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Abstract
Aim: This study aimed to infer the allocation of belowground net primary productivity 
(BNPP) to sequential soil depths down to 2 m across the globe at a 1 km resolution and 
assess underlying environmental drivers.
Location: Global.
Time Period: Contemporary (1932– 2017).
Major Taxa Studied: Terrestrial plants.
Methods: Global datasets including field net primary production (NPP, i.e., the differ-
ence between plant assimilated and respired carbon) from 725 soil profiles, root bio-
mass and its depth distribution from 559 soil profiles were compiled and used to infer 
the depth distribution of BNPP across the globe and digitally map depth- resolved 
BNPP globally at 1 km resolution. Drivers of the depth distribution of BNPP were 
evaluated using machine learning- based models.
Results: Global average BNPP allocated to the 0– 20 cm soil layer is estimated to be 
1.1 Mg C ha−1 yr−1, accounting for ~60% of total BNPP. Across the globe, the depth 
distribution of BNPP varies largely, and more BNPP is allocated to deeper layers in 
hotter and drier regions. Edaphic, climatic and topographic properties (in order of 
importance) explain >80% of such variability; and the direction and magnitude of the 
influence of individual properties are soil depth-  and biome- dependent.
Main Conclusions: The findings suggest that mean annual temperature and precip-
itation are the two most important factors regulating BNPP across the globe. Soil 
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1  |  INTRODUC TION

Plant net primary productivity (NPP), which is defined as the dif-
ference between plant gross primary productivity and autotrophic 
respiration, is a fundamental ecosystem property, providing food, 
energy and fibre for higher trophic organisms and mediating the 
globe carbon cycle by linking atmospheric and soil carbon reservoirs 
(Green et al., 2019; Imhoff et al., 2004; Krausmann et al., 2013). In 
mineral soils— the largest terrestrial carbon reservoir (Batjes, 2016), 
belowground NPP (BNPP) represents the key carbon input to soil, 
together with soil carbon outputs mainly via microbial decomposi-
tion, determining soil carbon balance. Along soil profile, the depth 
distribution of BNPP is critical for understanding whole- soil profile 
carbon dynamics and plant– soil interactions. First, the vertical distri-
bution of BNPP couples with a series of belowground processes such 
as plant water uptake and nutrient acquisition which are important 
processes modulating plant growth (e.g., rooting depth) and its re-
sponse to environmental changes (Greiner et al., 2017). Second, new 
carbon inputs represented by BNPP to different soil depths influ-
ence soil carbon turnover behaviours in different layer depths (Luo 
et al., 2019) by providing energy- rich substrates to soil microbes. For 
example, the new carbon may actively, but distinctly, interact with 
existing soil carbon in different soil depths via the priming effect 
(i.e., new carbon promotes or retards native carbon decomposition) 
(Cheng et al., 2014; Kuzyakov, 2010), regulating whole- soil carbon 
stability (Luo et al., 2020). It is vital to quantify the depth distribution 
of BNPP to elucidate belowground processes and making reliable 
depth- specific predictions of plant– soil interactions, soil carbon and 
relevant biogeochemical cycles (e.g., nutrients and greenhouse gas 
emissions) in the soil profile.

A number of approaches have been developed to measure 
BNPP in different ecosystems using root growth measurements 
(e.g., ingrowth cores) (Davidson et al., 2002; Garnier, 1991; Raich & 
Nadelhoffer, 1989) or state- of- the- art tracer (e.g., carbon isotopes) 
techniques (Balesdent et al., 2018). Although potential uncertain-
ties in BNPP estimates using different approaches, data synthesis 
based on total BNPP measurements with uncertainty assessment 
would help us address critical questions relating to soil carbon 
dynamics such as carbon turnover times based on the ratio of soil 
carbon stocks to BNPP at large spatial scales (Fan et al., 2020; Luo 
et al., 2019). BNPP has also been indirectly estimated. For example, 
by synthesizing field measurements of aboveground NPP (ANPP), 

combining with satellite- derived NPP, total BNPP has been quan-
tified as the difference between satellite- derived NPP and ANPP 
(Gherardi & Sala, 2020). However, large- scale in situ application of 
these approaches for depth- specific quantification of BNPP is chal-
lenging due to technology and cost limitations (Le Quéré et al., 2018; 
Malhi et al., 2017). Indeed, few studies have un- destructively and 
directly measured BNPP depth by depth in situ (Malhi et al., 2017). 
Existing experimental and modelling studies requiring depth- 
specific BNPP as inputs usually used root biomass profiles to infer 
the depth allocation of BNPP by adopting certain assumptions on 
the relationship between vertical distribution of root biomass and 
BNPP (Camino- Serrano et al., 2018; Luo et al., 2019; Xu et al., 2014). 
Without depth- resolved quantification of BNPP, our confidence of 
sustainable land management (e.g., identifying management prac-
tices for soil carbon sequestration) and whole- soil biogeochemical 
process understanding (e.g., soil carbon balance and greenhouse gas 
emissions) would be undermined.

