data in model–data fusion, uncertainty of the mod-
eled CH4 concentration profiles was reduced by 78 % to 86 %
in comparison to constraints based on CH4 flux data alone.
The improved model capability was attributed to the well-
constrained parameters regulating the CH4 production and
emission pathways. Our results suggest that the EBG model-
ing approach better characterizes CH4 emission and underly-
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ing mechanisms. Moreover, to achieve the best model results
both CH4 flux and concentration data are required to con-
strain model parameterization.

1 Introduction

Methane (CH4) emissions from wetlands constitute roughly
one third of the global CH4 budget (Denman et al., 2007;
Saunois et al., 2020). Methane, following production under
anoxic conditions, is stored belowground, oxidized into CO2
by methanotrophs, or emitted into the atmosphere as CH4.
The emission of CH4 is a major concern given its sustained-
flux global warming potential (SGWP) of 45 (Neubauer and
Megonigal, 2015). Methane emissions from wetlands cannot
be simply estimated from production rates as more than 50 %
of methane can be oxidized during transport to the atmo-
sphere in various ecosystems (Conrad and Rothfuss, 1991;
Teh et al., 2005; Segarra et al., 2015). The global wetland
CH4 oxidation sink has been estimated to be 40 %–70 % of
CH4 production, and it can dominate wetland CH4 cycling
(Megonigal et al., 2004). The oxidation sink depends sub-
stantially on the CH4 emission pathways due to their differ-
ent oxidation rates (Blodau, 2002).

Methane is produced at depth in the soil and then trans-
ported to the atmosphere via three primary pathways: ebul-
lition, plant-mediated transport, and diffusion. Ebullition is
the least vulnerable to oxidation as it allows CH4 to quickly
ascend in a bubble that bypasses the aerobic and anaero-
bic zones (Epstein and Plesset, 1950). Gases such as CH4
can be released into the atmosphere by vascular plants (par-
ticularly sedges) after being transported through intercellu-
lar spaces (molecular diffusion) or aerenchymous tissues.
Although plant-transported CH4 bypasses aerobic zones of
the soil, 20 %–90 % of plant-transported CH4 can be ox-
idized in the rhizosphere or within the aerenchymous tis-
sues where gaseous oxygen is present (Schipper and Reddy,
1996; Ström et al., 2005; Laanbroek 2010). Diffusive trans-
port through the peat column is the slowest transport method,
and therefore, CH4 is most susceptible to oxidation as it
spends the longest time transiting the aerobic and anaerobic
zones (Chanton and Dacey, 1991; Megonigal et al., 2004).
The relative importance of each pathway determines how
much CH4 is oxidized before it leaves the soil. Uncertainties
in the relative contributions of these pathways to CH4 emis-
sion can lead to large errors in the predictions of total CH4
emissions (Bridgham et al., 2013). Despite their importance,
the relative contributions of the CH4 emission pathways have
not been well quantified by either experimental or modeling
approaches until recently (Ricciuto et al., 2021; Yuan et al.,
2021).

Experimental data on the relative importance of CH4 emis-
sion pathways are limited due to spatiotemporal heterogene-
ity and the difficulty in directly measuring the different path-

ways (Klapstein et al., 2014; Iwata et al., 2018). While most
state-of-the-art land surface models (LSMs) incorporate CH4
emission and differentiate the three transport pathways, in-
formation on the relative contribution of each pathway from
modeling studies is still limited, and none of such stud-
ies has estimated the uncertainty or accuracy of the rela-
tive contributions of the emission pathways to net CH4 emis-
sion (Bridgham et al., 2013). Comparisons between model-
ing approaches and empirical CH4 data suggest that emission
pathways may not be well captured by LSMs. For example,
plant-mediated CH4 transport by vascular species measured
at northern peatlands accounted for 30 %–98 % of the to-
tal CH4 emission (Shannon et al., 1996; Waddington et al.,
1996), whereas model-estimated proportions in the similar
ecosystems were all above 65 % (Tang et al., 2010; Wania
et al., 2010). Empirical estimates also suggested that diffu-
sion could range from 9 % to 60 % of the total CH4 flux
(Barber et al., 1988; Shea et al., 2010; Iwata et al., 2018).
In contrast, modeled contributions from diffusion were al-
ways below 40 % (Tang et al., 2010; Wania et al., 2010; Pel-
tola et al., 2018). More dramatically, modeling approaches
estimated that ebullition constituted only 0 %–10 % of net
CH4 flux in natural vegetated wetlands (Tang et al., 2010;
Wania et al., 2010; Peltola et al., 2018), much lower than
the 10 %–64 % that was measured in experimental studies
(Glaser et al., 2004; Tokida et al., 2007a, b). The uncertain-
ties in simulated relative contributions of the pathways to
net CH4 emission in LSMs are mainly due to the lack of
in situ information, inadequate representation of CH4 pro-
cesses, and unconstrained parameters used to describe emis-
sion pathways (Bridgham et al., 2013; Melton et al., 2013).

Since net CH4 emissions depend on transport mode, all
the emission pathways must first be represented correctly in
ecosystem models in order to simulate CH4 emission accu-
rately (Blodau, 2002; Tang et al., 2010). Compared to dif-
fusion and plant-mediated CH4 transport, ebullition is less
certain and could be the main reason for the mismatch be-
tween simulated and observed CH4 concentrations in deep
soil layers (Peltola et al., 2018). This is because diffusion
is described with Fick’s law and Henry’s law, which have
been widely used and well tested, and plant-mediated path-
way happens only within the rooting depth, which is typically
shallow in wetlands with a high water table level (Iversen
et al., 2018). Ebullition makes a significant contribution to
the total CH4 emissions in some wetlands (Christensen et al.,
2003; Yu et al., 2014). However, this process has not been
incorporated well into most state-of-the-art LSMs. Mecha-
nistically, CH4 ebullition occurs when the buoyancy force
of a bubble exceeds the retention force. During ascent, the
bubbles exchange gas with the surrounding pore water, and
some of the bubbles become trapped, allowing CH4 to re-
dissolve or be oxidized within the confining layer. In model-
ing studies, ebullition is commonly estimated using the ebul-
lition concentration threshold (ECT) approach. In ECT, when
the pore water CH4 concentration is larger than a defined
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threshold, the excess CH4 is directly released into the atmo-
sphere (Walter and Heimann, 2000; Zhuang et al., 2004; Wa-
nia et al., 2010; Riley et al., 2011; Xu et al., 2016). How-
ever, this approach ignores the possibility of a CH4 bub-
ble moving into a less saturated layer where it can subse-
quently dissolve and possibly be oxidized, potentially over-
estimating ebullition. Other methods for modeling ebullition
include the ebullition pressure threshold (EPT) or the ebulli-
tion bubble growth volume threshold (EBG) to trigger ebul-
lition (Tang et al., 2010; Zhang et al., 2012). For the EPT
method, bubbles form when the CH4 concentration exceeds
a certain threshold. The EBG method describes how temper-
ature, pressure, and gas exchange alter the bubble volume
and uses maximum bubble volume as a threshold to trigger
ebullition events (Fechner-Levy and Hemond, 1996; Kellner
et al., 2006; Zhang et al., 2012). Peltola et al. (2018) com-
pared these modeling approaches and concluded that EBG
should be incorporated into LSMs instead of ECT or EPT
given its most realistic representation of the observed tempo-
ral variability in CH4 emissions. However, the ability of the
EBG approach to represent the relative importance of CH4
emission pathways has not been evaluated against observa-
tions.

