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Ecosystemrespiration (ER) is among the largest carbon fluxes between the
biosphere and the atmosphere. Understanding the temperature response of

ERis crucial for predicting the climate change-carbon cycle feedback.

However, whether there is an apparent optimum temperature of ER (TER

opt

and how it changes with temperature remain poorly understood. Here we
analyse the temperature response curves of ER at 212 sites from global
FLUXNET. We find that ER at 183 sites shows parabolic temperature response
curvesand TER at which ER reaches the maximum exists widely across

opt

biomes around the globe. Among the 15 biotic and abiotic variables
examined, TER is mostly related to the optimum temperature of gross

opt

primary production (GPP, TP) and annual maximum daily temperature

opt

(T...)-Inaddition, ngt linearly increases with T,,, across sites and over
vegetation types, suggesting its thermal adaptation. The adaptation
magnitude of Tg%, which is measured by the change in T3F, per unit change in
Trax, I8 pOSsitively correlated with the adaptation magnitude of 75 This
study provides evidence of the widespread existence of ngt andits thermal
adaptationwith T, across different biomes around the globe. Our findings
suggest that carbon cycle models that consider the existence of TER and its

opt

adaptation have the potential to more realistically predict terrestrial carbon
sequestration in aworld with changing climate.

Ecosystemrespiration (ER) isa major component of carbon exchanges
betweenterrestrial ecosystems and the atmosphere, plays animportant
role in determining the carbon balance of an ecosystem and affects
atmospheric carbon dioxide (CO,) concentration"?. Temperature sub-
stantially influences respiratory CO, emission®*. Understanding the
long-term responses and adaptation of ER to temperature is critical
to improving model prediction of ecosystem carbon cycling under
future climate warming® .

However, our understanding of the temperature responses of ER
remains limited, partly because ER is a sum of complex processes of
autotrophic and heterotrophic respiration affected by many con-
founding factors'". The temperature response of leaf respiration is

generally exponential over abroad range of temperatures'. However,
moreand more recent studies have demonstrated that leaf respiration
reaches a peak at amaximum temperature, followed by a sharp decline
at higher temperatures®* ™%, On the other hand, the thermodynamic
properties of enzymes®, the short supply of respiratory substrates™*
and thermal adaptation of microbial growth** may all lead to adecline
in both auto- and heterotrophic respiration at high temperatures.
Thus, these mechanismsindividually or in combination could poten-
tially result in a parabolic temperature response curve of ecosystem
respiration with an optimum temperature (T(fgt). Investigating the
existence of atemperature optimum for respiration at the ecosystem
level for various biomes and how it changes with environmental factors
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Fig.1|Distribution of T(E::t derived from flux-tower sites. a, Location of the 183
FLUXNET sites (red circles) used in this study with detected temperature optima
for ERand the 29 FLUXNET sites (green circles) excluded from this study without
detected temperature optima for ER. b, The response of ER to temperaturein an
exponential function without temperature optima. ¢, The response of ER to
temperature in asingle-peak function with temperature optima. d, Parameter
estimate of the fitted quadratic function at T(fl'}t for the 183 sites with temperature
optima. ais the parameter estimate of the fitted quadratic function at T(fgt
(equation1). Negative valuesindicate that the curveis concave, large values

‘
Tont
indicate strong curvature (that is, sharp curves) and small values indicate weak
curvature (thatis, flat curves). Here we used a beeswarm plot to show the
distribution of parameter a. A beeswarm plot is a one-dimensional scatterplot
similar to a ‘stripchart’ and is a good way of showing the distribution of a given
variable while also showing each individual data point. e, Distribution of Tg%,
(n=183). Whiskers, maximum and minimum values; top, middle and bottom
lines of the box: 75% quantile, median and 25% quantile; square in box, mean
value; crosses (x), 1% and 99% quantiles; points and curve on the right, normal

R R
distribution of Topt.

are valuable for accurately predicting the climate change-carbon
cycle feedback.