Moreover, factors controlling BNPP and particularly their depth 
distribution may be diverse and vary across space (McCormack 
et al., 2015; Zhang & Wang, 2015). In Earth system models, which 
are major tools predicting global carbon cycle, however, BNPP and 
its depth distribution are usually assumed to be a constant fraction 
of total carbon assimilated by plants depending on plant functional 
types and climate is generally considered to be the dominant de-
terminant (Friedlingstein et al., 2006; Zhao & Running, 2010). This 
simplification of controls over depth distribution of BNPP would be 
the major source of the uncertainty in predictions of soil carbon- 
climate feedbacks as well as belowground processes such as soil 
carbon sequestration potential across space and over time (Cramer 
et al., 2001). Across global grasslands, for example, observational 
data synthesis focusing on total NPP and its aboveground and be-
lowground fractions found that mean annual temperature is the 
most important factor influencing BNPP (Sun et al., 2021), but they 
also emphasized that non- climatic variables such as soil and topog-
raphy might be also important but are less explored. Another global 
scale study indicated that BNPP increases with mean annual precip-
itation (MAP), but the increase rate decreases with MAP (Gherardi 
& Sala, 2020). In addition, they found that different biomes show 
distinct relationships between BNPP and MAP, and MAP can only 
explain 36% of the variance of BNPP across the globe. However, 
controls over the depth allocation of BNPP are rarely assessed and 
remain uncertain. Overall, we need an advanced understanding 

properties such as soil actual evaporation and total nitrogen also play a vital role in 
regulating the depth distribution of BNPP. The maps of BNPP provide global bench-
marks of depth- resolved BNPP for the prediction of whole- profile soil carbon dynam-
ics across biomes.

K E Y W O R D S
carbon inputs, global mapping, net primary productivity, root biomass, root profile, vertical 
distribution
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of whether and how soil depth- specific carbon inputs vary among 
vegetation types and are modulated by other environmental factors 
such as edaphic and topographic attributes.

Building upon global datasets of field measurements of plant 
assimilated carbon (i.e., NPP) with its partitioning of aboveground 
and belowground fractions (i.e., ANPP and BNPP) and the vertical 
distribution of root biomass, this study aims to: (1) estimate the al-
location of BNPP to seven sequential soil layers (i.e., 0– 20, 20– 40, 
40– 60, 60– 80, 80– 100, 100– 150 and 150– 200 cm); (2) assess un-
derlying drivers regulating the depth distribution of BNPP across the 
globe and biome types; (3) map the depth distribution of BNPP and 
its uncertainty across the globe at the resolution of 0.0083° (which 
is equivalent to ~1 km at the equator). This information is essential 
to improve future accounting of whole- soil carbon balance and rele-
vant greenhouse gas emissions across large scales.

2  |  MATERIAL S AND METHODS

A flowchart (Figure S1) was produced to show the method and 
procedure used for the estimation of the depth distribution of 
BNPP and its drivers. Detailed steps are described in the following 
Sections 2.1– 2.7.

2.1  |  Net primary productivity (NPP)

We collected a global dataset of field measurements of NPP includ-
ing 725 soil profiles across the globe (Figure 1a; NPPobs hereafter). 
NPPobs contains NPP, the fraction of NPP allocated belowground 
(BNPP), and/or aboveground NPP (ANPP), enabling us to directly 
calculate BNPP. The dataset was compiled by a thorough litera-
ture search and data synthesis from 54 published peer- reviewed 
papers (literature- derived dataset, Appendix A— Data Sources) and 
the ORNL DAAC NPP data collection (https://daac.ornl.gov/cgi- bin/
datas et_lister.pl?p=13). Although field methods for estimating BNPP 
vary somewhat from site to site, it is common that BNPP in woody 
vegetation was estimated based on the amount and turnover of live 
and dead fine root biomass (which were measured in periodically 
sampled soil or ingrowth cores) and coarse root biomass (which was 
measured by excavated trenches). In grasslands, BNPP was gener-
ally estimated by extracting belowground biomass samples from soil 
or ingrowth cores to calculate total net root production. Here we 
note that soil and ingrowth cores are the two dominant approaches 
used for field BNPP measurements in the literature- derived dataset 
(48 of the 54 papers, Table S1). By grouping BNPP into soil and in-
growth core measurements, the results suggested that BNPP across 
the globe as well as for the same biome is comparable between the 
measurement approaches (Figure S2). So, in this study, we did not 
explicitly distinguish different measurement approaches in the fol-
lowing data assessment.

It should be noted that the ORNL DAAC dataset is quality- 
controlled (e.g., mapping the points in geographical space to confirm 

that they coincided with landforms, and checking data ranges for 
outliers and errors) in order to minimize the potential effects of dif-
ferent measurement techniques on the estimation of NPP and its al-
location. However, the detailed quality- control procedure cannot be 
retrieved and applied to the literature- derived dataset. Rather, we 
conducted a comparison between the literature- derived dataset and 
the ORNL DAAC dataset (Figure S3). The two datasets predicted 
similar (p > 0.05) BNPP in most ecosystems except in forests and 
shrublands (Figure S3a,b). In addition, the two datasets presented 
a very similar latitudinal pattern of BNPP and were complemen-
tary in terms of both spatial (Figure S3a) and latitudinal coverage 
(Figure S3c). For these reasons, we pooled data together to increase 
spatial coverage.

2.2  |  Root biomass

We obtained root biomass and its depth distribution from 559 soil 
profiles to infer the depth distribution of BNPP (see Section 2.5). 
This root biomass dataset (Rootobs hereafter) was originally compiled 
by Schenk and Jackson (2002). In this study, we assumed that the 
vertical distribution of BNPP is comparable to that of root biomass 
because root productivity is the predominant contributor to BNPP 
(Gherardi & Sala, 2020; Yuan & Chen, 2010), an approach used in 
other studies (Luo et al., 2019; Xu et al., 2014).

