
1.  Introduction
Carbon (C) and nitrogen (N) are fundamental elements that support forest life. The assessment of C and N 
stocks has been a core focus since the inception of biogeochemistry in terms of the implications of C seques-
tration and N losses (Högberg et al., 2017; Howarth et al., 2006; Pan et al., 2011). At the ecosystem level, C 
and N stocks are the balance between (a) input fluxes to forests including photosynthesis, N deposition, and 
biological N fixation, (b) internal fluxes in forests such as litterfall, N mineralization, and N retranslocation, 
and (c) output fluxes from forests through respiration, N leaching, and denitrification (Agren & Anders-
son, 2012; Gundersen, 1991). This balance can be interpreted by turnover time, which represents the aver-
age time elapsed between the input of an element to forests and its output from forests in an autonomous 
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system at the steady state (i.e., mean transit time; Barrett, 2002; Sierra et al., 2017). The turnover time of an 
element is longer when the element remains in forests for a longer period of time through internal fluxes 
rather than leaving through output fluxes. Forests with a long turnover time for C and N are long-term sinks 
for these elements (Schlesinger, 2009). However, a recent study demonstrated that the long-term C sink 
capacity of forests would be constrained under the future climate because of the pervasive decrease in C 
turnover time of woody biomass as a result of increased tree mortality (Yu et al., 2019). Hence, the goal now 
should be to improve understanding of the forest C and N turnover and the controlling biotic and abiotic 
factors in order to sustain forest ability to act as C and N sinks.

It is crucial to precisely estimate the C and N turnover times as these dominate uncertainty in future projec-
tions of global forest C and N stocks of biogeochemical models (Friend et al., 2014; Ge et al., 2019; Johnson 
et al., 2016; Thurner et al., 2017). A field measurement-based study estimated that the average C turnover 
times of vegetation and soil in northeastern Asia, covering tropical, temperate, and boreal forests, were 
7.6 and 17.7 years, respectively (Wang et al., 2018). A data-model fusion study estimated that the average 
C turnover time of evergreen coniferous forests in North America was 85.9 years (Zhou et al., 2012). The 
Coupled Model Intercomparison Project Phase 5 (CMIP5) estimated that the global averages of C turnover 
times of tropical, temperate, and boreal forests were 14.2, 23.5, and 53.3  years, respectively (Carvalhais 
et al., 2014). Meanwhile, other studies have estimated the N turnover times. A replicated chronosequence 
study found that the N turnover time of the forest floor in lodgepole pine forests in North America was 
26.6 years (Smithwick et al., 2009). A biogeochemical model estimated that the global averages of the N 
turnover time of plant biomass, litter, and soil were 6.1, 1.0, and 116.7 years, respectively (Wang et al., 2010). 
A global data synthesis study showed that the global average of N turnover times of a terrestrial ecosystem 
was ∼500 years (Galloway et al., 2004; Gruber & Galloway, 2008).

At the global terrestrial ecosystem scale, the C turnover time varies from years to decades in wood, months 
to years in litter, and decades to centuries in stabilized dead organic matter (DOM; Sierra et al., 2017). The 
large variations in the C turnover times of wood, litter, and DOM can cause greater variation in the C turn-
over time at the whole ecosystem level. Several studies have identified controlling factors of the C turnover 
times to better understand their variation. Evergreen forests have shorter C turnover times than deciduous 
forests, while coniferous forests have longer C turnover times than broad-leaved forests (Wang et al., 2018; 
Zhou et al., 2010). The C turnover time is shorter in stands with higher temperature and precipitation be-
cause these accelerate the respiration of vegetation and soil microbes (Cai et al., 2020; Ge et al., 2019). The 
C turnover time of soil organic C showed a decreasing trend with increasing temperature and precipitation, 
from the 1980s to the 2010s under climate change (Chen et al., 2020). The C turnover times of vegetation 
and soil are longer in older stands because these have smaller C output fluxes relative to C stocks (Wang 
et al., 2018).

However, the large variation in the C and N turnover times remains unexplained, resulting in uncertainty 
in their estimations. Wang et al. (2018) used a number of factors, including forest type, climate, and stand 
age, to explain variations in the C turnover times of vegetation and soil in northeastern Asian forests, but 
the explained variations were only 27% and 44%, respectively. Moreover, although various abiotic and biotic 
factors affect the C cycles in forests, such as tree species composition, biogeochemical composition of DOM, 
and soil pH, texture, and microbial community, only a few have been used to explain the variation in the C 
turnover times (Cai et al., 2020; Carvalhais et al., 2014). In particular, the explanatory power of the C:N ratio 
for the variation in the C turnover time has not yet been quantified, to our knowledge, through a regional 
or broader scale study, although it has reportedly played a key role in the interactions between the C and N 
cycles (Gruber & Galloway, 2008).

In addition, estimation methods and their assumptions may enlarge uncertainty in the estimation of turn-
over times. The turnover time of an element is usually calculated with the “balance method,” whereby the 
stock of the element is divided by its output flux (Schwartz, 1979; Sierra et al., 2017). However, measure-
ment of the stocks and output fluxes of C and N at a broad spatial range is challenging, especially for N 
output fluxes such as N leaching and denitrification, resulting in the dearth of long-term empirical data for 
an accurate estimation of turnover times (Addiscott, 1996). The latter triggered the use of biogeochemical 
models for estimating turnover times (Carvalhais et al., 2014; Derrien & Amelung, 2011). However, bio-
geochemical models also have uncertainty in their estimations because of the inadequate representation 
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of the phenological processes accruing within forest ecosystems and the lack of fit of model parameters 
(Carvalhais et al., 2014; Pugh et al., 2020; Wang et al., 2010). In this regard, Pugh et al. (2020) reported that 
the estimated global C turnover times by six biogeochemical models varied from 12.2 to 23.5 years because 
of differences in model structures and parameters, which determine resource allocation, turnover rate, and 
the interaction between the C and N cycles. Other studies have also related model uncertainty to the use 
of either the steady or nonsteady-state assumptions in the estimation of turnover times (e.g., Carvalhais 
et al., 2008). For example, using steady-state assumption underestimated the C turnover time by 29%, which 
resulted in the underestimation (five times lower) of the net ecosystem productivity (Ge et al., 2019).

Meanwhile, studies estimating the N turnover times are relatively limited compared to those of the C turn-
over times. In particular, prior knowledge regarding the variation of the N turnover times over a region-
al or broader scale and their controlling factors is significantly limited. Since this limited knowledge can 
cause uncertainties in biogeochemical models for future projections of global forest C and N stocks (Zhou 
et al., 2012), there is a need to improve the understanding of the C and N turnover times.