In comparison, plant photosynthetic rates have been well docu-
mented to increase with temperature, reaching an optimum tem-
perature above which photosynthetic rates decline’*%. The
optimum temperature of plant photosynthesis (Tgp"t") usually varies
over space, being higher in a warmer environment at both leaf and
ecosystem scales for a wide range of plant species and plant

functional types?*®, This variationin T()G[ft" with temperature is prob-

ably aresult of thermal adaptation. On the other hand, both hetero-
trophic and autotrophic respiratory fluxes are closely coupled with
photosynthesis via their dependence on photosynthetic substrate
supply®’~*. Notably, the connection of plant respiration with photo-
synthesis is tight as reported in many previous studies® . Itis likely
that plants thermally adapt photosynthesis and respiration in a
coordinated fashion***. In this sense, changes in the response of
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Fig.2|Therelationship of T:,l:t to T,,.,. a,b, Relationship across sites (a) (n =183)
and vegetation types (b) (n = 9). Red lines represent the significant linear
regression relationship across sites and vegetation types. Circle size is
proportional to the number of sites in each ecosystem type. Circles and error bars
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indicate mean + s.d. CRO, cropland, n = 17; DBF, deciduous broadleaf forests, n = 22;
EBF, evergreen broadleaf forest, n = 10; ENF, evergreen needle-leaf forest, n = 45;
GRA, grassland, n =35; MF, mixed forest, n = 8; OSH, open shrublands, n = 14; WET,
wetland, n=17;SAV, savanna, n = 13. Shaded areas represent 95% Cls (F-test).

respiration to temperature might be closely related to adjustments
in the response of photosynthesis to temperature, or might even
adjust faster than photosynthesis at the ecosystem scale*. Thus,
ngv if it exists, probably shifts higher with higher temperatures as
T()G[ftp doesinawarmer climate.

Furthermore, it is of great importance to understand how the
variationin TOE& will affect annual ER for an accurate estimation of ER

inachanging climate. Thus, itis crucial to investigate the effects of ¢,

onERinaddition to examining the existence of (1, in different ecosys-
tems, itsthermal adaptation across sites and biomes, and the relation-
shipsbetween T} and T57F. The relationship between 7K and ER can
help us better understand how climatic warming impacts ecosystem
carbon fluxes.

In this study, we analysed the temperature response curves of
independently estimated ER and gross primary production (GPP) from
the FLUXNET datasets at 212 sites. The specific hypotheses we tested
in this study are: (1) T3, exists in most biomes; (2) T3F, increases with
temperature across sites and over vegetation types; (3) T(fl';t is mostly
related to TS&P and annual maximum daily temperature (7,,,,,) rather
than other influencing factors, and its adaptation magnitude is cor-
related with that of 76PP; and (4) TER largely determines annual ER

X opt ’/ opt
acrosssites globally.

Results

Existence of T,

We detected the existence of an apparent optimum temperature of
ER (TER) at 183 sites covering large areas and most vegetation types
fromatotal of 212 sites in our dataset (Fig. 1a-c). Quantitative analy-
sis showed that all the temperature response curves of ER at these
sites followed significant concave quadratic functions rather than
exponential functions with air temperature (7;) (Fig. 1d, Extended
Data Figs.1and 2). Across the 183 sites, T¢ ranged from 6.5t033.3 °C
(Fig. 1e). The residuals of ER-T, curves did not have any significant
relationship with soil moisture (SM), vapour pressure deficit (VPD),
global radiation or leafareaindex (LAI), suggesting that the existence
of T(fgt was not likely caused by these confounding factors (Supple-
mentary Fig.1). For the 29 sites where the parabolic curves were not
foundand a T(fl'}t was thus absent, we found that this absence was
mainly due to two reasons. First, some tropical sites (sevenssites) had
little variationin seasonal temperature (<3 °C), whichmade it difficult
togenerate any clear response curves (Supplementary Information 2).
Second, 22 sites had GPPs not reaching optimum temperature

(Supplementary Fig. 2).