2.3  |  Environmental covariates

A set of global layers of environmental covariates including soil prop-
erties, climate and topography (Table S2) were collected as poten-
tial predictor variables of BNPP and its depth distribution. A total 
of 20 soil physical and chemical properties (Table S3) were obtained 
from ISRIC- WISE soil profile database (Batjes, 2016) with a spatial 
resolution of 1 km. Nineteen climatic attributes with the same reso-
lution as the WISE database were obtained from WorldClim (Fick 
& Hijmans, 2017) which quantifies biologically meaningful climatic 
variables using monthly temperature and precipitation. Actual soil 
evaporation (AE) calculated as liquid water supply plus soil water uti-
lized was obtained from TerraClimate (Abatzoglou et al., 2018). We 
also calculated 13 topographic attributes (Table S3) from SRTM- DEM 
at 90 m resolution (http://srtm.csi.cgiar.org) using “elevatr”, “spatia-
lEco” and “dynatopmodel” packages in R 4.1.2 (R Development Core 
Team, 2021) and a widely used module SAGA GIS with popular ter-
rain analysis tools (Conrad et al., 2015). More details of estimating 
global topographic attributes can be found in Amatulli et al. (2018).

2.4  |  Biomes

We derived biome types from a biome classification map of the 
Terrestrial Ecoregions of the World (Olson et al., 2001) that is widely 
used in contemporary biogeographical research. This map considers 
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species distribution, ecoregions and biogeographical realms as basic 
criteria for biome class assignment, generally aligning with the fact 
that BNPP is an ecosystem property influenced by a series of eco-
logical processes and patterns. To take into account the effect of 
human land use (i.e., croplands), MODIS land cover map (Channan 

et al., 2014) was overlapped with the biome map. Finally, a map con-
sisting of nine biome types was obtained: tropical/subtropical for-
ests, tropical/subtropical grasslands/savannas, temperate forests, 
temperate grasslands, Mediterranean/montane shrublands, boreal 
forests, tundra, deserts and croplands (Figure 1a).

F I G U R E  1  Net primary productivity (NPP) and their depth distribution. (a) The location of soil profiles with in situ measurements of 
NPP with its above-  and belowground fractions (NPPobs) and the depth distribution of root biomass (Rootobs). (b) The distribution of BNPP 
among nine biomes. (c) The fraction of BNPP (fBNPP) relative to total NPP inferred from NPPobs. Boxplots show the median and interquartile 
range with whiskers extending to 1.5 times of the interquartile range, and red dots show averages. Different capital letters below the boxes 
indicate significant differences (p < 0.05) among biomes, and numbers in parentheses show sample size. Blue dashed lines show the average, 
and the upper and lower grey dashed lines show the 97.5% 2.5% quantiles.
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    |  1439XIAO et al.

2.5  |  Estimation of the depth distribution of BNPP

Total BNPP has been recorded in the NPPobs dataset. We assumed 
that BNPP allocated to a specific layer depth is proportional to root 
biomass in that layer. Using the Rootobs dataset, we calculated the 
depth distribution of root biomass in seven sequential layers in the 
0– 200 cm soil profile (i.e., 0– 20, 20– 40, 40– 60, 60– 80, 80– 100, 
100– 150 and 150– 200 cm), using the following equations (Jochen & 
Jackson, 2002; Luo et al., 2019):

where rD is the total root biomass above soil depth D (cm), Rmax is the 
total root biomass of the whole soil profile, D50 is the depth (cm) at 
which rD is 50% of Rmax and c is the shape parameter optimized by the 
Rootobs dataset (Jochen & Jackson, 2002):

where D95 is the depth (cm) at which rD is 95% of Rmax. According to 
Equation (1), the fraction (froot) of roots in any soil layer depths such as 
the 20– 40 cm soil layer depth can be estimated as:

The Rootobs had been used to interpolate D50 and D95 (Jochen & 
Jackson, 2002; Luo et al., 2019), which have been adopted here. Based 
on the Rootobs- derived proportional depth distribution of roots, we 
trained a machine learning- based model (Figure S4) to predict the pro-
portional depth distribution of BNPP at NPPobs sites. Then, BNPP in a 
typical layer such as 20– 40 cm can be estimated as BNPP multiplied by 
the proportion of BNPP in that layer (Figures 2 and S5). Tukey's HSD 
test was used to determine if BNPP in different soil depths and among 
biomes are significantly different.

We acknowledge that an assumption of the vertical distribution 
of BNPP being equal to the vertical distribution of root biomass 
is adopted in this study to facilitate global scale quantification. To 
test this assumption, we used a depth- resolved two- pool root turn-
over model— ORCHIDEE- SOM (Camino- Serrano et al., 2018) to 
infer the depth distribution of BNPP. In the model (Camino- Serrano 
et al., 2018), roots have been divided into metabolic and structural 
roots with fast and slow turnover rates respectively. In each layer 
z, root turnover for each pool i (i.e., metabolic and structural) is de-
scribed by first- order kinetics:

where I(t)i,z is the carbon input to the ith root pool at soil depth of z at 
time t, kRootC is the root turnover rate constant with a default value 

of 0.5 yr−1 for metabolic roots and 3.0 yr−1 for structural roots. In the 
model, the fraction of metabolic roots is equal to 0.85– 0.018 × LC (root 
lignin:carbon ratio) × CN (root carbon:nitrogen ratio), and the remain-
ing fraction is structural roots, and the default values of LC (0.22) and 
CN (40) in the model were used. θ and τ are two rate modifiers of soil 
moisture and temperature respectively. Soil moisture and temperature 
(BIO1) data used can be found in Table S3. Quantitatively, I(t)i,z in the 
model is equal to BNPP (i.e., root- derived carbon inputs) in that layer, 
that is, I(t)i,z = BNPP(t)i,z. At steady state, BNPP(t)i,z can be estimated as:

We run the model at a time step of 1 year at Rootobs sites (N = 559) 
using observed RootC (i.e., root biomass) to estimate BNPP. Then, the 
proportional allocations of I(t) (i.e., BNPP) and RootC to each soil layer 
were used to test whether the vertical distributions of BNPP and root 
biomass are comparable (Figures 2a and S6).

