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1  |  INTRODUC TION

The survival and livelihood of the earth's plants and animals are 
facing threats from dramatic climate changes in recent decades 
(Oremus et al., 2020; Thuiller et al., 2005). Although plants cannot 
move as freely as animals to react quickly to environmental change, 
the “unmovable” plants can acclimate and adapt to climate changes 
by altering their physiological and morphological traits, community 
structures, genetic composition of species, and the range of dis-
tributions to pace up with climate change (Du et al., 2017; Huang 
et al., 2019; Menzel et al., 2020; Niu et al., 2012). These changes are 

particularly vital for the biosphere because vegetation plays a key 
role in driving the earth's biogeochemical, water, and energy cycles, 
with feedback to soil, atmosphere, and climate (Franklin et al., 2016). 
Nevertheless, it is unclear what the vegetation's capability is to pace 
up with climate change and how this capability is limited by environ-
mental stresses.

Gross primary production (GPP) of vegetation represents the 
most important process for both biosphere functioning and the 
sustainability of humanity. Future global warming is likely to have 
a profound impact on GPP through a temperature response of pho-
tosynthesis to temperature change. GPP generally increases with 
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Abstract
Climate change leads to increasing temperature and more extreme hot and drought 
events. Ecosystem capability to cope with climate warming depends on vegetation's 
adjusting pace with temperature change. How environmental stresses impair such 
a vegetation pace has not been carefully investigated. Here we show that dryness 
substantially dampens vegetation pace in warm regions to adjust the optimal 
temperature of gross primary production (GPP) (TGPP

opt
) in response to change in 

temperature over space and time. TGPP
opt

 spatially converges to an increase of 1.01°C 
(95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax) across 
humid or cold sites worldwide (37oS–79oN) but only 0.59°C (95% CI: 0.46, 0.74) per 
1°C increase in Tmax across dry and warm sites. TGPP

opt
 temporally changes by 0.81°C 

(95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 
0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, 
the maximum GPP (GPPmax) similarly increases by 0.23 g C m−2 day−1 per 1°C increase 
in TGPP

opt
 in either humid or dry areas. Our results indicate that the future climate 

warming likely stimulates vegetation productivity more substantially in humid than 
water-limited regions.
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temperature until it reaches an optimal temperature (Topt), beyond 
which photosynthesis declines due to the impaired Rubisco enzyme, 
electron transport, and stomatal closure (Sage & Kubien, 2007). The 
previous study has shown that TGPP

opt
 varies from 8.2 to 35.8°C and 

increases by 0.61°C per 1°C increase in the growing season tem-
perature across 153 eddy covariance sites over the globe (Huang 
et al., 2019). However, the sensitivity of TGPP

opt
 to changes in tempera-

ture likely varies with water limitation as previous studies all point 
to a potential control of thermal adjustment of TGPP

opt
 by water avail-

ability at leaf, ecosystem, and global scales (Niu et al., 2007; Quan 
et al., 2019). Hence, we hypothesize that TGPP

opt
 of vegetation has a 

stronger capability to keep pace with climate change in humid re-
gions than in dry areas.

2  |  MATERIAL S AND METHODS

2.1  |  Calculation of optimal temperature of gross 
primary production and controlling factors

We used daily gross primary production (GPP) and air temperature 
(Tair) from both the LaThuile and FLUXNET2015 databases to 
calculate the optimal temperature of GPP (TGPP

opt
). In the two 

databases, all the variables related to carbon, water, and energy 
fluxes were quality-controlled and gap-filled by the standardized 
methods (Chu et al.,  2017; Niu et al.,  2012). Three hundred and 
twenty-six sites with complete whole year meteorological data (gaps 
<5%) were selected in this study with 1631 site-years data over large 
geographic areas (37oS–79oN; Figure S1). For each site-year, the daily 
air temperatures were binned in 1°C. The daily air temperature and 
GPP in each temperature bin were averaged to generate a GPP-Tair 
response curve. To avoid the noises from the diurnal pattern and 
the midday depression of photosynthesis, we used daily GPP and 
air temperature (Tair) instead of hourly data to generate the GPP-
Tair response curve. Days with GPP lower than −0.5 were excluded 
from the data. We calculated the running mean of every three 
temperature bins to identify the Tair at the corresponding peak GPP 
as the optimal temperature of GPP (i.e., TGPP

opt
).