ER GPP
Dependence of T, on T and Tyx

ngt values across sites were positively correlated with the annual
maximum daily air temperature (7,,,,,) (R*=0.71, P< 0.001), with aspa-
tiallinear regression slope of 0.80 °C per °C across sites (Fig. 2a). This
thermal adaptation of T(fgt to T,,,, Was also observed across different
vegetation types (Fig. 2b), with a spatial linear regression slope of
0.91°C per°Cacross biomes (R?=0.90, P < 0.001). The slope indicates
the thermal adaptation magnitude of ER to the local temperature.
Ridge regression was applied to disentangle the independent
effects of the co-varying factorsindividually on T . It showed that &5,
was majorly determined by 75¥F and T, while other bioticand abiotic
factors including biomass, mean annual temperature (MAT) or pre-
cipitation (MAP), aridity index (Al), VPD, growing season temperature
(GST) or radiation (GSR), SM, soil pH (pH), soil organic carbon (SOC),
clay fraction (Clay) and soil bulk density (BD) did not significantly
influence T('flft, although some of them were significantin the bivariate
regression (Fig. 3aand Extended Data Fig. 3). T(f";t shifted upwards with
anincreasein T(,G[ft" across sites and biomes, with a slope of 0.81°C per
°C (R*=0.74, P< 0.001) across sites and 0.84 °C per °C (R>=0.88,
P<0.001) across biomes (Fig. 3b,c). Variation partitioning analysis
further confirmed that variation in T(fg[ was mostly explained by the
interactive effects of TSy and T,,,, (63%), with TSFF having a slightly
higher independent contribution than T,,,, (11% versus 8%) (Supple-
mentary Fig. 4). The close relationships between T(f[‘}t and T,,,, and
between ToEl';t and T2PP also existed over years within sites (Extended
Data Fig. 4). Meanwhile, most of the sites without detected ngt were
accompanied by the absence of TS;P data (Supplementary Fig. 2).
Defined as the positive spatial slope of the ngt— Tax OF TOGrftP— T
regression, the adaptation magnitude ofTOE[‘}t was closelyrelated to the
adaptation magnitude of Tfrftpacross different vegetation types (Fig. 4;
R?=0.55,P< 0.05; Extended Data Fig. 5 and Supplementary Table 3).
A quadratic function was found between TEX and annual ER
(Fig. 5). There was a significant increase in the annual ER (P < 0.05)
across sites when T(th was below 21.0 °C. Above 21.0 °C, the annual ER
decreased with T_X atarelatively slower rate per °C (P < 0.05; Fig. 5).
Projection of T(f,':t
We further established an empirical model to upscale T(f[‘}t using 7o
GST, VPD and BD on the basis of the stepwise regression model (Sup-
plementary Table 5). Two thirds of the 183 sites were used for model
fitting, and the remaining data were used for model validation
(Extended DataFig. 6). The empirical model explained more than 70%

of the variation in T;:[l}t across the global sites (Extended Data Fig. 6).
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Fig.3| Therelationship between Ts:;t and influencing factors. a, The response
of T(’Egt toinfluencing variables estimated by ridge regression (n =183). Circles
represent the standardized coefficient of ridge regression between ng‘t and each
of the variables; bars indicate 95% Cls. The influencing variables are: 7;“’{" (°C);
Trnax (°C); T (°C); MAT (°C); GSR (W m™2); MAP (mm yr™); GST (°C); VPD (kPa); SM;
Al.b,c, Relationship between T and TS (F-test with 95% Cls) across sites (b)
(n=183) and vegetation types (c) (n =9). Circle size is proportional to the number
of sitesin each ecosystem type. Circles and error bars indicate mean + s.d. CRO
n=17,DBFn=22;EBFn=10;ENFn=45; GRAn=35;MFn=8;0SHn=14; WET
n=17;SAV n=13. Shaded areas represent 95% Cls.

We then estimated TER at present (2001-2010) and for the end of the

century (2091-2100) under the SSP2-4.5 scenario at the global scale
using this empirical model. At present, the maximum T(f[‘}t values of

14 4 N o7
2 _ P
124 R?=0.55 %
5 P=0.01 %
il
v 1.0 4
(o]
[0}
©
3 08
€
2
E 06 ® CRO
S @ DBF
£ 044 EBF
S @ ENF
GRA
2 02 ® MF
e OSH
0 - . ® SAV
@ WET
*02 T T T T T T T T T
-0.4 -0.2 o] 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6