Recent studies have adopted data-model fusion to diminish the uncertainties residing in biogeochemical 
models (Ge et al., 2019; Zhou et al., 2012). Data-model fusion is a tool that assimilates observation data with 
a biogeochemical model to provide reliable simulation results (Nyström et al., 2015). This tool has been 
used to adjust model parameters to reduce uncertainties in the simulation of forest C stock and flux (Xu 
et al., 2006), to inform a model structure that better explains soil incubation data (Liang et al., 2015), and to 
analyze uncertainty factors in an ecosystem C cycle model (Weng et al., 2011). However, there have been, to 
our knowledge, no studies that have used data-model fusion to reduce uncertainty in the estimation of both 
C and N turnover times and to explain their variation.

The present study aimed to estimate the C and N turnover times in forests. The study forests were the en-
tire South Korean forests, temperate forests located in northeastern Asia characterized by their monsoon 
climate. They are young forests that were regenerated in the 1970s and thus are not in a steady state consid-
ering their fast growth. Consequently, we used the balance method to calculate the C and N turnover times 
rather than the “traceable scheme” which assumes the steady state (Luo et al., 2017; Xia et al., 2013). The 
required stocks and output fluxes of C and N for the balance method were calculated via data-model fusion. 
The National Forest Inventory (NFI) data of South Korea were used as a data set for the data-model fusion. 
This data set included the C and N stocks of various pools in the forest, such as wood, woody debris, and 
mineral soil, which had been measured twice with a 5-year interval. A biogeochemical model that simu-
lates forest C and N cycles, Forest Biomass and Dead organic matter Carbon and Nitrogen (FBD-CAN; Kim 
et al., 2019), was chosen for data-model fusion because of its proven applicability to South Korean forests 
and few calculation requirements (Kim et al., 2019; Lee et al., 2014). We expected that the N turnover times 
would be longer than the C turnover times because limited resources (e.g., N) usually have longer turnover 
times than those that are not limited (e.g., C; Aerts & de Caluwe, 1995; Eckstein et al., 1999). Additionally, 
variations in the C and N turnover times throughout South Korean forests would be explained by forest 
type, mean annual temperature, annual precipitation, stand age, and ecosystem C:N ratio (i.e., the ratio of 
the total C to N stock in the ecosystem). Since the C:N ratio is one of the main factors that regulates the C 
and N output fluxes (Li et al., 2017; Pei et al., 2019; Reich et al., 2005), we expected that it would explain 
as much of the variation in the C and N turnover times as other abiotic and biotic factors have in previous 
studies.

2.  Materials and Methods
2.1.  Study Forest

South Korean forests are in northeastern Asia. The climate is a temperate monsoon climate, in which ∼70% 
of mean annual precipitation occurs in the summer (Korea Meteorological Administration [KMA], 2020). 
The mean annual temperature and precipitation from 2011 to 2020 were ∼13.0°C and 1264.2  mm, re-
spectively (KMA, 2020). The average stand age ranges from mid-30 to mid-40 years (Korea Forest Service 
(KFS), 2020), which is relatively young compared to those of other temperate forests located at similar lati-
tudes (33°–39°N; Martin et al., 2016; Pan et al., 2011). This is because the devastated forests after the Korean 
war were restored in the 1970–1980s through National Forest Rehabilitation Plans (Food and Agriculture 
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Organization [FAO], 2016). The three main forest types found here are evergreen coniferous forests (EC), 
deciduous broad-leaved forests (DB), and mixed forests (Mix; combination of both evergreen coniferous and 
deciduous broad-leaved species), accounting for 36.9%, 32.0%, and 26.9% of the total forest area, respectively 
(KFS, 2020). The main soil type is Inceptisol, followed by Ultisol and Entisol based on USDA soil taxonomy 
(Song et al., 2019).

Here, we selected 64 permanent forest plots surveyed twice through the sixth (2011–2015) and the seventh 
(2016–2020) NFI covering the three main forest types in South Korea (Figure S1). All 64 permanent forest 
plots were well preserved between the two repeated measurements, and there were no records of forest 
management, such as tending, thinning, and harvesting, in the NFI data. Detailed information, including 
the history, sampling design, and data collection methods of the NFI, can be found in Vidal et al. (2016).

2.2.  Data

2.2.1.  Carbon and Nitrogen Stocks

The data set for the data-model fusion included the C (Mg C ha−1) and N (Mg N ha−1) stocks in eight C and 
N pools of each plot for the sixth and seventh NFI (Table S1). The eight C and N pools were wood, foliage, 
fine root, woody debris, litter layer (L layer), combined fermentation and humus layer (F + H layer), dead 
fine root, and mineral soil (0–30 cm). The wood included stem, branch, and coarse root, and the woody 
debris included logs, snags, coarse root debris, and dead branch (Harmon & Sexton, 1996; Yan et al., 2006). 
The stem volume was estimated using allometric equations with the measured diameter at breast height 
(Korea Forest Research Institute [KFRI] (2014); Lee et al., 2014). The stem volume was used to calculate the 
C and N stocks in wood, foliage, and fine root with species-specific coefficients, as per the following Equa-
tions 1–7, Kim et al. (2019), Lee et al. (2014):

 SM s wV p� (1)

  WC SM BCF Cw w� (2)

  WN SM BCF Nw w� (3)

  FC SM BCF Cf f� (4)

  FN SM BCF Nf f� (5)

  fr frFRC SM BCF C� (6)

  fr frFRN SM BCF N� (7)
where SM denotes stem biomass; WC and WN are the C and N stocks in wood; FC and FN are the C and 
N stocks in foliage; FRC and FRN are the C and N stocks in fine root; Vs is stem volume; pw is stem wood 
density; BCFw is the biomass conversion factor to account for not only the stem volume, but also for the 
volume of branch and coarse root; BCFf and BCFfr are biomass conversion factors to convert stem biomass 
into foliage and fine root biomass, respectively; Cw, Cf, and Cfr are C concentrations (%) of wood, foliage, and 
fine root, respectively; Nw, Nf, and Nfr are N concentrations (%) of wood, foliage, and fine root, respectively.