2.6  |  Drivers of the depth distribution of BNPP

We performed a machine learning- based statistical model— random 
forest (RF)— to explore environmental controls over the depth dis-
tribution of BNPP. Before fitting the RF model, variance inflation 
factor (VIF) (Zuur et al., 2010) was calculated and used to minimize 
multicollinearity of environmental covariates considered (Table S3). 
The environmental variables with a VIF value larger than 10 were 
eliminated in the modelling (Figure S7). To examine how the data 
spreads throughout the multivariate environmental covariate space 
and further reduces the dimension of the data, we performed a mul-
tiple factor analysis (MFA) using MFA and fviz_mfa_var functions in 
the R package “FactoMineR”. MFA is an extension of principal com-
ponent analysis (PCA) for summarizing and visualizing a multivariate 
data table in which individuals are described by several groups of 
variables (Figure S8). It takes into account the contribution of all ac-
tive groups of variables to reveal the most important group of vari-
ables that contribute most to explaining the variations in the dataset 
(Abdi et al., 2013).

To determine the relative importance of selected environmen-
tal factors, we calculated the relative contribution of predictor 
variables to the explained variance (i.e., relative importance) by the 
model using importance scores for each predictor in the RF model 
(Figures 3 and S9). Because the RF algorithm inherently performs 
bagging and random selection of explanatory variables and calcu-
lates the out- of- bag error for feature ranking, 500 bootstrap draws 
from input data were applied to quantify uncertainties in the esti-
mated relative contributions (Grömping, 2009). These assessments 
were conducted using packages “ranger” and “caret” in R 4.1.2 (R 
Development Core Team, 2021). We applied partial dependence 
plots (PDP) from RF modelling results to determine the relation-
ships between predicted depth distribution of BNPP and the most 
important variables (Figure S9), which accounts for the average ef-
fect of one feature on the predicted outcome in the RF model by 

(1)rD =
Rmax

1 +

(

D

D50

)c
,

(2)c =
− 1.27875

log10D95 − log10D50

,

(3)froot,20−40 =
r40

rmax

−
r20

rmax

=
1

1 +

(

40

D50

)c
−

1

1 +

(

20

D50

)c

(4)�RootCi,z

�t
= I(t)i,z − kRootCi × RootCi,z(t) × �(t) × �(t)

(5)BNPP(t)i,z = I(t)i,z = kRootCi × RootCi,z(t) × �(t) × �(t)
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marginalizing other features and show whether the response curves 
between the target output and a feature is linear, monotonic or more 
complex (Greenwell, 2017).

2.7  |  Global mapping and prediction uncertainties

We explored machine learning- based models (Figure S10), including 
random forest (RF), extreme gradient boosting (XGBoost), Cubist, 
support vector machines (SVM), Bayesian regularized artificial neu-
ral networks (BRANNs) and lasso regression (LASSO), and selected 
the best model for predicting BNPP (using NPPobs), the proportional 
depth distribution of BNPP (PDD, using Rootobs) across the globe. 
For each model, the selected environmental covariates after mini-
mizing multicollinearity via VIF selection and MFA dimensionality 
reduction were used (see Section 2.6), and 80% of soil profiles in 
different locations were randomly selected for training, and the re-
maining 20% for validation. Numeric covariates were standardized 
with z- scores, and biomes and soil order are categorical variables 
and were converted into binary variables. The best model tuning pa-
rameters (i.e., hyperparameters) were targeted by running the model 

under a series of parameter combinations using the function “train-
Control” in R package “caret”. Specifically, number of trees (num.
trees) was set to 500, and the hyperparameters of mtry (number 
of variables randomly sampled as candidates at each split) and min.
node.size (minimum size of terminal nodes) were selected to tune 
for RF model, eta (learning_rate) and max_depth (maximum depth 
of a tree) for XGBoost, committees (the number of trees with ad-
justed weights) and neighbours (the training set which nearest the 
testing samples) for Cubist, sigma (standard deviation for gaussian 
kernel) for SVM and neurons (the number of artificial neurons) for 
BRANNs. The “tuneGrid” method in R package “caret” with 5- fold 
random cross- validation was used to compute model performance 
metric (i.e., rooted mean squared error— RMSE) for each model, and 
the best model with its tuning hyperparameters was targeted with 
the smallest RMSE.

Using the best model, we predicted BNPP and PDD inferred from 
roots across the globe with gridded driver variables at a resolution of 
0.0083°. BNPP allocated to each soil layer depth was finally calcu-
lated as BNPP × PDD. Prediction uncertainty in each 1 km pixel was 
quantified using a Monte Carlo approach by randomly drawing 500 
individual trees with replacement from the random forest model to 

F I G U R E  2  Depth distribution of root biomass and belowground net primary productivity (BNPP). (a) The observed proportional depth 
distribution of root biomass and estimated proportional depth distribution of root inputs from datasets of observed depth distribution of 
root biomass (Rootobs). (b, c) Show the observed proportional depth distribution of BNPP and the observed depth distribution of absolute 
BNPP among biomes from datasets of observed aboveground and belowground NPP (NPPobs) respectively. Boxplots show the median and 
interquartile range, with whiskers extending to the most extreme data point which is 1.5 × (75%– 25%) data range from the box. Significant 
differences are denoted by different capital letters (p < 0.05).
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    |  1441XIAO et al.