A more realistic projection of the emission pathways re-
quires not only an improved model structure but also more
appropriate parameter values (Wania et al., 2010; Riley
et al., 2011; Shi et al., 2018). Data–model fusion directly
informs process-based models by synthesizing multisource
data streams and thus can help determine parameter val-
ues that lie within biophysically realistic ranges and reduce
model uncertainty (Williams et al., 2009; Keenan et al.,
2013; Shi et al., 2015a; Liang et al., 2018). Previous stud-
ies have found that sporadic measurements of net CH4 emis-
sions were only useful to constrain a few model parameters,
and data assimilation with only CH4 emission (flux-based)
data did not help reduce the uncertainties in emission path-
ways (Bridgham et al., 2013; Ma et al., 2017). In our previ-
ous study, we found that monthly CH4 emission data could
only constrain CH4 production-related parameters such as
temperature sensitivity (Q10) and basal production rate of
CH4 production (Ma et al., 2017). While direct measures of
CH4 emission pathways are rare, depth-specific pore water
CH4 concentration profiles can help elucidate the relative im-
portance of CH4 emission pathways. Indeed, measured CH4
concentration profiles are critical for constraining the respon-
sive parameters associated with CH4 emission pathways be-
cause in process-based CH4 models, all the three emission
pathways are calculated based on the CH4 concentration in
each soil layer.

To date, few modeling studies have considered CH4 con-
centration data for structural improvement or parameter opti-
mization (Zhuang et al., 2004; Wania et al., 2010; Riley et al.,
2011; Zhu et al., 2014). In those studies that compared simu-
lation results to observed pore water CH4 concentrations, the
simulated concentration profiles did not agree well with ob-

servations despite good agreements between simulated and
observed CH4 emission data (Walter and Heimann, 2000;
Tang et al., 2010). Thus, when CH4 emission pathway pa-
rameters are calibrated using only net CH4 flux data, models
may not realistically represent CH4 production, oxidation,
and emission pathways. The exclusion of concentration pro-
file data results in poorly constrained model parameters due
to equifinality, in which multiple combinations of parame-
ters result in similar flux predictions. This can cause mis-
understanding of the mechanisms of CH4 processes. It will
be problematic to use these not-yet-well-calibrated parame-
ter sets for climate change predictions or extrapolating CH4
fluxes from the site level to larger spatial and temporal scales
as these intermediate processes may have different responses
to perturbations in climate.

To address these uncertainties, we evaluated the perfor-
mance of two state-of-the-art methods for modeling ebul-
lition, EBG and ECT, against the observed net CH4 fluxes
and pore water CH4 concentration profiles in a northern Min-
nesota peatland. We also compared the strength of the flux-
based data and pool-based data in constraining the parame-
ters using data–model fusion. We hypothesized that (1) the
EBG approach can reproduce the observed pore water CH4
profiles better than the ECT approach given its more mechan-
ical representations of bubble formation, gas exchange, and
release and (2) pore water CH4 concentration data offer more
information for model parameters to reduce the uncertainties
in simulated CH4 emission and its pathways.

2 Methods

2.1 Site and measurements

The data we used to calibrate our model were collected
from the Spruce and Peatland Responses Under Changing
Environments (SPRUCE) experiment, which is conducted
in the 8.1 ha S1 bog in northern Minnesota in the USDA
Forest Service Marcell Experimental Forest (47◦30.476′ N,
93◦27.162′W) to study the responses of northern peatlands
to climate warming and elevated atmospheric CO2 concen-
tration (Hanson et al., 2017a). The mean annual tempera-
ture from 1961 to 2009 at the SPRUCE site was 3.4 ◦C,
and the mean annual precipitation was 780 mm (Sebestyen
et al., 2011). The mean peat depth is 2–3 m (Parsekian et al.,
2012). The dominant plant species include Picea mariana,
Larix laricina, a variety of ericaceous shrubs, and Sphagnum
sp. moss. The graminoids Carex trisperma and Eriophorum
vaginatum, as well as the forb Maianthemum trifolium, have
seasonal dieback of their aboveground tissues in this peat-
land. Whole-ecosystem warming levels of +0, +2.25, +4.5,
+6.75, and +9 ◦C are paired with two CO2 treatments (am-
bient or∼ 400 ppm and 900 ppm) in open-top infrastructures
(12 m× 8 m). Deep peat warming began in June 2014, above-
ground warming began in August 2015, and elevated CO2
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Table 1. The SPRUCE site data used in this study.

Purpose Data name Year Period Time step References

Environmental variables
(input) to drive the
TECO model

Soil temperature at 0, 5, 10,
20, 30, 40, 50, 100, 200 cm
depth

2011–
2016

Whole year Hourly Hanson et al.
(2015a, b, 2016b)

Air temperature at 2 m
Relative Humidity at 2 m
Wind speed at 10 m
Precipitation
Photosynthetically active
radiation (PAR) at 2 m

Water–heat balance and
carbon cycle data to
calibrate the model

Soil moisture at 0, 20 cm 2011–
2016

Whole year Hourly Same as above

Water table depth 2011–
2016

Whole year Hourly Same as above

Leaf, wood, root biomass 2011–
2016

End of growing
season

Once a year Hanson et al.
(2018a, b, 2018)

Soil C content 2012 13–15 August Yearly Iversen et al. (2014)
NEE, GPP, ER fluxes 2011–

2016
All year around
except mid-
winter∗

1–2 times
a month

Hanson et al. (2014,
2016a)

Data streams used in
data–model fusion

Total CH4 emission 2011–
2016

All year around
except mid-
winter∗

1–2 times
a month

Hanson et al. (2014,
2016a, 2017b)

Pore water CH4 concentra-
tion at 25, 50, 75, 100, 150,
200 cm depth

2014–
2016

Growing
season

Once a month Wilson et al. (2016)

Generate vertical profile of
heterotrophic respiration
and use in calculating
plant-mediated CH4
transport

Fine root biomass vertical
distribution

2011–
2012

Growing
season

Estimated from
minirhizotron
images collected
weekly

Iversen et al.
(2018); Malhotra
et al. (2020a, b)

∗ Total CH4 emissions were measured in August, September, and October 2011, May through November 2012, July, September, and October 2013, June through December
2014, April through November 2015, and March through December 2016.

treatments began in June 2016. In this study, however, all
observed data we used were only from ambient plots (no
infrastructures and no warming treatment) for our research
goals, and we did not explore the warming effects on CH4
processes. Modeling CH4 emissions in response to warm-
ing and elevated CO2 at this experiment site can be found in
Yuan et al. (2021). A complete list of data streams used in
this study is included in Table 1.