To investigate the relationships of TGPP
opt

 with some key meteoro-
logical variables, we calculated the maximum temperature (Tmax, °C), 
mean annual temperature (MAT, °C), and mean annual precipitation 
(MAP, mm year−1) from the site-year data at the 326 sites. We inves-
tigated the relationships using regression tree, generalized gradient 
boosted model, moving window analysis, breaking point analysis, 
localized polynomial regression, linear regression, and linear mixed-
effect model.

2.2  |  Estimation of adaptation pace over space

We averaged TGPP
opt

 across multiple years to investigate the spatial 
relationships between TGPP

opt
 and the climate variables. As the 

relationship results from long-term adaptation to the local climate, 

we used the long-term climate data from the global database 
(WorldClim, FAO, and NOAA soil moisture data) to investigate the 
effects of climate factors on the optimum temperature of GPP. We 
first obtained MAT (oC), summer temperature (Tsummer, 

oC), minimum 
temperature (Tmin, oC), MAP (mm year−1), summer precipitation 
(Psummer, mm year−1), global solar radiation (GSR, MJ m−2 day−1), and 
temperature annual range (TAR, mm year−1) at each of the 326 sites 
from World Clim (Fick & Hijmans,  2017). Data were averaged for 
these variables over years 1970–2000. The warmest quarter of a 
year is considered summer. Aridity index (AI) was obtained from 
FAO dataset (https://data.apps.fao.org/map/catal​og/srv/eng/catal​
og.searc​h#/home), which is calculated as precipitation divided by 
potential evapotranspiration. Soil moisture (mm) was obtained from 
soil moisture data provided by the NOAA/OAR/ESRL PSD, from the 
Web site at https://www.esrl.noaa.gov/psd/.

A generalized gradient boosted model (Ridgeway,  2015) was 
used to determine the relative influence of the climate factors on 
T
GPP
opt

 with the R package “gbm”. A regression tree is used to estimate 
the relative importance of the variable on the differences between 
T
GPP
opt

 and Tmax with the R package “rpart” (Therneau et al.,  2015). 
Polynomial regression was used to evaluate the relationship be-
tween GPPmax and TGPP

opt
 across space.

The adaptation pace was defined by the spatial slope between 
T
GPP
opt

 and Tmax across sites. Rolling window analysis (Silva, n.d.) was 
applied to climate variables to investigate the effects of water avail-
ability on the sensitivity of TGPP

opt
 to Tmax (i.e., δTGPP

opt
/δTmax) and the 

deviation of TGPP
opt

 from Tmax using a window size of 70 sites after 
being sorted by AI. The window size of 70 sites was selected to 
generate the best sensitivity and deviation. Breaking point analy-
sis (Muggeo, 2015) was employed to identify the thresholds of AI, 
Psummer for the sensitivity of TGPP

opt
 to Tmax (i.e., δTGPP

opt
/δTmax) and the 

deviation from TGPP
opt

 to Tmax. We used the R package “zoo” and “seg-
mented” for the rolling window analysis and breaking point analysis, 
respectively.

We grouped the 326 sites according to the obtained criteria 
from the moving window and breaking point analyses of AI, Psummer, 
and Tmax (Figure S3). These sites that met all three criteria (AI < 0.98, 
Psummer < 300 mm, and Tmax > 24.8°C) were considered dry and warm 
sites. All the other sites were grouped into humid or cold sites. In the 
cold regions, dryness does not affect vegetation pace in this study 
(Figure 1).

The phenology curve and the seasonal pattern of air tempera-
ture were examined by polynomial regression and localized poly-
nomial regression (LOESS; Radhy,  2017) to examine synchrony in 
seasonality of temperature and GPP.