Adaptation magnitude of Topt

Fig. 4 | Relationship between the thermal adaptation magnitudes of Tf:tp
and T‘f:t across different vegetation types. The thermal adaptation magnitude
represents the vegetation’s capability to keep pace with temperature changes.
Thermal adaptation magnitudes (including its 95% CI) less than1indicate that the
Ten or TSTF of these vegetation types cannot fully adapt to T,,,,. Adaptation
magnitudes and their 95% Clsincluding 1indicate that the T(fl';t or Tg’;" of these
vegetation types can fully adapt to T;,,,,. The red line depicts the relationship
between the thermal adaptation magnitudes of 7$r¥ and TEX, (F-test with 95%
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Fig. 5| Therelationship between annual ER and T(fgt. Thered circles (n=79)
represent sites with TgRt below the threshold of 21.0 °C, while the blue circles
represent sites with T(‘)EE[ above the threshold of 21.0 °C (n =104). The black
dashed line represents a quadratic function between T, and annual ER (F-test
with 95% CI). The threshold of 21.0 °C is the vertex of the quadratic function.
Thered line represents positive linear relationship between T(fg[ and annual ER
for red points below the threshold, and the blue line represents negative linear
relationship between ngt and annual ER for blue points above the threshold

(F-test with 95% CI).

nearly 30 °Cmainly appear over tropical forests, savannas and drylands,
and the minimum values of near 10 °C prevail at high latitudes and in
mountainous regions such as the Qinghai-Tibetan Plateau (Fig. 6a). By
the end of this century, the global mean T('fl['}t increases from 22.6 to
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the NorESM2-MM model under the SSP2-4.5 scenario.

t

26.0 °Cduetothe higher T, increasing from 25.5t029.3 °C (Fig. 6b).
Thestandard deviation of the global T(fl‘}t rangesfrom1.5t04.5°C, with
the largest uncertainty in North Africa, West Asia and South Asia

(Extended DataFig. 7).

Discussion

In this study, we detected the optimum temperature for ecosystem
respiration (ngt) at 183 out of 212 sites across most of the ecosystem
types over large geographical areas (37.4° S to 74.5° N) (Fig. 1). The
widespread T(f[‘}t confirmed our first hypothesis that an apparent opti-
mum temperature for ER exists in most of the biomes. It is clear that
exponential response curves are not the best functionto represent the
relationship between temperature and ecosystem respiration over the
season'***8 (Fig. 1and Extended Data Fig. 1). The existence of ngt is
probably due to multiple mechanisms, such as the reduced supply of
photosynthetic substrates and cell disruption or lysis of mitochondria
athigh temperatures, causing a decrease in leaf respiration'", Inaddi-
tion, respiratory enzyme capacity and microbial growthis limited under
high temperatures®*°, which may also constrain heterotrophic respi-
ration at high temperatures. Widespread T(fl'}t alsoimplies that terres-
trial ecosystem respiration rates might sharply decline similar to

photosynthesis, instead of continuing to rise at higher temperatures™.
Hence, ignoring the existence of ngt anditsadaptationto higher tem-
peratures in Earth system models can result in gross overestimation
of the positive feedbacks between climate warming and terrestrial
ecosystem carbon release®®'*4+473,

Thetightrelationship between T(f['}t and T, supports our second

hypothesis that T(fgt increases proportionally to T,,,, across sites and

over vegetation types, which is similar to the relationship of ngt toTSF
(Fig. 2)"*%%. Our results demonstrated that the shift in the apparent
optimum temperature is an emergent trait to represent ER thermal
adaptation. Inaddition, boththeridge regression and bivariate regres-
sion analyses showed that the influence of TSP and T,,,,, on TER domi-
nates the effect of other biotic and abiotic factors (Fig. 3 and Extended
Data Fig. 3). This result is consistent with our third hypothesis. The
close relationship between Tgp and TSY across years within sites and
the accompanying absence of Tfrft" in most no-T sites further con-
firmed the linkage between 7£R and 757F (Extended Data Fig. 4 and
Supplementary Fig. 2). Our results add to the growing evidence that
thermal adaptations of plant photosynthesis and respiration are coor-
dinated***. Moreover, our results expand the knowledge on adaptation

coordination from the leaf scale to the ecosystem scale. However,
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questions remain on what mechanisms promote the thermal optimality
of ecosystem respiration when autotrophic respiration and hetero-
trophic respiration have different temperature responses and diver-
gent links with photosynthesis.