Environmental variables, including soil temperature, air
temperature, relative humidity, wind speed, precipitation,
and photosynthetically active radiation plots, were used as
model input data. Measurements of environmental variables
in ambient plots started in 2011. Soil temperature and mois-
ture in different layers, water table depth (Hanson et al.,
2015a, b, 2016b), carbon pools (leaf, wood, root, and peat
soil; Hanson et al., 2018a, b; Norby and Childs, 2018; Norby
et al., 2019), and community-scale fluxes, including gross
primary production (GPP), net ecosystem exchange (NEE),
ecosystem respiration (ER), and CH4 flux data (Hanson et al.,

2014; Hanson et al., 2016a, 2017b), were used to calibrate the
modeled water–heat balance and carbon cycle similarly as in
our earlier studies (Huang et al., 2017; Ma et al., 2017; Jiang
et al., 2018).

CH4 fluxes and pore water CH4 concentrations were used
for data assimilation. We averaged the data from all ambi-
ent plots measured on the same dates to represent the site-
level CH4 emissions and concentration profiles. Variations
among different ambient plots were not considered in this
study. In total, 45 daily CH4 emission measurements were
obtained from ambient plots from 2011 to 2016. In situ pore
water CH4 concentrations were measured monthly during
the growing seasons in 2014–2016 (11 profiles in total) with
the pore water samples collected from a series of piezome-
ters permanently installed in the plots at 25, 50, 75, 100,
150, and 200 cm depths, respectively (Wilson et al., 2016).
Piezometers consisted of a < 1 cm diameter pipe that lim-
ited diffusion. A total of 24 h prior to sampling, piezome-
ters were pumped dry and allowed to recharge naturally so
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that the sampled water would not have been in prolonged
contact with the atmosphere prior to collection. A perforated
stainless-steel tube was inserted into the peat to collect sam-
ples within 0–25 cm depth. Samples were immediately fil-
tered in the field through 0.7 µM Whatman glass-fiber filters
and stored in pre-evacuated, septum-sealed glass vials. Phos-
phoric acid (1 mL, 20 %) was added to preserve each sam-
ple during shipment to Florida State University for analyzing
CH4 concentrations.

2.2 Model description

2.2.1 Overview of TECO_SPRUCE

For this study, we used the process-based biogeochemistry
model TECO_SPRUCE (Terrestrial ECOsystem model at the
SPRUCE site). The model was built with six major modules
running at an hourly time step: canopy photosynthesis, soil
water dynamics, plant growth, soil thermal dynamics, soil
carbon–nitrogen (N) transfer, and soil CH4 dynamics. A de-
tailed description of these modules can be found in Weng and
Luo (2008), Shi et al. (2015b), Huang et al. (2017), and Ma
et al. (2017). Here we give a brief description of these mod-
ules but describe in detail how we calculated CH4 ebullition
with the EBG and ECT approaches.

The canopy photosynthesis module was mainly derived
from a two-leaf model. It couples surface energy, water, and
carbon fluxes. Leaf photosynthesis is estimated based on the
Farquhar photosynthesis model (Farquhar et al., 1980) and
the Ball and Berry stomatal conductance model (Ball et al.,
1987). The soil water dynamic module has 10 soil layers and
simulates water table level and soil moisture dynamics using
rainfall, snowmelt, evapotranspiration, and runoff. Evapora-
tive losses of water and associated latent heat are regulated
by soil moisture in the first layer and atmospheric demand.
Transpiration is determined by stomatal conductance and soil
water content of the layers with roots present. When precip-
itation exceeds water recharge to soil water holding capac-
ity, runoff occurs. The water table level is estimated using a
simple bucket model as described by Granberg et al. (1999).
The plant growth module calculates the allocation of photo-
synthesis carbon to individual plant pools (foliage, stem, and
root), plant growth, plant respiration, phenology, and carbon
transfer to the litter and soil carbon pools. Leaf onset is reg-
ulated by growing degree days (GDDs), and leaf senescence
is determined by low-temperature and/or dry soil conditions.
Phenology is represented by the seasonal variations in leaf
area index (LAI) with LAI < 0.1 indicating the end of the
growing season. The soil thermal dynamics module simu-
lates snow cover, freezing depth, and soil temperature in 10
layers. The soil C–N transfer module simulates the move-
ment of C and N from plants to two litter pools and three soil
pools through litterfall, litter decomposition, and soil organic
matter mineralization. Carbon fluxes from the litter and soil

carbon pools are based on residence time and pool size of
each C pool (Luo and Reynolds, 1999).

The CH4 module simulates the transient, vertical dynam-
ics of CH4 production, oxidation, and belowground transport
(via ebullition, plant-mediated transport, and diffusion), as
well as CH4 emissions at the soil surface–atmosphere inter-
face (Fig. 1). The soil column is divided into 10 layers with
each of the first five layers being 10 cm thick, whereas each
of the rest of the layers are 20 cm thick. Within each soil
layer, CH4 concentration dynamics are calculated by a tran-
sient reaction equation with CH4 production, CH4 oxidation,
released bubbles, plant-mediated transport, and the diffusion
of CH4 into and out of this soil layer from the lower and
upper soil layer or the atmosphere for the first layer. Simi-
lar to CLM4Me (Riley et al., 2011), LPJ-WHyMe (Spahni
et al., 2011; Wania et al., 2010), and TRIPLEX-GHG (Zhu
et al., 2014) models, we assume that CH4 production (Pro)
within the catotelm is directly related to heterotrophic respi-
ration from soil and litter (Rh, gCm−2 h−1) via the following
equation:

Pro(z, t)= Rh(z, t)fCH4fstp(zt)fpHfred, (1)

where fCH4 is an ecosystem-specific conversion scaler de-
scribing the fraction of anaerobically mineralized C atoms
becoming CH4. The parameters fstp, fpH, and fred are en-
vironmental scalers, representing the effects of soil temper-
ature, pH, and redox potential, respectively, on CH4 produc-
tion. Total emission of CH4 from the soil to the atmosphere
is calculated as the sum of CH4 ebullition from saturated soil
layers, plant-mediated CH4 emissions from all the soil layers,
and the diffused flux from the first soil layer into the atmo-
sphere. A sensitivity test was done to decide which param-
eters need to be optimized by data–model fusion (Ma et al.,
2017), and more detailed descriptions on the CH4 module
can be found in Ma et al. (2017).

The original method used in TECO_SPRUCE for the
ebullition process was the constant concentration threshold
method (Walter and Heimann, 2000; Ma et al., 2017). How-
ever, a number of factors such as atmospheric pressure, water
table level, and temperature have been shown to affect ebul-
lition (Beckmann et al., 2004; Kellner et al., 2006; Tokida
et al., 2007a). Here, we used two new methods, i.e., the mod-
ified concentration threshold method (ECT) and the bubble
growth volume threshold method (EBG), to describe CH4
ebullition. In both methods, direct ebullition into the atmo-
sphere can take place only when the water table level is at or
above the soil surface; otherwise, CH4 in bubbles is added to
the soil layer just above the water table and then continues to
diffuse through the soil layers to the atmosphere. Below we
describe these two methods in detail.
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Figure 1. Conceptual structure of the CH4 emission module in TECO_SPRUCE.