predict BNPP and PDD. These 500 estimates were used to calcu-
late the mean (m) and standard deviation (sd) of BNPP and PDD at 
each of the seven- layer depths. The prediction uncertainty (U) was 
expressed as the coefficient of variation (CV), that is, U = sd/m. The 
total uncertainty of depth- specific BNPP (BNPP × PDD, Figure S11) 
was estimated as Utotal =

√

U2
BNPP

+ U2
PDD

.
To assess the quality of global maps, we further estimated 

BNPP using RF models with spatial cross- validation. Spatial 
cross- validation aimed at creating independence between cross- 
validation folds to overcome potential uncertainties caused by 
spatial autocorrelation (which is very common for clustered data-
set) (Meyer et al., 2018; Meyer & Pebesma, 2022). For model 
training, we used CreateSpacetimeFolds function in the R package 
“CAST” to create five independent folds for spatial cross- validation 
followed the approach of Meyer and Pebesma (2021). In addition, 
we also calculated dissimilarity index (DI, an index of standardize 
distance in predictor space for new location) and area of applica-
bility (AOA, which is designed to analyse if the model can be ap-
plied to the entire study area or if there are locations that are very 
different in their predictor properties to what the model has been 
trained) to illustrate the area where our prediction model (both 
with random and spatial cross- validation) can be reliably applied. 
By applying the model to the data, we indeed found that the model 
performed better in AOA than outside AOA. Since DI can quan-
titatively express prediction uncertainty, we estimated DI using 
“aoa” function in the R package “CAST” in AOA and in the area 
outside AOA across the globe. Finally, we compared the global 

mapping products using random cross- validation and spatial cross- 
validation predictions.

3  |  RESULTS

3.1  |  The total amount of BNPP

Averaging across the 725 NPPobs soil profiles (Figure 1a), BNPP al-
located to the 0– 200 cm soil profile was 3.28 (0.19, 12.0) Mg ha−1 yr−1 
(mean with 2.5% and 97.5% quantiles, Figure 1b) and significantly dif-
ferent among biomes (p < 0.05; Figure 1b). Mediterranean/montane 
shrublands had the highest BNPP of 5.49 (2.68, 15.2) Mg ha−1 yr−1, 
followed by croplands of 4.42 (1.05, 17.0) Mg ha−1 yr−1 and tropical/
subtropical forests of 4.29 (1.92, 13.3) Mg ha−1 yr−1, and tundra had 
the lowest of 0.9 (0.24, 3.41) Mg ha−1 yr−1 (Figure 1b). The fraction 
of NPP allocated belowground (i.e., fBNPP) was 38% (8%, 83%) with 
significant differences among biomes (Figure 1c). It was on average 
greater than 50% in arid and semi- arid environments such as tem-
perate grasslands and deserts, but only ~30% in tropical/subtropical, 
temperate and boreal forests (Figure 1c).

3.2  |  The depth distribution of BNPP

Using the two- pool root turnover model, no significant differ-
ence between the proportional depth distribution of root biomass 

F I G U R E  3  Drivers of the depth distribution of belowground net primary productivity (BNPP). (a) The depth distribution of BNPP in nine 
biomes predicted as an exponential function of soil depth. Dots show biome- specific average BNPP in soil layer depths, and lines show 
regression lines. Parameters for the regression lines are shown in Table S4. Inset plot in (a) shows the relationship pooling all data together, 
with red dots show global averages. (b) The relative importance of environmental factors for predicting BNPP depth distribution using a 
random forest model. The outer ring shows results for the whole soil profile, and the seven inner rings show results for seven soil layer 
depths respectively. See Table S3 for the details of the environmental predictors.
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and BNPP was found across the globe as well as among biomes 
(Figures 2a and S6). On average, ~60% of BNPP was allocated to the 
0– 20 cm soil layer (Figure 2b); and ~80% to the top 40 cm soil layer 
(Figure 2b). In other deeper soil layers, BNPP was relatively small and 
showed much less variance than in upper layers (Figure 2b). In the 
top 20 cm soil layer, for example, PDD ranged from 37% (2.5% quan-
tile) to 78% (97.5% quantile). For PDD in a soil layer depth, it was 
significantly (p < 0.05) different among biomes (Figure 2c). Boreal 
forests and tundra allocated more BNPP (~70%) to upper layers (e.g., 
0– 20 cm) than other biome types (e.g., <50% in tropical/subtropi-
cal grasslands/savannas and deserts which allocate more BNPP to 
deeper layer depths, Figure S5).

Similar to PDD (Figure 2a), the absolute amount of BNPP was 
decreased exponentially with soil, with greater variances in upper 
soil layers than in deeper layers. Across the globe, the average 
BNPP was estimated to be 1.60 Mg ha−1 yr−1 in the top 20 cm soil 
(Figure 2c). In the 20– 40 cm soil layer, the average was reduced to 
0.69 Mg ha−1 yr−1. In deeper layers, it was relatively small and compa-
rable (<0.30 Mg ha−1 yr−1) with smaller variances (Figure 2c). Among 
biomes, absolute BNPP showed significant disparities (Figure 2c). 
In upper layers (e.g., 0– 20 cm), higher BNPP was observed in 
Mediterranean/montane shrublands (2.37 Mg ha−1 yr−1) and temper-
ate forests (2.11 Mg ha−1 yr−1) than in boreal forests (0.94 Mg ha−1 yr−1) 
and tundra (0.52 Mg ha−1 yr−1). In deeper soil layers, the variations in 
absolute BNPP among biomes were in general consistent with those 
in the top 0– 20 cm soil (Figure S5).