The C and N stocks in woody debris were calculated from the measured volume of logs and snags per hec-
tare as per the following Equations 8 and 9:

 ls wdWDC · BCF · Cs sV p� (8)

 ls wdWDN · · BCF · Ns sV p� (9)
where WDC and WDN denote the C and N stocks in woody debris, respectively; Vls is the measured volume 
of logs and snags per hectare (m3 ha−1); ps is the wood density (g cm−3) of snags; BCFwd is the biomass con-
version factor to account for not only the volume of logs and snags but also the volume of coarse root debris 
and dead branch; and the Cs and Ns are the C and N concentrations (%) of snags, respectively. The ps, Cs, 
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and Ns were obtained from results of a nation-wide snag survey. The C and N stocks in dead fine root were 
calculated using the measured C and N stocks in L layer as per the following Equations 10 and 11:

 L,DFRDFRC LC · R� (10)

 L,DFRDFRN LN · R� (11)

where DFRC and DFRN denote the C and N stocks in dead fine root, respectively; LC and LN are the C and 
N stocks in the L layer, respectively; and the RL, DFR is the ratio between the dry mass per hectare (Mg ha−1) of 
the L layer and dead fine root, which was obtained from a previous modeling study conducted for forests in 
South Korea (Lee et al., 2014). The C and N stocks in the L layer, F + H layer, and mineral soil were directly 
taken from the NFI data as the Korea Forest Service provided them, without additional calculations (Kim 
et al., 2016; J. Lee et al., 2018).

2.2.2.  Input Data

Input data, such as mean annual temperature (°C), annual precipitation 
(mm  year−1), annual N deposition (kg  N  ha−1  year−1), solar radiation 
(W m−2), and stand age (years), were used to conduct data-model fusion. 
The mean annual temperature and precipitation data were downloaded 
from the WorldClim database (Table 1; http://www.worldclim.com/ver-
sion2). The N deposition data were extracted from the global N deposi-
tion map generated by a chemical transport model, called the European 
Monitoring and Evaluation Programme developed at the Meteorological 
Synthesizing Centre (Schwede et al., 2018; https://thredds.met.no/). The 
solar radiation data were calculated using the latitude and digital eleva-
tion model with the Area Solar Radiation tool in ArcGis Pro 2.6. Data 
regarding the stand age was obtained from the NFI data (Table 1).

2.3.  Model

FBD-CAN was adopted to conduct the data-model fusion and was de-
veloped by integrating a forest C model, Forest Biomass and Dead or-
ganic matter Carbon (FBDC), with a newly designed N module (Kim 
et al., 2018, 2019; Lee et al., 2014; Yi et al., 2013). The FBDC has previously 
been applied in temperate, tropical, and alpine regions where input data 
availability is limited (Lee et al., 2014, 2016, 2017, S. J. Lee et al., 2018; 
Yi et al., 2013), and the reliability of FBD-CAN has been validated by a 
pilot study conducted in a Pinus densiflora Siebold & Zucc. forest in cen-
tral Korea (Kim et al., 2019). The FBD-CAN is composed of multiple C 
and N pools, which are connected with C and N flux modules (Figure 1). 
This model has three compartments; tree biomass (including wood, foli-
age, and fine root pools), primary DOM (including woody debris, L layer, 
F + H layer, and dead fine root pools), and mineral soil (including active 
soil organic matter, slow soil organic matter, passive soil organic matter, 

Characteristics

Evergreen coniferous forest (n = 15) Deciduous broad-leaved forest (n = 20) Mixed forest (n = 29)

Mean Std Min Max Mean Std Min Max Mean Std Min Max

Mean annual temperature (°C) 11.76 0.83 10.54 12.87 10.88 1.84 6.70 13.26 11.57 1.22 9.06 13.87

Annual precipitation (mm) 1,285 103 1,100 1,479 1,284 102 1,102 1,449 1,259 84 1,122 1,464

Stand age (years) 38.67 8.06 30.00 60.00 36.67 8.37 20.00 60.00 34.68 4.81 30.00 40.00

Note. n is the number of permanent forest plots of each forest types used in the present study, and std, min, and max indicate standard deviation, minimum, 
and maximum, respectively.

Table 1 
General Characteristics of the 64 Permanent Forest Plots

Figure 1.  Theoretical representation of the pools and fluxes in the 
carbon (C) and nitrogen (N) cycles within the Forest Biomass and Dead 
organic matter Carbon and Nitrogen (FBD-CAN; ① photosynthesis; ② 
C allocation; ③ turnover; ④ autotrophic respiration; ⑤ heterotrophic 
respiration; ⑥ N deposition; ⑦ biological N fixation; ⑧ N mineralization; 
⑨ N immobilization; ⑩ tree N uptake; ⑪ N resorption at turnover of 
foliage and fine root; ⑫ nitrification; ⑬ N leaching; and ⑭ denitrification). 
L, litter layer; F + H layer, combined fermentation and humus layer.

http://www.worldclim.com/version2
http://www.worldclim.com/version2
https://thredds.met.no/
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and soil inorganic N pools). The FBD-CAN includes C and N flux modules, such as photosynthesis, C allo-
cation, turnover, autotrophic respiration (Ra) from tree biomass, heterotrophic respiration (Rh) from prima-
ry DOM and mineral soil, N deposition, biological N fixation, N mineralization, N immobilization, tree N 
uptake, N resorption at turnover of foliage and fine root, nitrification, N leaching, and denitrification. The 
FBD-CAN considers (a) the limitations on photosynthesis when soil inorganic N content is smaller than 
the required N for tree growth and N immobilization and (b) the limitations on N mineralization when the 
C:N ratio of primary DOM or mineral soil is higher than the critical C:N ratio that determines whether N is 
immobilized or mineralized.

The FBD-CAN was upgraded from the previous version in Kim et al. (2019). First, a simple canopy photo-
synthesis module based on Farquhar et al. (1980) was integrated into the FBD-CAN (Bonan, 2019). This 
module calculates gross primary production, Ra from tree biomass, and net primary production with four 
input data (i.e., atmospheric CO2 concentration, solar radiation, temperature, and relative humidity), two 
parameters (i.e., specific leaf area [m2 kg−1] and C use efficiency [%]), and the C and N stocks in foliage. Sec-
ond, the FBD-CAN was upgraded to simulate the C and N cycles of EC, DB, and Mix by using the adjusted 
model parameters for each forest type, which were estimated by the data-model fusion. Lastly, the structure 
of FBD-CAN was mathematically represented for more efficient computation in the data-model fusion (Luo 
et al., 2017) as per the following Equations 12 and 13:

          C
C C C CC C

dX t
B I t A K X t

dt
� (12)

          N
N N N NN N

dX t
B I t A K X t

dt
� (13)

where X(t)C or N denotes a vector of the C or N stocks of each C or N pool at a time t, respectively; BC or N is a 
vector representing the partitioning fraction of the C or N input to each C or N pool, respectively; I(t)C or N is 
the C or N input at a time t, respectively; AC or N is a square matrix of transfer parameters quantifying C or N 
fluxes among C or N pools, respectively; τC or N is a diagonal matrix of scalar quantifying responses of C or N 
turnover rates from each C or N pool to climatic variables, respectively; and KC or N is a diagonal matrix of C 
or N turnover rates of each C or N pool, respectively.