2.2.2 Ebullition approach based on the concentration
threshold (TECO_SPRUCE_ECT)

With the concentration threshold approach, we assume that
bubbles form when the CH4 concentration exceeds a cer-
tain threshold based on the equilibrium concentration defined
by Henry’s law. Instead of using a constant value for the
threshold, in this study, we allowed the threshold to fluctuate
with atmospheric pressure, water column pressure, and soil
temperature, following the method proposed by Wania et al.
(2010). The maximum solubility of CH4 at a given temper-
ature was calculated using a statistical model used by Ya-
mamoto et al. (1976) based on the empirical data:

V = 0.05708− 0.001545T + 0.00002069T 2, (2)

where V is the Bunsen solubility coefficient, defined as the
volume of gas dissolved per volume of water at atmospheric
pressure and a given temperature. The volume of CH4 dis-
solved per volume of water was converted into grams using
the ideal gas law:

[CH4]thre = PV ·C/RT, (3)

where [CH4]thre is the maximum concentration threshold
(gCm−3), P is the sum of the atmospheric and hydrostatic
pressures (Pa), V is the Bunsen solubility coefficient as
in Eq. (2), the constant C is the atomic weight of carbon
(12 gmol−1), the gas constant R is 8.3145 m3 PaK−1 mol−1,
and T is the temperature (K). Then the CH4 ebullition flux

can be calculated using the following equation:

Ebu(z, t)=


Kebu ([CH4](z, t)− [CH4]thre)

if [CH4]> [CH4]thre

0.0
if [CH4] ≤ [CH4]thre

, (4)

where Ebu(z, t) is the ebullition flux of CH4 (gCh−1) to the
lowest air layer,Kebu is a rate constant of 1.0 h−1 (Walter and
Heimann, 2000; Zhuang et al., 2004, 2006), and [CH4](z, t)

is the pore water CH4 concentration in soil depth z at model
time step t .

2.2.3 Ebullition approach based on the bubble growth
volume threshold (TECO_SPRUCE _EBG)

In contrast to the concentration threshold approach, the EBG
approach uses bubble volume as a threshold to trigger ebul-
lition events (Fechner-Levy and Hemond 1996), and it has
been applied to model CH4 ebullition (Kellner et al., 2006;
Zhang et al., 2012; Peltola et al., 2018). The total bubble vol-
ume in each soil layer is calculated and updated continuously
based on the ideal gas law and Henry’s law. In detail, if CH4
concentration exceeds the limit that the water can withhold
based on Henry’s law, then excess CH4 is converted to a
gaseous volume calculated using the predefined bubble CH4
mixing ratio (f ). This gaseous volume is divided evenly into
a certain number of bubbles (Nbub). Nbub is a unitless tuning
parameter ranging between 5 and 500 in each 10 cm thick soil
layer and 10 and 1000 in each 20 cm thick soil layer, which
essentially controls the mass exchange rate between the gas
volume and the pore water. The CH4 exchange between the
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stationary bubbles and the pore water (Qebu) is calculated
using the equation proposed by Epstein and Plesset (1950):

Qebu =
4πrDwNbub

Vw

(
cw−

HccfP

RT

)
, (5)

where r is the radius of a bubble (m), Dw is the CH4
diffusion coefficient in water (m2 s−1) calculated using the
quadratic curve of observed diffusivities against tempera-
tures (Broecker and Peng, 1974), Vw is the amount of water
in this layer (m3), cw is dissolved CH4 concentration in the
pore water, and Hcc is the dimensionless Henry solubility of
CH4 calculated following Sander (1999). P , R, and T are the
same as in Eq. (3). A negative value of Qebu indicates CH4
transfer from the bubbles back to the pore water. This reverse
gas exchange mechanism has not been included in other ebul-
lition methods but has been revealed as an important process
in empirical studies (McGinnis et al., 2006; Rosenberry et al.,
2006). The ebullition flux Ebu(z, t) is then calculated when
the bubble volume at a certain depth (z) exceeds the volume
threshold (Vmax) within the time step t :

Vmax = Vmaxfraction ·Vw, (6)

Ebu(z, t)=


cb · (VB+1VB−Vmax) ,

if V +1V > Vmax

0.0
if V +1V < Vmax

, (7)

where Vmaxfraction is the free-phase gas-filled fraction of the
pore space in the soil layer above which ebullition occurs,
cb is the CH4 concentration in a bubble (molm−3), VB is the
total volume of all bubbles, and 1VB is the change in the
total volume due to the diffusive gas exchange in Eq. (5).
The amount of CH4 in all bubbles after each time step is

nb =
fPV ′B
RT

, (8)

where f is the predefined bubble CH4 mixing ratio as men-
tioned earlier, and V ′B is the updated total bubble volume after
each time step. Excess bubbles will be released into the low-
est air layer within one time step unless they are trapped in
the soil profile. To determine if a bubble will be trapped, we
adopted an approach similar to Peltola et al. (2018), assum-
ing that the probability for a bubble to be trapped within a
certain soil layer is a predefined constant number (bubprob);
thus the bubbles formed in deeper layers would have a larger
probability of being trapped during ascent. In contrast, all
other ebullition modeling methods assume that no bubbles
will get trapped.

The values of bubprob, f , and Vmaxfraction are dependent
on the soil texture, porosity, water content, etc. and have been
found to significantly affect the modeled CH4 fluxes, the lay-
ers where bubbles were formed, and the number of ebulli-
tion events (Zhang et al., 2012; Peltola et al., 2018). The tun-
ing parameter, Nbub, however, has a minimal effect on mod-
eled ebullition (Peltola et al., 2018). In this study, we used

the empirical values measured from other sites or the val-
ues used in other models as the prior ranges of bubprob, f ,
and Vmaxfraction in our models (Table 2). Then we constrained
these parameter values via data–model techniques so that the
model estimation of the ebullition process was more accu-
rate.

2.3 Data–model fusion

We used the Markov chain Monte Carlo (MCMC) method
based on the Metropolis–Hasting algorithm (Metropolis
et al., 1953) to optimize the posterior distribution of param-
eters and explore model uncertainty. Both the observed data
and simulated results were rescaled to a daily emission unit
for comparison. The prior range for each parameter was as-
sumed to be uniformly distributed, which indicates that all
values within the range have equal likelihood. We also as-
sumed that errors between observations and model simula-
tions independently follow a normal distribution with a zero
mean. The cost function weights the mismatch between ob-
servations and the modeled corresponding variables, repre-
sented by

p(Z|θ)∝ exp

{
−

∑2
i=1

∑
t∈Zi

[Zi(t)−X(t)]
2

2σ 2
i (t)

}
, (9)

where Zi(t) is the ith observation stream at time t , X(t) is
the model simulated value, and σi(t) is the standard deviation
of observation error estimates.