Vegetative patterns were divided into 13 plant functional types 
according to the International Geosphere-Biosphere Programme 
(IGBP) each with a corresponding number of eddy-flux sites (n): de-
ciduous broadleaf forest (n = 42), evergreen broadleaf forest (n = 26), 
evergreen needle-leaf forest (n = 77), deciduous needle-leaf forest 
(n = 1), mixed forest, closed shrubland (CSH), opened shrubland 
(OSH), grassland (n = 61), cropland (n = 34), savanna (SAV, n = 12), 
woody savanna (WSA, n = 6), wetland (WET, n = 32), and snow and 
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ice (n = 1). For improving the power of statistical analysis, CSH (n = 8) 
and OSH (n = 14) were merged into shrubland (SH); SAV and WSA 
were merged into SAV. The global distribution of these vegetation 
types was derived from MODIS (MOD12Q1 Land Cover Science 
Data Product) at a spatial resolution of 1 km. These vegetation types 
were analyzed for their differences in the adaptation pace of TGPP

opt
 

to Tmax (i.e., δTGPP
opt

/δTmax) based on linear regression and analysis of 
variance. Then we calculated the difference between Tmax and TGPP

opt
 

(Tdev) and used linear regression to assess the sensitivity of Tdev to AI 
and summer precipitation for each vegetation type.

2.3  |  Estimation of acclimation pace

We calculated the temporal slope between TGPP
opt

 and Tmax within a site 
as the acclimation pace. Sites with more than 6 years of data were used 
to evaluate the acclimation of TGPP

opt
 to Tmax across years. The standard 

deviation of the acclimation pace stabilized when data from sites with 
less than 6 years data were excluded. There were a total of 86 sites with 
data of 6 years or longer. According to the three criteria on AI, Psummer, 
and Tmax, there were 45 sites and 539 site-year data in the humid or cold 
group, and 41 sites and 431 site-year data in the dry and warm group 
for the linear mixed-effects model analysis. We modeled the temporal 
relationships with linear mixed-effects models by using the R package 
“nlme” (Pinheiro et al., 2014). Tmax and MAP were treated as fixed ef-
fects. Sites were treated as a random effect, allowing both the slopes 

and intercepts to vary between sites if supported by model selection. 
We allowed intercepts to vary among sites for the analysis of the ac-
climation of TGPP

opt
 to Tmax in humid or cold sites because the lines did 

not converge. For all other analyses, we allowed both intercepts and 
slopes to vary among sites. The temporal relationship between GPPmax 
and TGPP

opt
 was modeled with a linear mixed-effects model as well. We 

analyzed the influence of all possible drivers for the acclimation pace 
using the “glmulti” package in R (Calcagno, 2013). The regression tree 
was used to model the acclimation pace using the R package “rpart” 
(Therneau et al., 2015). We then predicted global TGPP

opt
 and the acclima-

tion pace using the regression tree model.
All statistical analyses were performed using R ×64 3.3.1 for 

Windows.
Graphs were constructed using package “ggplot2”.

3  |  RESULTS AND DISCUSSION

We analyzed GPP data from 326 FLUXNET eddy covariance sites from 
37oS to 79oN over the globe (Figure  S1) to quantify the sensitivity 
of TGPP

opt
 to change in air temperature. We averaged TGPP

opt
 over years 

at each site to calculate the spatial slope between TGPP
opt

 and air tem-
perature across sites. The slope represents the vegetation's capability 
to pace with temperature change via long-term shifts in community 
structures, species genetic composition, and the range of distributions 
(i.e., the adaptation pace hereinafter). TGPP

opt
 ranged from 2.3 to 30.3°C 

F I G U R E  1  Adaptation pace of vegetation to cope with long-term temperature change. The adaptation pace was measured by the slope 
of a regression line of optimal gross primary production (GPP) temperature (TGPP

opt
) with yearly maximal temperature (Tmax) across sites. Three 

criteria were used to separate humid or cold from dry and warm sites. The dry and warm sites were those with aridity index (AI) lower than 0.98, 
summer precipitation (Psummer) lower than 300 mm, and Tmax > 24.8. All the other sites belonged to the group of humid or cold sites (see Section 2 
for description of the criteria). Error bars indicate the standard deviation. The shaded area is the 95% confidence interval of the regression lines. 
The adaptation pace was 1.01 (95% CI: 0.97, 1.05) across the humid FLUXNET sites (blue dot) and 0.59 (95% CI: 0.46, 0.74) across the dry and 
warm sites (pink dot). Inset shows the adaptation pace of TGPP