2.4.  Data-Model Fusion

Data-model fusion, also called data assimilation, is a statistical approach to identifying model parameters 
that minimize deviations between data and a model, thereby producing more reliable simulation results 
(Ge et al., 2019; Minunno et al., 2019). The target model parameters for the data-model fusion are listed 
in Table S2. The probabilistic inversion approach was used to conduct the data-model fusion as described 
by Xu et al. (2006) and Liang et al. (2015). This approach is based on Bayes' theorem as per the following 
Equation 14:

P Z P Z P  | |       � (14)

where P Z |  denotes the posterior probability density function (PDF) of the model parameters ( E  ); P Z |  
is a likelihood function integrating the information in the observed data and the modeled values, “Data” 
and “Model” in data-model fusion; and  E P  is the prior knowledge of model parameters ( E  ). The posterior 
PDFs of the model parameters were separately generated for EC, DB, and Mix. The prior PDFs of the model 
parameters were provided as the uniform distribution over specific parameter ranges for each forest type 
as described in Table S2. The likelihood function was calculated by the following Equation 15 as defined in 
Liang et al. (2015) and Hou et al. (2019)

P Z
Z X

i

i i

i

|


    















exp
1

22
2

2
2

� (15)

where iE Z  denotes the observed C stock (from i  = 1 to i  = 10) and N stock (from i  = 11 to i  = 22) of each C 
and N pool for the seventh NFI (Table S1); iE X  is the modeled C stock (from i  = 1 to i  = 10) and N stock (from 
i  = 11 to i  = 22) for the seventh NFI by the FBD-CAN using the observed C and N stocks for the sixth NFI 
as the initial data to run the model; and  2

iE  is the standard deviation of the observed C and N stocks. The 
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Metropolis-Hastings (MH) algorithm, one of the Markov Chain Monte Carlo techniques (Hastings, 1970; 
Metropolis et al., 1953), was used to establish the posterior PDFs of the model parameters ( E  ). The MH 
algorithm iterates a proposing step and a moving step (Xu et al., 2006). The proposing step generates a new 
model parameter (  newE  ) based on the previously accepted model parameter (  oldE  ) with a proposal distribu-
tion   oldE P  expressed as per the following Equation 16:

  
 


  max minnew old d

D
� (16)

where maxE  and minE  are the maximum and the minimum values of the prior ranges of the model parameters 
(Table S2), respectively; E d is a random variable, that is, higher than −0.5 and lower than 0.5 with a uniform 
distribution; and E D is the proposing step size, which was set to 20 in the present study. The moving step ac-
cepts or rejects the new model parameter (  newE  ) generated in the proposing step according to the Metropolis 
criterion (Xu et al., 2006). Since using the first 25% of the accepted model parameters in modeling can cause 
unacceptable variation and large uncertainty, the first 25% of the accepted model parameters were discard-
ed and only the remainder was used to generate the posterior PDFs (Figure S2).

2.5.  Model Simulation

The FBD-CAN estimated the stocks and fluxes of C and N, represented in its model structure (Figure 1), for 
the 64 permanent forest plots for the seventh NFI by using (a) the observed C and N stocks for the sixth NFI 
to determine the initial state of the C and N stocks of each plot (Table S1), (b) the input data such as mean 
annual temperature, annual precipitation, annual N deposition, solar radiation, and stand age, and (c) the 
maximum likelihood estimates of the posterior PDF of each model parameter in each forest type produced 
by the data-model fusion (Table S2 and Figure S2). We used these estimated stocks and fluxes of C and N to 
calculate the C and N turnover times of tree biomass (CTTtree and NTTtree), primary DOM (CTTDOM and NT-
TDOM), mineral soil (CTTsoil and NTTsoil), and the ecosystem (CTTsystem and NTTsystem; including tree biomass, 
primary DOM, and mineral soil) of the 64 permanent forest plots for the seventh NFI as per the following 
Equations 17 and 18; Qubaja et al. (2020); Sierra et al. (2017):

CTT i
i

i

Cs
Co� (17)

NTT i
i

i

Ns
No� (18)

where iCTTE  and NTTiE  are the C and N turnover times of compartment  , respectively; iE Cs  and iE Ns  are the es-
timated C and N stocks of compartment i , respectively; iE Co  and iE No  are the estimated C and N output fluxes 
from compartment i , respectively; and i is tree biomass, primary DOM, mineral soil, or ecosystem.

The performance of the FBD-CAN was examined by using the R squared of the linear relationship between 
the observed and estimated C and N stocks of ecosystem for the seventh NFI. Moreover, the root-mean-
square error (RMSE) was calculated to test the reliability of the FBD-CAN as per the following Equation 19:

  


2
1RMSE

ˆn
i i iy y

n
� (19)

where n is the number of observations of each forest type; ˆiE y  is the observed ecosystem C and N stocks of 
the thE i  permanent forest plot for the seventh NFI; and iE y  is the estimated ecosystem C and N stocks of the thE i  
permanent forest plot for the seventh NFI.

2.6.  Statistical Analysis

Analysis of variance (ANOVA) was conducted to evaluate the significance of any differences in the estimat-
ed stocks and fluxes of C and N between forest types. Differences in turnover times due to forest type and 
element type (i.e., C and N) were tested by two-way ANOVA. The relationships of the C and N turnover 
times with factors, including mean annual temperature, annual precipitation, stand age, and ecosystem 
C:N ratio, were analyzed using linear regression. We calculated ecosystem C:N ratio by dividing ecosystem 
C stock to ecosystem N stock. Additionally, redundancy analysis (RDA) and variance partitioning analysis 
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(VPA) were conducted to extract and summarize the variation of the C and N turnover times that could be 
explained by the factors. All statistical analyses were conducted with the statistical software R version 4.0.3 
(R Core Team, 2020).