The parameter space was explored for 50 000 iterations
during the optimization process. The new parameter value at
the current step was based on the accepted parameter in the
previous step by a proposed distribution. The current value
was accepted if the observation–model difference was re-
duced or otherwise passed with a random probability. We
ran five chains of 50 000 simulations and used the Gelman–
Rubin statistic (Gelman and Rubin, 1992) to check the con-
vergence of sampling chains. The first half of the accepted
parameters were discarded as the burn-in period, and the sec-
ond half were used for posterior analysis. More details on
sampling and the cost function can be found in Xu et al.
(2006).

Parameters directly regulating CH4 emission pathway and
belowground dynamics and their prior ranges used for data
assimilation are listed in Table 2. Specifically, we selected
four parameters (i.e., fCH4 , Q10pro, Omax, and Tveg) from the
TECO_SPRUCE_ECT and seven parameters (all the seven
parameters in Table 2) from the TECO_SPRUCE_EBG dur-
ing data assimilation. The prior ranges were determined
by combining information from empirical measurements or
modeling studies from peatland ecosystems. The in situ CH4
emission and pore water CH4 concentration data from am-
bient plots (Table 1) were used as observations to con-
strain model parameters. In order to evaluate how a proper
model structure and constrained parameter values help im-
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Table 2. Parameters used for data–model fusion.

Process Symbol Range Units Definition References

CH4 production fCH4 [0.0, 0.7] – Fraction of anaerobically min-
eralized C atoms becoming
CH4

Zhuang et al. (2004); Segers
(1998); Zhu et al. (2014)

Q10pro [0.0, 10] – Q10 for CH4 production Walter and Heimann (2000)
CH4 oxidation Omax [3.0, 45.0] µmolL−1 h−1 Maximum oxidation rate Zhuang et al. (2004)
CH4 ebullition f [0.01, 0.5] molmol−1 CH4 mixing ratio in bubbles Tang et al. (2010); Peltola et al.

(2018)
bubprob [0.01, 0.5] – Probability that a bubble will

get trapped at one layer
Tang et al. (2010); Peltola et al.
(2018)

Vmaxfraction [0.01, 0.2] – Maximum fraction of volume
occupied by bubbles

Peltola et al. (2018)

Plant-mediated
transportation

Tveg [0.01, 15.0] – Capability of conducting CH4
gas at plant community level

Walter and Heimann (2000);
Zhuang et al. (2004)

Table 3. Details for data assimilation runs.

Data assimilation runs Ebullition approaches
embedded with TECO

Observation data streams used for constraining the parameters

ECT_F ECT CH4 fluxes
ECT_FC ECT CH4 fluxes+ pore water CH4 concentration profiles
EBG_F EBG CH4 fluxes
EBG_FC EBG CH4 fluxes+ pore water CH4 concentration profiles

prove model-simulated CH4 emission pathways, we con-
ducted four data assimilation runs with the TECO_SRUCE
model, as shown in Table 3.

We illustrate the improvement from model structure by
comparing ECT_F and EBG_F, which were calibrated using
the observed CH4 flux data. Then we compare results from
EBG_F and EBG_FC to show the ability of pore water CH4
concentration data to help constrain the parameters related to
the CH4 emission pathways. Model performance was evalu-
ated against the observed data using root mean square error
(RMSE). Model uncertainties in pore water CH4 concentra-
tions were quantified as the standard deviation across all soil
layers in each of the model runs listed in Table 3.

3 Results

3.1 Parameter optimization using CH4 flux data with
different model structures

The CH4 production-related parameters, fCH4 (fraction of
anaerobically mineralized C atoms becoming CH4) and
Q10pro (temperature sensitivity of CH4 production), were
constrained using the CH4 emission flux data for both
TECO_SPRUCE_ECT and TECO_SPRUCE_EBG (Table 4,
Fig. 2a and b). However, the maximum likelihood estimates
(MLEs) for parameters varied between the two models (Ta-
ble 4), with fCH4 slightly increased from 0.16 to 0.17 and

Figure 2. Posterior distribution of parameters that govern methane
emission processes from data–model fusion. Parameters are defined
in Table 2. Panels (a) and (b) are parameters related to methane pro-
duction, (c) is a parameter related to methane oxidation, (d) is a pa-
rameter related to plant transport, and (e–g) are parameters related
to ebullition.X axes indicate the prior ranges of parameters used for
data–model fusion. The blue lines are the parameter posterior dis-
tributions (PPDs) from the ECT model structure trained with CH4
emission data (ECT_F). The green lines are the PPDs from the EBG
model structure trained with CH4 emission data (EBG_F). The pur-
ple lines are the PPDs from EBG trained with both CH4 emission
and CH4 concentration data (EBG_FC). Well-constrained parame-
ters have a unimodal distribution, whereas poorly constrained pa-
rameter distributions tend to be flat.
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Table 4. Parameter values for the posterior distribution of parameters.

Parameter Ebullition method Observation data Posterior distribution mean±SD MLE∗ Parameter class

fCH4 ECT Flux 0.16± 0.016 0.16 Bell-shaped
EBG Flux 0.17± 0.023 0.17 Bell-shaped
EBG Flux+ concentration 0.15± 0.021 0.15 Bell-shaped

Q10pro ECT Flux 3.0± 0.85 3.0 bell-shaped
EBG Flux 2.69± 0.82 2.69 Bell-shaped
EBG Flux+ concentration 3.21± 1.07 3.21 Bell-shaped

Omax ECT Flux 22.8± 12.1 – Flat
EBG Flux 22.5± 12.1 – Flat
EBG Flux+ concentration 22.4± 12.0 – Flat

Tveg ECT Flux 7.7± 4.0 – Flat
EBG Flux 5.8± 4.0 – Flat
EBG Flux+ concentration 1.43± 0.46 1.43 Bell-shaped

f EBG Flux 0.11± 4.0 0.11 Edge-hitting
EBG Flux+ concentration 0.29± 0.46 0.29 Bell-shaped

bubprob EBG Flux 0.22± 0.87 0.19 Edge-hitting; big variance
EBG Flux+ concentration 0.25± 0.015 0.23 Bell-shaped

Vmaxfraction EBG Flux 0.1± 0.13 0.08 Bell-shaped
EBG Flux+ concentration 0.11± 0.12 0.1 Bell-shaped

∗MLE: maximum likelihood estimation.

Q10pro decreased from 3.0 to 2.69 in the EBG approach com-
pared to the ECT approach. In contrast, Omax and Tveg were
not constrained in either model with large uncertainties in
model-estimated CH4 oxidation and plant transport parame-
ters (Table 4, Fig. 2c and d).

Of the three ebullition-related parameters used only in the
EBG approach, when assimilating only the CH4 emission
flux data, Vmaxfraction (maximum fraction of volume occu-
pied by bubbles) was constrained with a unimodal shaped
posterior distribution (Fig. 2g), f (CH4 mixing ratio in bub-
bles) was edge hitting with a marginal distribution downward
(Fig. 2e), and bubprob (probability that a bubble will get
trapped at a certain soil layer) was constrained with a wide,
slightly domed distribution (Fig. 2f).