We further quantified the thermal adaptation magnitude of ER by
calculating the shiftin T(fgt inresponsetothechangein 7, acrosslarge
geographical gradients. The adaptation magnitude varied among dif*-
ferent vegetation types (Extended Data Fig. 5), attributable to differ-
ences in interspecific variability in adaptation and climatic
preferences*. Notably, the adaptation magnitude of savanna and
evergreen broadleaf forestin 7.5 was significantly lower than that of
otherecosystemtypes, whichis consistent with the notion that warmer
ecosystems might have less adaptation capacity and less benefits under
future warming compared with cooler ecosystems'>** (Extended Data
Fig.5and Supplementary Table 3). Meanwhile, the adaptation magni-
tude of T(fgt was tightly related to the adaptation magnitude of TOG;P
across different vegetation types (Figs. 4 and 5). This result further
supported our conclusion that the thermal adaptations of photosyn-
thesis and respiration are closely correlated. The closely correlated
optimum temperature and adaptation magnitude between ERand GPP
may contribute to homoeostasis for ecosystem C balance between
fluxes under climate warming>*>>,

How do thermal adaptations in T(fgt impact ER? Previous studies
have focused only on the thermal adaptation of the optimum tempera-
ture, but the changes in the corresponding carbon fluxes associated
with thermal adaptation have not been carefully examined””. The
nonlinear relationships between TOERt and annual ER suggested that ER
firstincreases with T(fgt when TER is below 21.0 °C and then decreases
above 21.0 °C (Fig. 5). These results confirmed our fourth hypothesis
that ERis closely related with T Traditionally, ecosystem adaptation
isoften regarded as adjustmentsin ER that improve the performance
of these processes at the new growth temperature®®”’. Nevertheless,
the concaverelationships showninFig. 5implied that higher Tgl'}t does
not always lead to higher ER*. ER decreases once Tth is beyond the
threshold of21.0 °C (Fig. 5). Therefore, modelling ER and its adaptation
under future climate warming should take into account not only shifts
in T(f['}t but also varying ER associated with dynamic optimum
temperature.

Compared with the Farquhar biochemical model of photosyn-
thesis, most approaches to modelling respiration are empirical since
respiration is composed of a series of many biochemical processes
occurring continuously in all tissues of the ecosystem, with different
mechanisms and different metabolic relations***°. Linking respiration
to photosynthesis seems to simplify the respiration models and has
also been proposed and widely debated in previous studies®. By pro-
viding strong evidence of the close correlations between the thermal
adaptation of ER and GPP across multiple sites and different vegetation
types, this study implies a potential approach to explicitly predict the
response of respiration to climate change by linking thermal adapta-
tion of respiration to photosynthesis adaptation functions. Meanwhile,
our results raise some rather crucial questions for future study. For
example, under what conditions would the thermal adaptation of ER
be implicitly accompanied by an adaptation response of GPP? What
are the mechanisms underlying the widespread thermal adaptation
of ER? What role do the differential responses of autotrophic and
heterotrophic respiration to increasing temperature play in regulat-
ing the optimum temperature of ER? Addressing these issues can help
elucidate when and why thermal adaptation of ER happens and can
assistin the development of better respiration models.

Methods

FLUXNET data and related variables

The daily mean eddy-covariance carbon fluxes and meteorological
data were obtained from FLUXNET datasets (https://fluxnet.org/).
The FLUXNET datasets were quality controlled, filtered, gap-filled

and partitioned using consistent methods®. To avoid self-correlation
between GPP and ER induced by flux partitioning of eddy-covariance
CO, fluxes®, we used ER data and GPP data based on the daytime
approach®. Only data with all three carbon fluxes (GPP, ER and net
ecosystem productivity (NEP)), NEE_VUT_REF_QC > 0.8 and entire
whole-year meteorological data after gap filling were selected for
further analysis. Then sites showing parabolic temperature response
curves of ER were used to investigate the optimum temperature
of ER. Finally, a total of 212 individual sites with 1,452 site-years of
eddy-covariance data were used in this study covering large areas
(37.4°S to 74.5° N, Fig. 1 and Supplementary Table 1). According to
the International Geosphere-Biosphere Programme, these sites can
bedividedinto 11 plant functional types: deciduous broadleaf forests
(DBF), evergreen broadleaf forests (EBF), evergreen needle-leaf for-
ests (ENF), deciduous needle-leaf forest (DNF), mixed forests (MF),
open shrublands (OSH), grasslands (GRA), croplands (CRO), savanna
(SAV), woody savanna (WSA) and wetlands (WET). SAV and WSA were
merged into SAV.