opt
 in cold and dry sites (Tmax < 24.8°C, AI < 0.98, and Psummer < 300 mm) versus cold 

and humid sites (Tmax < 24.8°C, AI > 0.98, or Psummer > 300 mm). [Colour figure can be viewed at wileyonlinelibrary.com]
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across the 326 FLUXNET sites (Figure S2). TGPP
opt

 was significantly cor-
related with the maximum temperature (Tmax) with a slope of 0.79°C 
per oC across the 326 sites (Figure S2a). There was an envelope line 
T
GPP
opt

 in parallel to the 1:1 line with Tmax (Figure S2a,b). Among several 
climate variables, Tmax was the most important one in determining TGPP

opt
 

(Figure S2c). A frequency distribution shows that the TGPP
opt

 was lower 
than Tmax with a mode of 4.6°C (Figure S2d). The deviation between 
T
GPP
opt

 and Tmax was related to water availability such as precipitation of 
summer (Psummer) and AI (Figure S2d inset).

To test the hypothesis that water limitation lowers the adapta-
tion pace (i.e., vegetation pace to cope with long-term temperature 
change via thermal adaptation), we first established three criteria to 
delineate dry from humid sites. The three criteria were (1) the sen-
sitivity of TGPP

opt
 to the spatial variation in Tmax (i.e., δTGPP

opt
/δTmax) as 

related to AI and (2) summer precipitation (Psummer), and (3) the influ-
ence of AI on the deviation of (Tmax-T

GPP
opt

) as dependent on tempera-
ture using the moving window analysis and breaking point analysis 
(see Section 2; Table S1; Figure S3). The estimated sensitivity δTGPP

opt

/δTmax was about 1.0°C/oC when the averaged AI >0.98 (95% CI: 
0.95, 1) but gradually decreased to 0.65°C/oC as AI decreased from 
0.98 to 0.40 (Figure S3a). The sensitivity increased with increasing 
summer precipitation when it was less than 300 mm and stayed 
around 1 when the summer precipitation was larger than 300 mm 
(Figure S3b). Moreover, AI only affected TGPP

opt
 at those sites with Tmax 

larger than 24.8°C (95% CI: 24.3, 25.2), below which water stresses 
did not influence the adaptation pace (Figure S3c).

We grouped the 326 sites according to the obtained criteria from 
the moving window and breaking point analyses of AI, Psummer, and Tmax. 
These sites that met all three criteria (AI < 0.98, Psummer < 300 mm, and 
Tmax > 24.8°C) were considered dry and warm sites. All the other sites 
were grouped into humid or cold sites. Across the humid or cold sites, a 

regression line TGPP
opt

 = 1.01Tmax − 5.63 well represented the observations 
(R2 = .87, p < .001; Figure 1). the adaptation pace was 1.01°C/oC across 
the humid or cold sites. In contrast, the adaptation pace was 0.59°C/oC 
across the dry and warm sites. The variation of TGPP

opt
 among the humid or 

cold sites was well explained by Tmax (94%), slightly affected by summer 
precipitation (0.4%), but not by vegetation types or their interactions 
(Table S2). Across the dry and warm sites, Tmax alone only explained 28% 
of the variation in TGPP

opt
 (p < .001). Incorporating summer precipitation, 

vegetation types, and these statistically significant interactions into the 
regression equation increased the explained variance in TGPP

opt
 to 66% 

(Table S2). Vegetation types not only directly but also interactively influ-
enced TGPP

opt
 with summer precipitation at dry and warm sites (p < .001, 

Table S2). It implies that vegetation types in dry and warm sites had 
different strategies (i.e., varying adaptation paces) to cope with tem-
perature change in water-limiting sites (Figure S4a). The WET ecosys-
tems, for example, had an adaptation pace of about 1°C/oC regardless 
of AI or Psummer (Figure S4). While the adaptation pace of savanna was 
not significantly different from zero (Figure S4a), the deviation of TGPP

opt
 

from Tmax significantly varied with change in AI or Psummer in shrub and 
savanna (Figure S4b,c). Our finding is consistent with a global analysis of 
stomatal behavior among plant functional types according to the mar-
ginal carbon cost of water use (Lin et al., 2015).