3.2 Evaluations of model structures against the
observed data

Using CH4 emission data to constrain the parameters, EBG-
simulated CH4 emissions (RMSE= 0.53, Fig. 3c) had a bet-
ter agreement with observations than ECT (RMSE= 0.61,
Fig. 3a). In addition, EBG simulated a smaller seasonal
variability in CH4 emissions (Fig. 3c) than ECT (Fig. 3a).
The simulated contributions from plant-mediated transport,
diffusion, and ebullition were 40.7± 8.0 %, 35.7± 8.7 %,
and 23.5± 9.4 %, respectively, in ECT_F (Fig. 3b) and
38.4± 13.9 %, 38.7± 9.9 %, and 22.7± 9.4 %, respectively,
in EBG_F (Fig. 3d). Compared to ECT (Fig. 3b), EBG simu-
lated a smaller contribution from ebullition but more frequent
ebullition events (Fig. 3d).

The ECT model constrained by CH4 flux data could
not reproduce well the patterns of the observed pore wa-

ter CH4 concentrations, especially in the deep peat layers
(RMSE= 0.77, Fig. 4, ECT_F). When calibrated by CH4
flux data alone, the EBG approach for ebullition captured
deep layer CH4 concentrations much better than the ECT ap-
proach (RMSE= 0.33, Fig. 4, EBG_F). The observed con-
centration profiles lay within the 95 % probability inter-
vals and the means were comparable to observed patterns.
However, the EBG model structure simulated a relatively
large range of CH4 concentration profiles, especially in the
deep peat layers, mainly due to the unconstrained Tveg and
bubprob controlling the plant transport and ebullition path-
ways, respectively (Fig. 2, EBG_F).

3.3 Comparison of the flux- and pool-based data in
constraining the parameters for simulating CH4
processes

For the ECT approach, as described earlier, assimilating
the observed CH4 flux could constrain parameters such as
fCH4 and Q10pro. However, when using both observed CH4
flux and concentration data to constrain the parameters of
TECO_SPRUCE_ECT (i.e., the ECT_FC run), no parameter
set was accepted within the observational uncertainty range,
indicating that the ECT model structure failed to simultane-
ously simulate the dynamics of CH4 emissions and pore wa-
ter CH4 concentrations.

In contrast to the ECT approach, incorporation of pore wa-
ter CH4 concentration data in the EBG approach greatly im-
proved parameter estimations. While Tveg and bubprob were
not constrained by flux-based observation data alone (Ta-
ble 4, Fig. 2, EBG_F), they were well constrained to a uni-
modal distribution when both CH4 flux and pore water CH4
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Figure 3. Observed versus modeled methane emissions (a, c, and e)
and simulated relative contributions (%) of plant-mediated trans-
portation (PMT), diffusion, and ebullition under ambient condi-
tions (b, d, and f). Black dots are observed CH4 emissions from
static chamber measurements. Error bars are the standard errors.
Blue lines are ECT-model-simulated CH4 emissions based on the
parameter probability distributions (PPDs) constrained by CH4
flux data (ECT_F, RMSE= 0.61). Green lines are EBG-model-
simulated CH4 emissions based on the PPDs constrained by CH4
flux data (EBG_F, RMSE= 0.53). Purple lines are EBG-model-
simulated emissions based on the PPDs constrained by both CH4
flux and concentration data (EBG_FC, RMSE= 0.52). The mid-
lines and shaded areas correspond to the means and standard de-
viations, respectively, from 500 model simulations with parameters
randomly drawn from the posterior distributions. Relative contribu-
tions (%) are the daily mean values calculated from the simulations.

concentration data streams were used in the data–model fu-
sion (Table 4, Fig. 2, EBG_FC). Compared to EBG_F, the
parameter Tveg was well constrained to a very small range of
1.43± 0.46, and the parameter bubprob was also well con-
strained to a range of 0.25± 0.015 with less uncertainty un-
der EBG_FC (Table 4, Fig. 2). The parameter fCH4 decreased
from 0.17 in EBG_F to 0.15 in EBG_FC, whereasQ10pro in-
creased from 2.69 in EBG_F to 3.21 in EBG_FC (Table 4,
Fig. 2). Moreover, the formerly constrained range of param-
eter f under EBG_F shifted from 0.11± 4.0 to 0.29± 0.46
when the pore water CH4 concentration information was
added into data assimilation. All the emission pathway-
related parameters (Tveg, bubprob, f, and Vmaxfraction) were

well constrained once the pore water CH4 concentration pro-
file information was added to data–model fusion. However,
incorporation of the pore water CH4 concentration data in
data assimilation with the TECO_SPRUCE_EBG did not im-
prove the constraint of Omax.

In terms of the model’s performance in fitting observed
CH4 emission patterns, the two parameterization methods
for the EBG approach were comparable, with RMSE of 0.53
under EBG_F and RMSE of 0.52 under EBG_FC (Fig. 3c
and e). However, the simulated contributions from plant-
mediated transport, diffusion, and ebullition by EBG_FC,
which were 31.8± 4.9 %, 58.1± 5.1 %, and 9.9± 6.1 %, re-
spectively (Fig. 3f), varied greatly from those simulated by
EBG_F (Fig. 3d). The contribution from ebullition under
EBG_FC was much less than that under EBG_F (Fig. 3d).
CH4 flux and concentration data together reduced the uncer-
tainty of the modeled CH4 concentration profiles by 78 %–
86 % compared to the flux data alone for data–model fu-
sion, with RMSE reducing from 0.33 in EBG_F to 0.12 in
EBG_FC (Fig. 4). The uncertainty in modeled CH4 con-
centration profiles was decreased mainly due to the well-
constrained parameters regulating the CH4 production and
emission pathways (Fig. 2a, b, and d–g).

4 Discussion

In this study, we evaluated two alternative model structures
with two data streams, i.e., CH4 emission and pore water
CH4 concentration data, in simulating peatland CH4 emis-
sion and its pathways.

4.1 Better representing CH4 emission and pore water
CH4 concentrations by the ebullition bubble
growth (EBG) model

Previous studies suggested that the EBG method of model-
ing ebullition agreed better with the observed temporal vari-
ability in CH4 emissions (R2

= 0.63) when compared with
the ECT (R2

= 0.56) and EPT (R2
= 0.35) methods (Pel-

tola et al., 2018). We also found that the EBG-simulated
CH4 emissions (RMSE= 0.53) had a better agreement with
observations than the ECT method (RMSE= 0.61). Ebulli-
tion events simulated by EBG had a higher frequency but a
smaller magnitude than those obtained from ECT, which is
consistent with on-site minirhizotron observations of small
bubbles around fine roots (Fig. S1 in the Supplement). Al-
though the ECT method was able to simulate a similar sea-
sonal pattern of CH4 emissions as EBG, the mean annual
CH4 emission was 17.8 % lower compared with the EBG
method. Peltola et al. (2018) reported that the different ebul-
lition modeling approaches simulated significantly different
amount of CH4 stored belowground and distinctly different
distributions of CH4 along the soil profiles. In line with their
results, we found that the ECT method produced much higher
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Figure 4. Observed versus simulated pore water CH4 concentration profiles. Black dots are observed concentrations measured from piezome-
ter samples. Blue lines are the ECT-model-simulated concentrations based on the parameter probability distributions (PPDs) constrained
by CH4 flux data (ECT_F). Green lines are the EBG-model-simulated concentrations based on the PPDs constrained by CH4 flux data
(EBG_F). Purple lines are the EBG-model-simulated concentrations based on the PPDs constrained by both CH4 flux and concentration data
(EBG_FC). All mid-lines and shaded areas correspond to the means and standard deviations, respectively, from 500 model simulations with
parameters randomly drawn from the posterior distributions.

pore water CH4 concentrations than the EBG method, espe-
cially in the deep layers (Fig. 4).