3.3  |  Drivers of BNPP across soil layers

As expected, soil depth was the most important predictor for 
the depth distribution of BNPP (Figure 3a,b). An exponential 
model using depth as the only predictor explained 23%– 56% of 
the variance in the depth distribution of BNPP across the globe 
(R2 = 0.34) and in different biome types (R2 ranged from 0.23 to 
0.56; Figure 3a, Table S4). The coefficients of the exponential 
model, which indicate the decreasing rate of BNPP with soil depth, 
were significantly different among biomes (Table S4), demonstrat-
ing that the depth distribution of BNPP is significantly different 
among biomes (Figure 2).

The random forest model taking into account soil depth, biome 
and 55 environmental covariates (Table S3), after controlling for 
multicollinearity among the covariates (Figures S7 and S8), ex-
plained 92% (R2 = 0.92) of the variance in the depth distribution 
of BNPP in the whole 0– 200 cm soil profile (Figure 3b). Following 
soil depth, mean annual temperature, mean actual daily soil evap-
oration, biome, soil bulk density and mean annual precipitation 
were the five most important predictors (Figure 3b). Grouping 

environmental predictors into climatic (temperature-  and 
precipitation- related, a total of 7 variables), edaphic (12 variables) 
and topographic (7 variables) variables, the result indicated that 
the contributions of climate, soil and topography to explained vari-
ance were 26%, 28% and 13% respectively (Table S5). Focusing on 
BNPP in specific soil layer depths, the fitted random forest models 
explained over 80% of its variance in each of the seven soil lay-
ers (Figure S9). BIO1 (mean annual temperature) was consistently 
the most important factor, followed by AE (actual mean daily soil 
evaporation), BIO12 (mean annual precipitation) and TOTN (total 
soil nitrogen content) in deeper layers (Figures 3b and S9). In terms 
of the overall influence of climatic, edaphic and topographic vari-
ables, climatic variables contributed 33%– 40%; and edaphic and 
topographic properties contributed 33%– 40% and 18%– 28% re-
spectively (Figures 3b and S9; Table S5). For the five most import-
ant predictors for each layer, nonlinear relationships with BNPP 
were detected (Figure S9). In general, predictors exhibited positive 
effects on BNPP. For example, BIO1, which was the most import-
ant climate variable for all soil layers, positively influences BNPP 
until saturating at higher values of BIO1. At the lower range of 
TOTN, TOTN exhibited a positive and then a negative relationship 
with BNPP (Figure S9).

3.4  |  Global patterns of the depth 
distribution of BNPP

The depth distribution of BNPP was mapped across the globe at 
0.0083° resolution (Figure 4) using the best ML model with random 
cross- validation (random forest was consistently the best model; 
Figures S4 and S10). Across the globe, BNPP in the 0– 200 cm 
soil profile was 2.00 (0.41, 3.95) Mg ha−1 yr−1 (Figures 4 and 5a).  
The largest BNPP on average occurred in ~20° N (Figure 5a). In all 
soil layers, BNPP was relatively low in deserts and high latitudinal 
regions of the northern Hemisphere (Figure 4) with an apparent 
decreasing trend from 40° N to 80° N (Figure 5a). The highest 
BNPP was in tropical/subtropical forests, temperate forests and 
croplands; and the lowest in tundra, boreal forests and deserts 
(Figure 4). For the proportional depth distribution, averaging 
across the globe, it was 57% and 77% in the top 20 and 40 cm 
soil layers respectively (Figure 5b). With increasing latitudes from 
40° N to 80° N, more BNPP was allocated to upper soil layers 
(Figure 5b). Figure S11 shows the uncertainty (i.e., coefficient 
of variance in each 1 km grid) in predicted depth- specific BNPP. 
The uncertainty was greater in deeper soil layers, particularly in 
the northern Hemisphere high latitudinal regions such as tundra 
and boreal forests. Indeed, the uncertainty was markedly higher 
in tundra and boreal forests than in other biomes in deeper soil 

F I G U R E  4  Global pattern of belowground net primary productivity (BNPP) to seven soil layers (left panel) with the corresponding 
aggregated BNPP in nine biomes (right panel). Boxplots show the median and interquartile range with whiskers extending to 1.5 times of 
the interquartile range. Red dots and blue dash lines show biome- specific and global averages respectively. Significant differences in BNPP 
among biomes in a typical soil layer are denoted by different capital letters (p < 0.05). Please note the different scales in different depths.
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layers. Across the globe, the average uncertainty in the top 20 cm 
layer was 0.48 (0.27, 0.72), and increased to 1.90 (0.89, 4.28) in the 
150– 200 cm layer (Figure S11).

By applying a RF model with spatial cross- validation to the 
data, we found that the model performed better in AOA areas than 
in areas outside AOA (Figure S12b,c). Figure 6 compares global DI 

(dissimilarity index) distribution pattern estimated using random 
and spatial cross- validation. The area outside AOA derived from 
the model with random cross- validation (18%) was larger than that 
with spatial cross- validation (2%), mainly located in South America, 
Africa, Australia and Western China. However, in both AOA and out-
side AOA areas, the predictions of the two validation approaches 

F I G U R E  5  Latitudinal pattern of 
belowground net primary productivity 
(BNPP). (a) Depth distribution of 
absolute BNPP; (b) proportional depth 
distribution of BNPP. Both absolute 
and proportional BNPP were calculated 
based on aggregated BNPP and its depth 
distribution in each 1 degree of latitude. 
Bars and the relevant numbers beside the 
left y- axes indicate the global cumulative 
average with increasing soil depths.