Meteorological variables used in this study included the annual
maximum daily temperature (7, °C), the annual minimum daily
temperature (7, °C), growing season temperature (GST, °C), growing
seasonsolar radiation (GSR), vapour pressure deficit (VPD, kPa), mean
annual temperature (MAT, °C), mean annual precipitation (MAP, mm),
soil moisture (SM, v/v) and aridity index (Al). SM at 5 cm was obtained
from the observation data of each site if available. SM of sites with no
observations was extracted from the ESA CCISoil Moisture Dataset by
longitude and latitude (https://www.esa-soilmoisture-cci.org/). Alwas
calculated as precipitation divided by potential evapotranspiration.
Potential evapotranspiration was calculated by using the Thornthwaite
method based on measured data at each site. All the above variables
were calculated fromeach of the site-year data and then averaged over
the years of observation by site.

Besides these meteorological variables, the soil properties and
biomass data for each site were extracted from global datasets accord-
ing to its latitude and longitude. Soil organic carbon (SOC, %), soil
bulk density (BD, kg dm™), clay fraction (Clay, %) and soil pH (pH)
were retrieved from the Regridded Harmonized World Soil Data-
base v.1.2 in the Oak Ridge National Laboratory Distributed Active
Archive Center for Biogeochemical Dynamics (https://daac.ornl.
gov/SOILS/guides/HWSD.html); aboveground biomass (Biomass,
Mg ha™) was accessed at http://wald.anu.edu.au/data_services/data/
global-above-ground-biomass-carbon-v1-0/.

Temperature response curve of ER

The growing season was determined according to whether the average
daily air temperature (7,) was above 5 °C for at least five consecutive
days. For each site-year, the daily mean air temperatures and corre-
sponding carbon fluxes (GPP and ER) were binned by 1 °C. The daily air
temperature and the corresponding carbon fluxes in each temperature
bin were averaged when constructing the ER-T, or GPP-T, response
curves following previously developed methods’. Among the 212 sites,
183 sites followed asimilar parabolic response pattern of ER to tempera-
tureasshownin Extended DataFig.1; werandomly selected asite-year
from each vegetation type to show arepresentative curve.

To further quantitatively test the shape of the ER-T, curve for each
site-year, we fitted a quadratic function using equation (1). T(f]f}t and
ER,.«arethevertex of the parabola. ais parameter estimate of the fitted
quadratic function andindicates the direction and extent of curvature.
Negative values of aindicate that the curve is concave.

ER=a(T- T(fgt)z + ERppax @

Considering that 7,, VPD, solar radiation, SM and LAl are closely
correlated and always co-vary with each other, we evaluated the poten-
tialimpacts of SM, VPD, global radiation (R,) and LAlwhenthe T,impact
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on ER was analysed. The non-significant relationships between SM,
VPD, R, or LAl and the residuals of ER-T, regression suggest that the
existence of T¢% was not likely induced by the effects of these confound-
ing factors (Supplementary Fig.1). LAl data for each site were extracted
from global datasets (https://www.ncei.noaa.gov/products/
climate-data-records/leaf-area-index-and-fapar) according toits lati-
tude and longitude.

For the 29 sites where a T(, was absent, we further analysed tem-
perature responses of ER and GPP and constructed the curves site by
site, finding that they were mainly due to negligible seasonal tempera-

ture variations and the absence of 757¥ (Supplementary Fig. 2).

Derivation of Toy or Tene

The 183 sites that showed parabolic temperature response curves of
ER were used to derive T, and investigate the thermal optimality of
ER. We defined the peak value of the T,-ER or T,-GPP curve as ER,, or
GPP,,,,, and the corresponding 7, for the peak ER or GPP as the apparent
optimum temperature (T, or 7o) of ER or GPP, respectively (Extended
DataFig.1). We also used the medians of the daily air temperature and
the corresponding carbon fluxes in each temperature bin when we
constructed the ER-T, or GPP-T, response curves. The TER or TG'F
derived from using median values showed results similar to those
derived from using mean values (Supplementary Fig. 3). So, we used
TR or To¥F derived from using mean values thereafter in this study.
Factors controlling the variationin Tﬂ,‘t across sites
Weinvestigated the factorsinfluencing the variationin 735 acrosssites
(Fig. 3a and Extended Data Fig. 3). The abiotic and biotic factors
included T,,,,, Tmin, GST, VPD, MAT, MAP, Al, GSR, soil pH, SM, SOC, BD,
biomass and 77F. To solve the collinearity problem of co-varying cli-
mate factors and determine the relative importance of each factor on
Ten, we used ridge regression to examine the relationship between 7%
and biotic or abiotic variables and identify the dominant factors deter-
mining T(f"}[. The ridge regression, by design, solves the problem of
collinearity of co-variates and can evaluate the relative importance of
eachfactorindependently of ngt- Further, we used variation partition-
ing analysis in R software to quantify the contribution percentage of
different variables to the variationsin ng}t (Supplementary Fig. 4).
Temporal variations in Top, within sites