Of the few modeling studies that compared results with ob-
served belowground CH4 concentration, Walter et al. (2001)
simulated CH4 concentration with an early generation ECT
method. This method used a constant concentration threshold
that was tuned to match the observed concentration data, but
they also found discrepancies with observed data (only CH4
concentrations within the first 50 cm soil were compared).
Tang et al. (2010) compared the EPT method with the early
generation ECT method and found that EPT had an improved
CH4 concentration profile, although a mismatch in the con-
centration profile remained, especially from the model that
best reproduced observed CH4 emissions. The recently de-
veloped land surface model (LSM) with a new microbial-
functional group-based CH4 module incorporated, i.e., the
ELM_SRUCE model, used the modified ECT method for
the ebullition process but incorporated the acetoclastic and
hydrogenotrophic pathways for methanogenesis, as well as
anaerobic and aerobic oxidations (Ricciuto et al., 2021). This
model could accurately predict the seasonal cycle of CH4
production and net fluxes, but CH4 concentrations in soil

layers deeper than 1 m were still not well simulated (Ric-
ciuto et al., 2021) and led to different estimates of emission
pathways (23.5 % for plant-mediated transportation (PMT),
15.0 % for diffusion, and 61.5 % for ebullition) from our
study (31.8± 4.9 % for PMT, 58.1± 5.1 % for diffusion, and
9.9± 6.1 % for ebullition). In our study, when training the
modified ECT model with both CH4 emission and pore wa-
ter concentration data, no parameter set was accepted, which
suggested that the ECT method was not able to simultane-
ously reproduce both the magnitude of observed CH4 fluxes
and the patterns of pore water CH4 concentrations no matter
the combinations of parameters used. In contrast, the EBG
method could capture observed CH4 emissions and the pat-
terns of pore water CH4 concentration profiles simultane-
ously (Figs. 3 and 4).

Moreover, we found that although both the ECT and EBG
methods were able to represent the general patterns of ob-
served CH4 emissions, the flux-constrained parameter distri-
butions varied between the two methods. For example, fCH4

increased, but Q10pro decreased in EBG compared to ECT
(Table 4, Fig. 2), which might be attributed to the confound-
ing effects of missing/inappropriate model structures on pa-
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rameter estimation because different combinations of model
parameter values or structures can give similar model outputs
(Williams et al., 2009). More studies are needed to further ex-
plore model structures and parameter optimization methods
to best simulate CH4 production and emission processes and
the underlying mechanisms.

4.2 Pool-based CH4 concentration data reduced the
uncertainty of the emission pathways

Our study suggests that even using a more reasonable model
structure, i.e., EBG, parameter sets that resulted in good sim-
ulations of CH4 emissions did not necessarily reproduce a
realistic pore water concentration profile (Figs. 3 and 4).
By comparing the parameter posterior distributions trained
by observed CH4 emissions with and without observed pore
water concentration profiles using the same model structure,
TECO_SPRUCE_EBG, we revealed that CH4 emission data
could constrain the CH4 production-related parameters fCH4

and Q10pro and ebullition-related parameter Vmaxfraction very
well. The ebullition-related parameter f was edge hitting,
but parameter bubprob and plant transport-related parame-
ter Tveg remained unconstrained, causing large uncertainty in
simulated ebullition and plant-mediated transport (Table 4).
However, by training the model with both CH4 emission and
pore water CH4 concentration data, the parameters regulat-
ing CH4 production, plant transport, and ebullition were all
well constrained (Fig. 2). This is because the vertical con-
centration profile of CH4 is a balance between the dynamic
CH4 production, oxidation, and three emission pathways.
The constrained parameters contributed to a more accurate
estimation of pore water CH4 concentration (RMSE= 0.12)
and better-constrained emission pathways (Table 4, Fig. 4).

Previous studies have emphasized the importance of com-
bining carbon-pool data with carbon-flux data to improve es-
timated ecosystem carbon exchange. For example, Richard-
son et al. (2010) reported the initial leaf pool size could not
be constrained until biomass information was combined with
flux data. Du et al. (2015) also found that carbon flux data
could constrain parameters reflecting instant responses to en-
vironmental changes such as temperature sensitivity, while
pool-based data mainly contained information that could
help constrain transfer coefficients. GPP and ER data could
effectively constrain parameters that were directly related to
flux data, such as the temperature sensitivity of heterotrophic
respiration, the carbon allocation to leaves, and leaf turnover
rate (Fox et al., 2009). In our study, the CH4 emission data
mainly constrained parameters that represented instant re-
sponses to temperature change (Q10pro) and input rate from
the source pool (fCH4 ). The pore water CH4 concentration
data contributed to constraining the allocation rates of CH4
to the different emission pathways. Due to the different in-
formation contained between CH4 flux and concentration
data, we highly recommend that both types of measurements

should be made when possible and that both data streams
should be used when constraining CH4 models.

It needs to be noted that there is a large disagreement in
simulated relative contribution by ebullition between CH4
flux-data-constrained models (i.e., 0.13 % by the ECT ap-
proach with a constant concentration threshold (Ma et al.,
2017), 23.5 % by the modified ECT approach with varied
concentration thresholds in our study, and 22.7 % by the EBG
approach in our study, as well as the EBG approach con-
strained with both CH4 flux and concentration data (9.9 %)
(Figure 3). This suggests the urgent need of observed data for
separating these relative contributions in field experiments,
possibly through (1) having continuous total emission flux
measurement (Susiluoto et al., 2018) despite being hard to
deploy and calibrate in the field, (2) separately measuring
diffusive, plant-mediated-transport, and ebullition fluxes de-
spite being technically challenging, and (3) measuring be-
lowground CH4 concentration profile as suggested in our
study. At the SPRUCE experiment site, starting in the sum-
mer of 2022, two auto-chambers with a footprint of 0.2 m2

will be deployed in each plot to measure CO2 and CH4
fluxes. Along with the continued CH4 profile measurement,
these whole set of observations will provide the opportunity
to further evaluate these discussed approaches for improving
model simulations.