F I G U R E  6  Global pattern of 
dissimilarity index (DI) and the area 
outside of applicability (Outside AOA) 
derived from random forest models with 
random cross- validation (a) and spatial 
cross- validation (b). DI is a standardized 
distance for new prediction locations used 
for quantitatively expressing prediction 
uncertainty. The area of applicability 
(AOA) is the area where the model is 
trained, and where the cross- validation 
performance holds. If DI is larger than a 
DI threshold (which is determined by the 
DI values from the cross- validated training 
data), the new data point falls outside the 
AOA.
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were similar (the difference of RMSE was no more than 0.18 g m−2, 
Figure S13). Overall, these additional results validate the random 
cross- validation approach for estimating BNPP.

4  |  DISCUSSION AND CONCLUSIONS

Using root biomass profiles to infer the depth distribution of BNPP, 
we generated field observational data- derived global maps of BNPP 
down to 200 cm at a resolution of ~1 km. In the 0– 200 cm soil pro-
file, global average BNPP is estimated to be ~2 Mg ha−1 yr−1 with a 
global total BNPP of ~21 Pg yr−1. This estimate is close to the value of 
2.2 Mg ha−1 yr−1 (with a global total belowground carbon fixation of 
24.7 Pg yr−1) estimated by Gherardi and Sala (2020) who estimated 
total BNPP as the difference between satellite- derived NPP and 
field measurements of aboveground NPP. Among biomes, BNPP in 
forests, grasslands and shrublands/savannas are estimated to be 2.7, 
2.0 and 2.2 Mg ha−1 yr−1, respectively, which are also close to the val-
ues estimated by Gherardi and Sala (2020).

The majority of BNPP (~60%) is allocated to the top 20 cm soil 
layer, and an additional ~20% to the 20– 40 cm soil layer. This is consis-
tent with field observations of BNPP depth distribution at individual 
sites across the globe (Hertel et al., 2009; López- Mársico et al., 2015; 
Xu et al., 2014). Among biomes, however, the depth distribution of 
BNPP is significantly different. Generally, more BNPP is allocated to 
deeper layers in drier biomes (e.g., deserts and grasslands). This may 
be due to the close coupling of plant root growth with soil moisture 
profiles (Fan et al., 2017; Lambers & Oliveira, 2019). More assimilated 
carbon would be allocated to deeper layers in drier environments to 
acquire water (Ledo et al., 2018; Mokany et al., 2006). A synthesis of 
literature data has found that tropical grasslands/savannas and des-
erts have the deepest rooting depth compared with other biomes 
(Canadell et al., 1996). There is also a clear pattern of higher alloca-
tion of BNPP to upper layers in higher latitudes. Due to low tempera-
ture in high latitudinal regions, deep soil permafrost (e.g., in tundra) 
would persist during the growing season, inhibiting root growth in 
the subsoil (Blume- Werry et al., 2019; Canadell et al., 1996; Jackson 
et al., 1996). As a result, a large fraction of BNPP would allocate to 
surface layers. As biome is inherently determined by climate, it is 
reasonable to expect that climatic factors play a key role in regulat-
ing the depth distribution of BNPP. In addition, we note that BNPP 
in deeper soil layers is relatively small and shows much less variance 
than in upper layers. This result is consistent with carbon isotope- 
based estimates of carbon inputs to deeper soil depths (Balesdent 
et al., 2018). Except the increasing penetration resistance of root 
growth to deep layers, another reason may be that topsoil is subject 
to more frequent fluctuations in soil environmental properties (e.g., 
soil temperature, moisture and nutrient availability) than the subsoil, 
and a greater soil volume in deeper layers would buffer soil envi-
ronmental conditions to a large extent, resulting in relatively large 
variability of BNPP in the topsoil.

As expected, climatic variables have significant effects on BNPP 
and its depth distribution. Mean annual temperature (BIO1) and 

precipitation (BIO12) are identified to be the most important. BIO12 
is the predominant source of soil moisture; while BIO1 determines 
the loss rate of soil moisture via evaporation and plant transpira-
tion and the depth of active layer above the permafrost. Previous 
assessments at broad scales mainly focused on BIO1 and BIO12, 
and have demonstrated the importance of these two climatic vari-
ables (Gherardi & Sala, 2020; Gill et al., 2002; Girardin et al., 2010). 
Our result further confirms the dominant role of climatic drivers in 
BNPP depth allocation. However, previous studies have found that 
the degree and even the direction of the correlation of BNPP with 
BIO1 and BIO12 are biome- dependent (Reich et al., 2018; Walker 
et al., 2006). This may be attributed to the differential responses of 
biomes to temperature and precipitation shifts depending on plant 
functional types and carbon allocation strategies (Wang et al., 2012; 
Way & Oren, 2010). For example, the growth of tropical species is 
more vulnerable to high temperature or drought than temperate or 
boreal trees (Way & Oren, 2010). We found that there was little dif-
ference in the response curve of BNPP to BIO1 and BIO12 in differ-
ent soil depth (Figure S9).

Except for BIO1 and BIO12, other climatic variables associated 
with climate seasonality and inter- annual variability also play a role 
in regulating the depth distribution of BNPP. Mean temperature di-
urnal range (i.e., BIO2) and mean temperature of the wettest quar-
ter (i.e., BIO8) are the most important climatic variables after BIO1 
and BIO12 (Figures 3b and S9). Overall, these results suggest that 
both the mean and variability of climatic conditions are important 
determinants of belowground plant carbon allocation; and, more 
importantly, the direction and magnitude of their effects are biome- 
specific probably depending on local plant functional types and 
their response to soil water regimes. Future climate (e.g., warming 
and precipitation change) and land cover changes (e.g., vegetation 
shift) may significantly alter the amount of BNPP allocated to differ-
ent soil layer depths, thereby potentially modifying biogeochemical 
processes (e.g., soil carbon balance and greenhouse gas emissions) 
across soil depths that are regulated by fresh carbon inputs.