3.  Results
3.1.  Model Validation

The model validation results showed that the estimated and observed values were consistent (Figure 2). 
The estimated C stocks of ecosystem (mean ± standard deviation) of EC, DB, and Mix were 166.97 ± 65.48, 
150.42 ± 76.13, and 162.78 ± 72.28 Mg C ha−1, respectively (Figures 2a–2c). The estimated N stocks of 
ecosystem of EC, DB, and Mix were 3.13 ± 0.85, 4.59 ± 2.10, and 3.71 ± 1.01 Mg N ha−1, respectively (Fig-
ures 2d–2f). The slopes of the linear relationships between the estimated and observed values ranged from 
0.95 to 1.02, indicating that the range of underestimation and overestimation was between 2% and 5%. The 
RMSEs between the estimated and observed ecosystem C stocks of EC, DB, and Mix were 17.76, 25.89, 
and 23.28 Mg C ha−1, respectively, and these values accounted for 10.6%, 17.2%, and 14.1% of the observed 
ecosystem C stocks of EC, DB, and Mix, respectively. The RMSEs between the estimated and observed 
ecosystem N stocks of EC, DB, and Mix were 0.49, 0.62, and 0.58 Mg N ha−1, respectively, and these values 
accounted for 15.7%, 13.6%, and 15.8% of the observed ecosystem N stocks of EC, DB, and Mix, respectively.

Figure 2.  Scatterplots of the estimated and observed ecosystem carbon (C; a–c) and nitrogen (N; d–f) stocks for the 64 permanent forest plots. The solid lines 
represent the fitted linear regression lines. The slopes and coefficient of determination (R2) of linear relationships between the estimated and observed values as 
well as the root-mean-square error (RMSE) are shown.
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3.2.  Stocks and Fluxes of Carbon and Nitrogen

Figure 3 summarizes the estimated C stocks and fluxes of tree biomass, primary DOM, mineral soil, and 
the ecosystem for EC, DB, and Mix. The C stocks of ecosystem (mean ± standard deviation) for EC, DB, 
and Mix were 166.97 ± 65.48, 150.42 ± 76.13, and 162.78 ± 72.28 Mg C ha−1, respectively, and there was no 
significant difference between the forest types (P > 0.05). Tree biomass was the major C compartment, stor-
ing >70% of the C stock of the ecosystem, followed by mineral soil and primary DOM. The C output fluxes 
from the ecosystem for EC, DB, and Mix were 16.14 ± 2.73, 16.30 ± 6.39, and 17.06 ± 5.49 Mg C ha−1 year−1, 
respectively, showing no significant difference between the forest types (P > 0.05). Ra from tree biomass was 
the major C output flux from the ecosystem accounting for >60% of the total C output flux, followed by Rh 
from primary DOM and Rh from mineral soil.

The estimated N stocks and fluxes of tree biomass, primary DOM, mineral soil, and the ecosystem for EC, 
DB, and Mix are presented in Figure 4. The N stocks of the ecosystem (mean ± standard deviation) for EC, 
DB, and Mix were 3.13 ± 0.85, 4.59 ± 2.10, and 3.71 ± 1.01 Mg N ha−1, respectively, and the N stock of the 
ecosystem for DB was significantly larger than those for EC and Mix (P < 0.05). Mineral soil contributed 
>60% to the N stock of the ecosystem, followed by tree biomass and primary DOM. DB had the largest N 
output flux from the ecosystem of 20.55 ± 25.36 kg N ha−1 year−1 (P < 0.05), followed by 6.47 ± 1.48 and 
11.07 ± 9.50 kg N ha−1 year−1 for EC and Mix, respectively.

3.3.  Carbon and Nitrogen Turnover Times

The CTTtree values (mean ± standard deviation) for EC, DB, and Mix were 8.37 ± 2.97, 6.53 ± 2.55, and 
7.07 ± 2.19 years, respectively, while the NTTtree values for EC, DB, and Mix were 27.71 ± 10.40, 25.36 ± 8.53, 
and 28.22 ± 6.81 years, respectively (Figure 5a). Across the three different forest types, the average NTTtree 

Figure 3.  Estimated carbon (C) stocks (Mg C ha−1), C fluxes (Mg C ha−1 year−1), and C turnover times (CTTs; years) for the seventh National Forest Inventory. 
Values represent the mean ± standard deviation. The asterisks next to the bold letters and different subscript letters next to the numbers indicate significant 
differences between forest types (**P < 0.01; ***P < 0.001). Arrows indicate the direction of the C fluxes. Arrow width is proportional to the size of the C flux. EC, 
evergreen coniferous forest; DB, deciduous broad-leaved forest; Mix, mixed forest; Ra, autotrophic respiration; Rh, heterotrophic respiration; GPP, gross primary 
production; DOM, dead organic matter.
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was approximately three times longer than the average CTTtree, but there was no significant difference in 
CTTtree and NTTtree between forest types.

The CTTDOM values for EC, DB, and Mix were 1.59 ± 0.23, 1.41 ± 0.15, and 1.61 ± 0.46 years, respectively, 
whereas the NTTDOM for EC, DB, and Mix were 21.91 ± 2.54, 14.95 ± 2.46, and 16.59 ± 2.17 years, respec-
tively (Figure 5b). Across the three different forest types, the average NTTDOM was ∼10 times longer than the 

Figure 4.  Estimated nitrogen (N) stocks (Mg N ha−1), N fluxes (kg N ha−1 year−1), and N turnover times (NTTs; years) for the seventh National Forest 
Inventory. Values represent the mean ± standard deviation. The asterisks next to the bold letters and different superscript letters next to the numbers indicate 
significant differences between forest types (**P < 0.01; ***P < 0.001). Arrows indicate the direction of the N fluxes. Arrow width is proportional to the size of the 
N flux. The negative value for the net N mineralization from primary dead organic matter (DOM) indicates that the N immobilization was greater than the N 
mineralization in primary DOM. BNF, biological N fixation.

Figure 5.  Mean carbon turnover times and nitrogen turnover time (years) of tree biomass (a), primary dead organic matter (DOM; b), mineral soil (c), and 
the ecosystem (d). Vertical lines through the colored bars represent ±standard deviation. The bold letters in the boxes denote the significance of differences 
in turnover times between forest and element types as well as the significance of interaction effects between forest and element types on turnover times 
(P < 0.001). The different letters above the colored bars indicate significant differences among turnover times at the significance level of 0.001 determined by 
Tukey's post hoc test. Table S3 shows the statistical results.
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average CTTDOM. Tukey's post hoc test revealed that the NTTDOM for EC was longer than that for Mix, and 
that for Mix was longer than that for DB. However, there was no significant difference in CTTDOM between 
forest types (Table S3).