4.3 Broader impacts and implications

Large uncertainties exist in understanding future wetland
CH4 emissions in response to projected climate change,
which result from inappropriate model structure and insuf-
ficient parameterizations even after the uncertainties in wet-
land areas are considered (Melton et al., 2013; Luo and
Schuur, 2020). Decades of modeling research on CH4 has
evolved to a stage that the emission pathways are explicitly
calculated with various complexities, but determining the ac-
curacy and uncertainty of individual pathways still requires
more research (Xu et al., 2016). Currently, models fail to re-
produce diffusive fluxes by more than 40 % mainly due to
the lack of validations by the pore water CH4 concentrations
(Tang et al., 2010; Riley et al., 2011). In LSMs, plant trans-
port exclusively dominates CH4 emission in all wetland types
tested (Tang et al., 2010; Wania et al., 2010; Peltola et al.,
2018). However, according to the experimental studies, each
of the three emission pathways can dominate, depending on
the wetland type, vascular plant coverage, and the height of
the water table (Whiting and Chanton, 1992, Shannon et al.,
1996). By assimilating empirical data of both CH4 flux and
pore water CH4 concentration data, our data–model fusion
study proposes a more reasonable model structure and more
robust parameter estimates with greatly reduced uncertain-
ties.

Our results also implicate barriers of current CH4 mod-
eling studies and suggest future directions for both model-
ing and experimental efforts, namely (1) the under-described
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CH4 processes in models and (2) the lack of observational
data to constrain key CH4 processes in the models. More
explicit CH4 processes are needed in modeling CH4 emis-
sion and its pathways. For example, in this study, the maxi-
mum aerobic oxidation rate (Omax) was always poorly con-
strained with wide, slightly domed distributions (Fig. 2c) re-
gardless of what observation data were being assimilated into
the models. This poor constraint might partly result from the
missing anaerobic oxidation process in the models. In current
process-based models, much of the descriptions of CH4 dy-
namics in wetland soils are based on the premise that the ox-
idation of CH4 occurs only in aerobic environments (Wania
et al., 2010; Riley et al., 2011; Bridgham et al., 2013). How-
ever, the anaerobic oxidation of CH4 may be an important
sink for CH4, sometimes reducing emissions by over 50 %
in experimental studies (Smemo and Yavitt, 2011; Gupta
et al., 2013; Segarra et al., 2015). Recently, a microbial-
functional-group-based CH4 model was developed account-
ing for both aerobic and anaerobic CH4 oxidations, and this
model has been validated against the concentration of CH4
and CO2 from incubation data (Xu et al., 2015). In Xu et al.
model, 7 out of total 33 key CH4 process parameters control
CH4 oxidation, and their values vary widely across different
ecosystems and environmental conditions. The incorporation
of anaerobic CH4 oxidation into LSMs may help improve the
calculations of CH4 oxidation if the uncertainties from these
CH4-oxidation-related parameters can be reduced.

While more comprehensive and process-based models for
simulating all the processes or mechanisms involved in CH4
emissions are laudable, observations on such specific pro-
cesses are critical to constrain parameters and reduce model
uncertainty. Without sufficient data to evaluate such pro-
cesses or to calibrate models, developing such complex mod-
els to explicitly simulate these processes could also intro-
duce large uncertainties. Increased model complexity only
contributes to the improved forecasting if parameters can be
calibrated adequately by observed data (Famiglietti et al.,
2021). If there were not enough observational data for model
calibrations, increased complexity can lead to even worse
forecast skills than the intermediate-complexity models (Shi
et al., 2018; Famiglietti et al., 2021). Currently, similar to our
model, many process-based biogeochemistry models (e.g.,
CLM, LPJ, TRPLEX, JULES, TEM) also use a parameter
that varies with soil conditions to describe the potential ratio
of CO2 becoming CH4 (fCH4 ), which is due partly to the lim-
itation of data availability. Another example of observational
data hindering model development is the unconstrained pa-
rameters to calculate plant-mediated transport. Although new
algorithms and parameters to calculate plant aerenchyma
transport have been added to LSMs to represent this mecha-
nism more realistically, the parameters such as tiller radius,
number of tillers, cross-section area of tillers, and the tiller
porosity are highly idealized and poorly constrained (Wa-
nia et al., 2010; Riley et al., 2011). In the TECO_SPRUCE
model used in this study, the parameter Tveg was used as

a proxy of the ability of the whole plant community (e.g.,
biomass and abundance) to emit CH4. Root growth was sim-
ulated by a phenological process using LAI and tempera-
ture, and in situ fine root profile measurements were used
as a proxy for vertical rooting distributions (Iversen et al.,
2018). Tveg was well constrained by the observed CH4 emis-
sion and concentration data at a range of 1.43± 0.46, which
indicated that the ability of the plant community to emit CH4
at this site was low (compared to its prior knowledge of 0.01–
15, Table 2). Empirical measurements of plant-mediated CH4
transport at the same study site supported our model results
(Scott Bridgham, personal communications). This finding
can also be explained given that the diversity and abundance
of aerenchymous plants at our study site were low, similar to
many other northern ombrotrophic bogs.

5 Conclusions

Understanding relative contributions of CH4 emission path-
ways is critical to mechanistically model future CH4 dy-
namics. Acknowledging that pore water CH4 concentration
is the driving force for each emission pathway, we evalu-
ated the ability of two ebullition modeling approaches to re-
produce observed CH4 emissions and pore water concentra-
tion profiles at a large-scale manipulated experimental site
in a northern Minnesota, USA, peatland. The ebullition bub-
ble growth volume threshold approach (EBG) fits the ob-
served CH4 emissions and CH4 concentration profiles much
better than the modified ebullition concentration threshold
approach (ECT), especially for CH4 concentrations in the
deeper soil layers. By assimilating the net CH4 emission
and belowground CH4 concentration data into the models,
we substantially reduced the uncertainties of modeled CH4
emissions from the emission pathways involved. While net
CH4 efflux data are often the only data stream for CH4 model
validations, we recommend that more attention be given to
in situ measurements of the pore water CH4 concentrations
and assimilations of the concentration data for model pa-
rameterization. Since the relative ratio of the emission path-
ways (ebullition, plant-mediated transport, and diffusion) de-
termines how much CH4 is oxidized before leaving the soil
due to their different transport rates and vulnerability to oxi-
dation, we also suggest that the EBG approach should be in-
corporated into land surface models (LSMs) so that the pro-
jections of both CH4 emission and its transport processes are
more realistic in response to climate change scenarios. Fu-
ture studies should also include anaerobic CH4 oxidation into
LSMs and constrain its parameters to better predict wetland
CH4 emissions.

Code and data availability. All data sets from this study are pub-
licly available at project websites. Relevant measurements were
obtained from the SPRUCE web page (http://mnspruce.ornl.gov/,

https://doi.org/10.5194/bg-19-2245-2022 Biogeosciences, 19, 2245–2262, 2022

http://mnspruce.ornl.gov/


2258 S. Ma et al.: Evaluating alternative ebullition models

last access: 23 April 2022), as well as the archival ftp site (ftp:
//sprucedata.ornl.gov, last access: 23 April 2022). The data can be
acquired upon reasonable request. Results used to generate figures
are available at https://doi.org/10.5281/zenodo.5722449 (Ma et al.,
2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-19-2245-2022-supplement.
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