We also analyzed the temporal relationship between TGPP
opt

 and air 
temperature at individual sites to represent short-term adjustment in 
physiological and morphological processes (i.e., the acclimation pace 
hereinafter) at the sites where at least 6 years of data were available. 
To test the hypothesis that dryness reduces the acclimation pace of 
T
GPP
opt

, we compared the temporal slope of TGPP
opt

 regression with Tmax 
between humid or cold sites versus dry and warm sites. The tem-
poral slope between TGPP

opt
 and Tmax, on average, was 0.81°C (95% CI: 

0.75, 0.87, Figure 2a) for humid or cold sites. The 95% confidence 

F I G U R E  2  Acclimation pace of vegetation to cope with interannual temperature change. The acclimation pace was measured by the slope 
of the regression between optimal gross primary production (GPP) temperature (TGPP

opt
) and the maximal temperature (Tmax) across years at 

individual sites (thin color lines). Each dot represents one site-year data. Data from the same site were in the same color. The thick black 
line was the fixed-effect linear regression slope between sites (i.e., the acclimation pace across sites) estimated from the linear mixed-
effects model. It was 0.81 (95% CI: 0.75, 0.87) for the humid or cold sites (a) and 0.42 (95% CI: 0.17, 0.66) for the dry and warm sites (b). The 
separation of the humid or cold sites from dry and warm sites was based on the three criteria as described in Figure 1. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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interval did not include 1, indicating TGPP
opt

 does not fully acclimate 
to Tmax, even if water is not limiting. Water limitation reduced the 
acclimation pace to 0.42°C (95% CI: 0.17, 0.66, Figure  2b) in dry 
and warm sites. Dryness-induced decreases in the acclimation pace 
partly resulted from the peak photosynthesis that occurred months 
before the seasonal peak temperature (Figure S5), which was also 
observed in dry grasslands in China (Yang et al., 2019). The phenol-
ogy of vegetation photosynthesis would be likely advanced more by 
warming-induced drought in the future, especially for those dry eco-
systems (Park et al., 2019; Wang et al., 2020; Xu et al., 2016; Yang 
et al., 2019).

T
GPP
opt

 showed a higher adjustment pace to Tmax across space than 
over time either at humid or dry and warm sites. The adaptation 
pace reflects the vegetation's capability to cope with a changing 
environment via long-term changes in genetic materials, reorga-
nization of community structures, and shifts in distributions over 

generations (Smith & Dukes, 2013). The acclimation pace operates 
at a yearly and monthly scale when physiological and morpho-
logical adjustments happen without these long-term mechanisms 
(Smith & Dukes, 2013). Nevertheless, the lowered pace via thermal 
acclimation was relatively moderate (i.e., ~20% at humid or cold 
sites and 30% at dry and warm sites) in comparison with that via 
thermal adaptation.

We developed a regression tree model and multivariate regres-
sion to explain the variation in TGPP

opt
 across a large geographic area 

(Figure  S6). While they have comparable explanatory power, we 
used the regression tree model to predict a global average TGPP

opt
, 

which was averaged at 18.8 ± 7.1°C under current climate conditions 
(Figure  3a). It was considerably lower than a previously reported 
value of 23 ± 7.8°C (Huang et al., 2019), likely due to the incorpo-
ration of Psummer, AI, and vegetation types to constrain TGPP

opt
 in our 

study.