The CTTsoil values for EC, DB, and Mix were 27.93 ± 2.97, 23.63 ± 3.52, and 26.03 ± 2.25 years, respectively, 
while the NTTsoil values for EC, DB, and Mix were 36.66 ± 6.41, 42.95 ± 6.72, and 32.97 ± 4.67 years, respec-
tively (Figure 5c). Across the three different forest types, the average NTTsoil was approximately one-and-a-
half times longer than the average CTTsoil. The NTTsoil for DB was longer than those for EC and Mix, but the 
CTTsoil for DB was the shortest.

The CTTsystem values for EC, DB, and Mix were 10.13  ±  2.89, 9.12  ±  2.40, and 8.90  ±  2.15  years, re-
spectively, while the NTTsystem values for EC, DB, and Mix were 499.08  ±  131.23, 376.12  ±  187.11, and 
447.74 ± 173.24 years, respectively (Figure 5d). Across three different forest types, the average NTTsystem 
was ∼45 times longer than the average CTTsystem, but there was no significant difference in CTTsystem and 
NTTsystem between forest types. Additionally, the NTTsystem was larger than the sum of NTTtree, NTTDOM, and 
NTTsoil, while the CTTsystem was smaller than the sum of CTTtree, CTTDOM, and CTTsoil.

3.4.  Controlling Factors of Carbon and Nitrogen Turnover Times

The CTTsystem values for DB and Mix decreased with an increase in mean annual temperature, whereas 
the CTTsystem for EC had no linear relationship with mean annual temperature (Figure 6a). There was no 
significant response of the CTTsystem to the change in annual precipitation for EC, DB, and Mix (Figure 6b). 
The CTTsystem for EC and DB increased with stand age, while there was no linear relationship between the 
CTTsystem and stand age for Mix (Figure 6c). The CTTsystem values for EC and Mix increased with an increase 
in ecosystem C:N ratio, while the CTTsystem for DB showed no linear relationship with ecosystem C:N ratio 
(Figure 6d).

Figure 6.  Bivariate relationships between both carbon (C) turnover times of the ecosystem (CTTsystem; years; a–d) and nitrogen (N) turnover times of the 
ecosystem (NTTsystem; years; e–h) and mean annual temperature (°C), annual precipitation (mm), stand age (years), and ecosystem C:N ratio for each forest type. 
Linear fitted lines and equations are only shown for significant (P < 0.05) bivariate relationships.
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The NTTsystem for Mix decreased with an increase in mean annual temperature, but such linear relationships 
were not significant for EC and DB (Figure 6e). Annual precipitation had no significant control over NTTsys-

tem values for EC, DB, and Mix (Figure 6f). The NTTsystem values of EC and DB increased with an increase in 
stand age, but there was no linear relationship between the NTTsystem and stand age for Mix (Figure 6g). The 
NTTsystem increased with an increase in ecosystem C:N ratio for the three forest types (Figure 6h).

The results of the RDA showed that RDA 1 and RDA 2 axes explained 50% and 5% of the variations in 
CTTsystem and NTTsystem, respectively (Figure 7a). The CTTsystem was positively related to ecosystem C:N ratio, 
and stand age in order of explanatory power, but it was negatively related to mean annual temperature. 
Following the order of explanatory power, the NTTsystem was positively related to ecosystem C:N ratio and 
stand age, while it was negatively related to mean annual temperature.

The VPA showed that ∼52% of the variation in the CTTsystem and NTTsystem was explained by mean annual 
temperature, annual precipitation, stand age, and C:N ratio (Figure 7b). C:N ratio, stand age, mean annual 
temperature, and annual precipitation explained 45%, 15%, 12%, and 3%, respectively, of the variation in 
the CTTsystem and NTTsystem. The shared variation of the CTTsystem and NTTsystem was explained by both eco-
system C:N ratio and stand age and both the stand age and mean annual temperature were ∼11% and 8%, 
respectively.

4.  Discussion
4.1.  Carbon and Nitrogen Turnover Times

The range of CTTsystem values (8.90–10.13 years) estimated for the three forest types is close to that found 
by Yan et al. (2017), who estimated that the CTTsystem for South Korean forests to be ∼10 years. However, 
Carvalhais et al. (2014) and Yan et al. (2017) reported that the global mean CTTsystem values for temperate 
forests were 23.5 and 25.0 years, respectively. The shorter CTTsystem in the South Korean forests compared 
to that in the global temperate forests might be due to their young stand age (mid-30 to mid-40 years), con-
sidering that much shorter C turnover times of vegetation and soil have been observed when stand age is 
young (Wang et al., 2018). This was also evidenced in the present study by an increase in CTTsystem with an 

Figure 7.  Redundancy analysis (RDA) displaying the variance in the carbon (C) turnover times of the ecosystem (CTTsystem; years) and nitrogen (N) turnover 
times of the ecosystem (NTTsystem; years) explained by mean annual temperature (°C; Temp), annual precipitation (mm; Prec), stand age (years; Age), and 
ecosystem C:N ratio (C:N ratio) at the significance level of 0.05 (a). Variance partitioning analysis map of the explanatory powers of Temp, Prec, Age, and C:N 
ratio to the variance of the CTTsystem and NTTsystem (b). The explanatory power below zero is not represented.
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increase in stand age (Figure 6). This trend is likely due to the increase in ecosystem C stocks with stand age 
(Mao et al., 2010; Noh et al., 2010; Wang et al., 2019), as reported by previous studies assessing the trends in 
C turnover times in temperate forests of northeastern Asia (Ge et al., 2019; Wang et al., 2018).

The largest NTTsystem observed in our study was as long as 500 years. A study conducted in the Hubbard 
Brook Experimental Forest (HBEF) similarly reported a long N turnover time of over 1,000 years (Yanai 
et al., 2013). In contrast, Wang et al. (2010) reported a much shorter N turnover time of 124 years than those 
in this study and in the HBEF study. This difference is likely due to the difference in the calculation methods 
and assumptions of the N turnover time. Wang et al. (2010) calculated the N turnover time of the ecosystem 
by summing up all the N turnover times of plant biomass, litter, and soil under the steady-state assumption, 
while this study used the balance method by dividing the ecosystem N stock by the N output flux. If Wang 
et al. (2010) used the balance method, the N turnover time of the ecosystem would be 459.18 years, which 
is similar estimate to the result of this study. This further shows how the calculation methods and assump-
tions can affect the estimates of the N turnover times.