Despite the leading role of climate, soil physicochemical prop-
erties also play a vital role in soil BNPP variation across space. 
Indeed, mean actual daily soil evaporation (which is affected by both 
soil properties and climatic conditions) is as important as BIO1 and 
BIO12, positively influencing BNPP (Figure S9), in line with the find-
ings for global grasslands (Sun et al.,2021). A major reason would 
be that high soil evaporation means a higher probability of water 
stress, given otherwise similar environmental conditions. Total soil 
nitrogen content as an indicator of soil nutrient availability also 
exerts a positive effect, particularly in deeper layers (Figure 3b,c). 
Together with the general positive relationship between BNPP and 
climatic variables, these results reflect the key role of energy (e.g., 
temperature) and soil resource profiles (e.g., water, nitrogen and 
other nutrients) in regulating the depth distribution of BNPP. More 
accurate depth- resolved information of soil resources that directly 
influence plant growth, particularly soil nutrient availability, would 
promote a more reliable prediction of BNPP and its depth allocation 
(Vicca et al., 2018). Soil physical properties also cannot be ignored. 
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For example, both soil bulk density and sand show negative effects. 
They are key soil physical parameters determining the suitability of 
soil environment for root growth (Dexter, 2004). Another notewor-
thy phenomenon is that the effect of a specific soil property is soil 
layer- dependent, while the layer dependence of the effects of cli-
matic and topographic variables is much weaker (Figure S9). These 
results demonstrate that the depth distribution of BNPP is driven 
by complex interplay among edaphic, climatic and topographic vari-
ables, which is further modulated by biome type as different biomes 
may adopt distinct carbon allocation strategies (Malhi et al., 2017; 
McCarthy et al., 2010; Wieder et al., 2015).

The data used in this study build upon quality- checked legacy 
datasets, and we further updated the data via literature synthesis 
to generate a more comprehensive one that improves spatial cover-
age and benefits robust assessment at the global scale. Although we 
show evidence that the two datasets are not statistically different in 
terms of BNPP estimates (derived from peer- reviewed publications 
vs. the ORNL DAAC legacy data; Figure S3), here we note several 
limitations in the estimation of root- derived BNPP due to the dif-
ficulty in field measurements and assumptions (Clark et al., 2001; 
Milchunas & Lauenroth, 2001). First, not all data include all BNPP 
components such as root exudates. BNPP allocated to root exudates 
and mycorrhizae may account for a considerable fraction of BNPP 
(particularly in forests) but is challenging to measure them in situ 
(Bertin et al., 2003; Clark et al., 2001). As such, BNPP would be un-
derestimated and depend on the approach used to measure BNPP. 
Second, most data only include BNPP in a single year, but BNPP 
varies across years. Given that we focus on the spatial variability 
of BNPP across the globe, however, the consequences of temporal 
variability on our estimates would be small if we accept that inter- 
annual variability is smaller than spatial variability across the globe. 
Third, our approach implicitly assumes that roots in different soil 
depths have the same turnover times. For some plants, roots in dif-
ferent soil layers (e.g., coarse vs. fine roots) may have different func-
tions, and roots with different functions may distribute unequally in 
soil layer depths (Freschet et al., 2017; Jackson et al., 1996). Thus, 
turnover times of different root functional types may be different, 
resulting in biases in the estimation of the proportional depth distri-
bution of carbon inputs according to root biomass alone. However, 
our simulations using a two- pool root turnover model did not find 
differences between the vertical distributions of BNPP and root bio-
mass (Figure 2a). Fourth, different approaches could be adopted to 
measure BNPP in different studies and can potentially cause uncer-
tainties in the estimation. In the 54 literatures used for BNPP data 
collection in this study (Appendix A— Data sources), soil cores (22 
papers) and ingrowth cores (26 papers) are the two most common 
approaches. We found that across most biomes, BNPP observed 
using different approaches (e.g., soil cores vs. ingrowth cores) are 
comparable (Figure S2), although discrepancies between datasets 
were found in several ecosystems, particularly in tundra ecosys-
tems, possibly due to limited data availability. Thus, the uncertain-
ties caused by different approaches to quantify BNPP would be 
small (Makkonen & Helmisaari, 1999). However, we acknowledge 

that BNPP measured using other approaches such as minirhizotron 
and isotope labelling may be significantly different from those using 
soil cores and ingrowth cores (Kuzyakov & Schneckenberger, 2004; 
Milchunas, 2009). In addition, for global BNPP mapping, it should be 
noted that soil depth would not reach to 2 m. Thus, our estimation 
of 0– 2 m soil profile would be an overestimation of overall BNPP in 
some regions with shallow soils. Overall, we need a cost- efficient 
technique that can be easily applied across different biomes to accu-
rately measure depth- resolved BNPP in situ.

To our knowledge, we are the first to spatially explicitly predict 
depth- specific BNPP across the globe using consistent approaches 
with the quantification of prediction uncertainties, and demonstrate 
the vital role of climatic and edaphic variables in controlling the dis-
tribution of BNPP across the globe as well as along the soil profile. 
The quantitative information is critical for explicit representation of 
soil layer- specific carbon inputs. By quantifying the spatial pattern 
of the depth distribution of carbon inputs, our maps provide infor-
mation on belowground plant carbon allocation across the globe, 
which can be used to parameterize, scale or benchmark spatially 
explicit modelling of carbon cycle and facilitate more reliable pre-
dictions of whole- profile soil carbon dynamics across biomes as well 
as across the globe.
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