F I G U R E  3  Global distributions of optimum gross primary production (GPP) temperature and acclimation pace. Spatial distribution 
of optimum GPP temperature (TGPP

opt
) over the globe (a) and TGPP

opt
 averaged by latitude (b). Spatial distribution of acclimation pace (c) and 

acclimation pace averaged by latitude (d). Error bars indicate ±SD. The spatial distributions of optimum GPP temperature and the acclimation 
pace both were predicted by their respective regression tree models (see Section 2). [Colour figure can be viewed at wileyonlinelibrary.com]
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The acclimation pace over years across widely different sites is 
primarily influenced by the deviation of TGPP

opt
 from Tmax, which ex-

plained only 9% of the variation in acclimation pace (Figure S7a,b). 
The acclimation pace had no significant difference among the veg-
etation types (p < .05, Figure  S7c) although the AI of vegetation 
types significantly differed among them (p < .001, Figure S7d). The 
acclimation pace varied most within SH and savanna, the vegetation 
types in dry regions. We developed a regression tree model to pre-
dict acclimation pace (R2 = .34, Figure S7e). The model predicted the 
averaged global acclimation pace to be 0.46 ± 0.37 without a clear 
trend across the latitudinal gradient (Figure 3b).

To further investigate how shifts in TGPP
opt

 would influence eco-
system carbon cycle, we analyzed change in GPPmax in association 
with change in TGPP

opt
. GPPmax tended to be higher in years with higher 

T
GPP
opt

 , with a slope of 0.23 (95% CI: 0.15, 0.30, Figure 4a) at the humid 
or cold sites and 0.20 (95% CI: 0.10, 0.30) at the dry and warm sites 
(Figure 4b). This suggests that water limitation does not significantly 
affect the temporal slope between GPPmax and TGPP

opt
. We merged 

data from both humid and dry sites for regression analysis and 
found that 1°C increase in TGPP

opt
 led to an increase in GPPmax by 0.23 g 

C m−2 day−1 (95% CI: 0.16, 0.30). As the vegetation adjustment pace 
via adaptation and acclimation was slower at dry and warm than the 
other sites, humid or cold regions would gain more climate warming-
induced benefit in carbon uptake via vegetation adjustment than dry 
and warm regions in the future.

Results from this study offer the potential to improve the pre-
diction of vegetation carbon uptake under climate change. Leaf-
level knowledge has been incorporated into earth system models 
(ESMs) to represent thermal acclimation and adaptation (Kattge & 
Knorr, 2007; Kumarathunge et al., 2019; Sendall et al., 2015; Yamori 
et al., 2014). The leaf-level modeling approach likely overestimates 
the thermal adjustment as the ecosystem-scale Topt was consis-
tently lower than the leaf-level Topt (Huang et al., 2018). It would be 

relatively easy to implement the revealed adaptation pace of TGPP
opt

 in 
this study into ESMs, especially in humid regions where TGPP

opt
 closely 

tracks the maximum air temperature. It may require some types of 
machine learning models to simulate the adaptation and acclimation 
paces in dry regions as multiple factors and processes influence 
them as shown by this study.

This study revealed that vegetation cannot well adjust its optimal 
temperature in dry and warm regions but can pace up very well with 
temperature change in other regions. Although plant species and veg-
etation distributions cannot shift fast enough to keep up with tem-
perature change under global warming, ecosystem carbon uptake, a 
key function of vegetation, can completely pace up with temperature 
change over space in humid or cold regions through a combination of 
long-term shifts in community structures, species genetic composi-
tion, and the range of distributions (i.e., the adaptation pace; Burrows 
et al., 2011; Huang et al., 2017; Loarie et al., 2009; Penuelas et al., 2013; 
Zellweger et al., 2020). Even with a given community structure in humid 
or cold regions, the acclimation pace can almost match temperature 
change over years (i.e., 0.81°C TGPP

opt
 over 1°C Tmax). However, the pace 

was severely dampened in the dry and warm regions either via adap-
tation or acclimation. These findings help understand the influence of 
climate change on carbon uptake over the globe. When vegetation 
paces up to rising temperature by shifting the temperature optima up-
ward, ecosystem carbon uptake increases proportionally. The reduced 
pace under dry and warm conditions highlights the great vulnerability 
of large, extensive areas of arid and semiarid regions to a warming and 
drier future (Huang et al., 2015; Lian et al., 2021).
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