The longer CTTsoil compared to CTTtree and CTTDOM indicates that mineral soil is particularly important for 
assessing the C storage efficiency in forests, though tree biomass had most C stock stored in the ecosystem. 
Similarly, the longer NTTsoil compared to NTTtree and NTTDOM indicates that mineral soil is not only a com-
partment where major N input and output fluxes occur in an ecosystem, but also has greater capabilities 
for retaining N in forests than tree biomass and primary DOM. We also found that the NTTsystem was longer 
than sum of the NTTtree, NTTDOM, and NTTsoil, while the CTTsystem was shorter than sum of CTTtree, CTTDOM, 
and CTTsoil. This indicates that once N enters the ecosystem, it transits through tree biomass, primary DOM, 
and mineral soil several times before exiting the ecosystem, while C can easily exit from the ecosystem 
without passing through these compartments several times. These results show that the turnover time of 
the ecosystem is not just the sum of the turnover times of various compartments and that the relationship 
between the turnover time of the ecosystem and those of various compartments depends on the type of el-
ement and the fluxes associated with the element. Thus, it is necessary to understand the C and N turnover 
times at the whole ecosystem scale with consideration of the various compartments in ecosystems for reli-
able estimations of the C and N turnover times and future projection of global forest C and N stocks using 
biogeochemical models.

4.2.  Comparison of the Carbon and Nitrogen Turnover Times

Consistent with our expectations, the results of this study indicated that N turnover time was longer than C 
turnover time for tree biomass, primary DOM, mineral soil, and the ecosystem. In particular, the NTTsystem 
was ∼45 times longer than the CTTsystem. This result may be attributed to the dominance of internal N fluxes 
in the N cycle (Figure 4), whereas output C fluxes dominated the C cycle (Figure 3; Kreutzer et al., 2009; 
Wang et al., 2018; Yanai et al., 2013). This result is consistent with those of previous studies. For example, 
Wang et al. (2010) highlighted the dominant role of internal N fluxes in the N cycle and demonstrated that 
the N turnover time was >10 times longer than the C turnover time at the whole ecosystem level in the 
terrestrial biosphere. Hirose and Oikawa (2012) reported that the N turnover time of foliage was longer 
than the C turnover time of foliage in a temperate forest due to N resorption at turnover of foliage. The 
longer N turnover time compared to C turnover time was also found for the forest floor (Schulte-Bisping & 
Beese, 2016) and litter (Dincher et al., 2020). Likewise, there is an evidence that C release rates are faster 
than N release rates in litter (Torreta & Takeda, 1999), woody debris (Chen et al., 2001; Noh et al., 2017), and 
dead fine root (Tong et al., 2012). Considering that limited resources in forests usually have long turnover 
times (Aerts & de Caluwe, 1995; Eckstein et al., 1999), the much longer NTTsystem than CTTsystem observed 
in the present study supports that N is a primary growth-limiting resource in temperate forests (McGroddy 
et al., 2004; Reich & Oleksyn, 2004).

4.3.  Explaining the Variation of the Carbon and Nitrogen Turnover Times

There was no difference in the C and N turnover times of the ecosystem between forest types. This result 
is inconsistent with those of previous studies, wherein forest types affected the C and N turnover times 
(Quichimbo et al., 2020; Wang et al., 2018; Zhang et al., 2010; Zhou et al., 2010). These studies found that 
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the C and N turnover times changed with forest type because forest types determine leaf lifespan (Reich 
et al., 1992), C use efficiency (Kwon & Larsen, 2013), and decomposition rate (Noh et al., 2017). The discrep-
ancy between the results of the present study and those of previous studies may be due to the confounding 
effects of temperature, precipitation, stand age, and C:N ratio on the C and N turnover times. Similarly, 
Wang et al. (2018) demonstrated that the explained variation of the C turnover times by forest types was 
only ∼1%, and they noted that the impact of forest type on C turnover times can be minor if other abiotic 
and biotic factors dominantly control the variation of the C turnover times. Moreover, evergreen forests 
have shorter C turnover times than deciduous forests, while coniferous forests have longer C turnover times 
than broad-leaved forests (Wang et al., 2018; Zhou et al., 2010). This contrasting effect between leaf senes-
cence timing (i.e., deciduous versus evergreen) and leaf type (i.e., broad-leaved versus coniferous) on the 
turnover time might obscure the difference in the C and N turnover times between forest types.

When assessing the effects of abiotic and biotic factors, we found that the CTTsystem and NTTsystem were nega-
tively associated with mean annual temperature, but positively related to stand age and C:N ratio (Figures 6 
and 7). The decrease in CTTsystem with increasing mean annual temperature has also been reported in previ-
ous studies for C turnover times (Carvalhais et al., 2014; Wang et al., 2018; Yan et al., 2017; Cai et al., 2020; 
Yang et al., 2020). This result can be explained by the dependence of the decomposition rate and microbial 
activity on temperature (Quan et al., 2014). The negative relationship between NTTsystem and mean annual 
temperature might be due to increased substrate supply (Liski et al., 2003), enhanced microbial activity 
(Lellei-Kovács et al., 2016), and accelerated N mineralization (Dan et al., 2019) with increasing temperature, 
which can lead to an increase in N leaching and decrease in N turnover times (Jabloun et al., 2015). The 
decrease in CTTsystem and NTTsystem with the increase in temperature indicates that global warming would 
constrain the long-term capacity of forests to store C and N. Moreover, a shortened C and N turnover times 
as a consequence of increased temperature will result in greater CO2 and N2O emissions from forests into 
the atmosphere, and thereby exacerbating the greenhouse effect (Bonan, 2008). Meanwhile, considering 
that global warming is also expected to increase tree mortality (Yu et al., 2019), the negative impact of a 
future increase in temperature on the C and N turnover times could be larger than reported in our study 
because the FBD-CAN does not account for the impact of temperature on tree mortality.

The positive relationships between CTTsystem and NTTsystem and ecosystem C:N ratio were because the FBD-
CAN was designed to consider the decrease in decomposition and N mineralization rate with the increase in 
C:N ratio and the decrease N leaching when inorganic N content is low (Kim et al., 2019), as reported in the 
previous experimental studies. For example, a high C:N ratio can decelerate the decomposition and N min-
eralization rate in litter, thereby lengthening the C and N turnover times (Li et al., 2017; Reich et al., 2005). 
The N immobilization rate is rapid when the C:N ratio is high, making N remain longer in the ecosystem in 
organic forms (Pei et al., 2019). N leaching in forests decreases with an increase in the C:N ratio (Gundersen 
et al., 1998). While previous studies have reported that temperature, precipitation, or stand age is the main 
factor controlling the variation of the C and N turnover times (Chen et al., 2013; Wang et al., 2018; Yan 
et al., 2017), we found that the C:N ratio was the most important factor, explaining ∼34% of the variation in 
CTTsystem and NTTsystem that could not be explained by other factors (Figure 7b). Considering that the domi-
nant factor determining the C and N turnover times can differ with latitude and range of climatic variables 
(Carvalhais et al., 2014), our results indicate that the C:N ratio can play an important role when explaining 
the variation of the C and N turnover times in the South Korean forest. Moreover, these results emphasize 
that biogeochemical models need to consider the effects of the C:N ratio on the C and N turnover times for 
reliable future projections of global forest C and N stocks.

Annual precipitation had no significant relationship with CTTsystem and NTTsystem, while previous studies 
have reported the decrease of the C and N turnover times with an increase in annual precipitation (Cai 
et al., 2020; Carvalhais et al., 2014; Chen et al., 2013; Ge et al., 2019; Wang et al., 2018; Yan et al., 2017) due to 
accelerated soil respiration (Deng et al., 2012; Knapp et al., 2008; Miao et al., 2017) and N leaching (Donner 
et al., 2004; Howarth et al., 2006; Kong et al., 2013; Ye et al., 2016). These discrepancies in the responses of 
CTTsystem and NTTsystem to annual precipitation might be due to the following three reasons. First, annual 
precipitation may not be an adequate indicator of soil moisture that directly affects the soil respiration and 
N leaching because it does not account for the temporal or seasonal distribution of precipitation within a 
year (Sanderman et al., 2003). Especially, this tendency is apparent in South Korean forests, in which ∼70% 
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of mean annual precipitation occurs in the summer. Second, the narrower range of annual precipitation 
in this study (1,100–1,479 mm) compared to others (100–2,400 mm; Ge et al., 2019; Wang et al., 2018; Yan 
et al., 2017) might hinder its potential effects on CTTsystem and NTTsystem because it would not create signif-
icant differences in soil moisture between the 64 permanent forest plots, thereby resulting in insignificant 
responses of soil respiration and N leaching to annual precipitation. Third, the effects of annual precipita-
tion on ecosystem C and N stocks might obscure the responses of CTTsystem and NTTsystem to the increasing 
soil respiration and N leaching as a result of increasing annual precipitation. This is because CTTsystem and 
NTTsystem are not only determined by C and N output fluxes, such as soil respiration and N leaching, but 
also by ecosystem C and N stocks, which reportedly change along precipitation gradient (Han et al., 2019; 
Hobley et al., 2015; Khan et al., 2019; Lie et al., 2018). This might hide the effects of annual precipitation on 
soil respiration and N leaching.

4.4.  Limitations of the Study

Our estimates on the C and N turnover times are different from mean transit time because South Korean 
forests are not in a steady state (Lu et al., 2018; Sierra et al., 2017), which is evidenced by the greater total 
input fluxes than total output fluxes of C and N. Considering that forests usually come close to the steady 
state when the stand is old and that the C and N turnover times increase with the increase in stand age, the 
CTTsystem and NTTsystem from the present study might be shorter than the estimates under the steady state. 
However, it would be meaningful to compare our estimates with mean transit time in future studies because 
most ecosystems are not in steady state due to their C and N cycles varying with time (Ge et al., 2019; Lu 
et al., 2018). This would broaden our knowledge of the changes of C and N turnover times over time.

The explained variation of the CTTsystem and NTTsystem was only ∼50%, though this value was larger than 
that in a previous study (Wang et al., 2018). The unexplained variation might result from the limited range 
of mean annual temperature, annual precipitation, and stand age (Table 1) and the missing factors that can 
affect the C and N turnover times, such as species composition, biogeochemical composition of DOM, soil 
pH, soil texture, and soil microbial community. Clarifying the unexplained variation in the C and N turno-
ver times in future studies would increase the reliability of future projections using biogeochemical models.

Although the data-model fusion can reduce the uncertainty in simulations based on the unfitted model 
parameters, it has other sources of uncertainty including the input data and model structure. In terms of 
data uncertainty, we used the estimates of the C and N stocks of foliage and fine roots (Equations 4–7), 
which are known to have some degree of uncertainty (Yang et al., 2021). The uncertainty in these estimates 
can lead to unreliable estimation of the C and N turnover times. This is because foliage and fine root are 
major compartments determining the C and N turnover times of forests through their higher turnover rate, 
decomposition rate, and N concentration compared to that of the woody compartments (Negrón-Juárez 
et al., 2015; Yan et al., 2017). In terms of the model structure, the FBD-CAN does not consider the impact 
of abiotic and biotic factors, such as lignin content, labile C content, soil pH, and soil texture, on decompo-
sition and microbial activities as well as the life-cycle of soil microbes. Moreover, C and N allocation within 
trees and competition between roots and microbes for available N are not yet well represented in the FBD-
CAN (Kim et al., 2019).

5.  Conclusions
This study provides estimates of the C and N turnover times, which can be used for the future projection 
of forest C and N stocks in temperate forests. Our findings will improve our understanding of the C and N 
turnover times in temperate forests and their relationships with abiotic and biotic factors by providing novel 
insights into how the C and N turnover times may vary with climatic conditions, time, and the changes in 
N deposition. We suggest that biogeochemical models need to include the effects of the C:N ratio when es-
timating the C and N turnover times for a more accurate projection of the forest C and N stocks. Our study 
is one of the leading studies to estimate the N turnover time and explain its variation with abiotic and biotic 
factors at the regional scale. Thus, this regional-scale study can serve as basis for further studies aiming to 
use a biogeochemical modeling approach to estimate the C and N turnover times at a regional or national 
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scale (e.g., continental and global scales) in a changing world. Future studies should also account for the 
structural and empirical limitations associated with the use of biogeochemical models.

Data Availability Statement
The MATLAB codes for the FBD-CAN and data-model fusion are available by contacting Hyung-Sub Kim, the 
first author of this article and the model developer. Data sets for this study come from public sources (all listed 
in the Section 2), Korea Forest Service, and Korea Forestry Promotion Institute. These data sets were uploaded 
via Dryad (https://datadryad.org/stash/share/xiVYFReK_poHpdLQn0JN4MT87QPKFHhulPoFSb0GBV0).
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