To get an understanding of temporal variations in T(fl'}t across years
within sites, we analysed 15 long-term FLUXNET sites with more than
10 years observation data to investigate the thermal acclimation for
Tix anditsrelationship with 7., and T55F at temporal scale within each

site (Supplementary Table 2). The results showed that ngt was posi-

tively correlated with T,,,, and the close relationships between T(f:}t and

T also existed over years within sites and acrosssites (Extended Data

Fig.4).

The adaptation magnitude of Top, OF Tope

The adaptation magnitude of T(f"}t or TS&P for each vegetation type was
calculated asthe slope between T(f['}t or Tg;ip and T, averaged over the
years of observation by site. The slope represents the vegetation’s
capability to keep pace with temperature changes. Slopes (including
95% confidence intervals (CI)) less than lindicate that the TER or 73T
ofthese vegetation types cannot fully adapt to 7,,,,. Slopes and 95% Cls
overlapping with lindicate that the TER or T6"P of these vegetation types

opt opt
can fully adapt to T,,,,.

Upscaling and uncertainty analysis

Toupscale Tlfl{}t attheglobalscale, we developed afew empirical models.
Two thirds of the 183 sites were used for model development, while the
remaining sites were used for model validation. We compared the
regression results of different regression methods and chose the step-

wise regression model with the lowest Akaike information criterion

and highest R to predict currentand future T across the world (Sup-
plementary Table 4). The final selected model included four predictors,
including T,,,,, GST, VPD and BD (Supplementary Table 5).

To get the global data of these 4 predictors, we used Climatic
Research Unit/National Centers for Environmental Protection (CRU/
NCEP) 6-hourly dataset to obtain the air temperature and relative
humidity (https://data.ucar.edu/en/dataset/cruncep-version-7-
atmospheric-forcing-data-for-the-community-land-model). Then we
calculated their daily values and extracted the T,,,,, the GST (where the
daily air temperature was above 5 °C for at least five consecutive days)
and VPD. BD, which we used to simulate current and future 7¢7, was
obtained from the Regridded Harmonized World Soil Database v.1.2
inthe Oak Ridge National Laboratory Distributed Active Archive Center
for Biogeochemical Dynamics (https://daac.ornl.gov/SOILS/guides/
HWSD.html).

The remaining 29 sites without detected 7.5 were notincludedin
establishing the empirical model because the purpose of the model
was to upscale 75X, which these 29 sites had not reached yet. We justi-
fied that the exclusion of these 29 sites would notimpact our upscaling
results (Supplementary Fig. 5).

To predict future 7%, we used daily air temperature and relative
humidity in 2091-2100 from the dataset of Lawrence Livermore
National Library (https://esgf-node.lIinl.gov/projects/esgf-linl/). We
chose the NorESM2-MM model under the SSP2-4.5 scenario from
Coupled Model Intercomparison Project 6 to do the prediction.

To assess the uncertainty of the model simulation, we adopted the
Latin hypercube sampling-based Monte Carlo method to quantify
the uncertainties of the global prediction of current and future 7%
estimated by the empirical models (Extended Data Fig. 7 and Supple-
mentary Information 5).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All FLUXNET data can be downloaded at https://fluxnet.fluxdata.
org. Soil properties were retrieved from the Regridded Harmonized
World Soil Database v.1.2 in the Oak Ridge National Laboratory
Distributed Active Archive Center for Biogeochemical Dynamics
(https://daac.ornl.gov/SOILS/guides/HWSD.html). Biomass data
were obtained at http://wald.anu.edu.au/data_services/data/
global-above-ground-biomass-carbon-v1-0/. Soil moisture used to
extract data for sites without providing soil water conditions was
obtained fromthe EuropeanSpace Agency’s (ESA) Soil Moisture Climate
Change Initiative (CCI) project (https://www.esa-soilmoisture-cci.
org/). Leaf area index data were obtained from https://www.ncei.
noaa.gov/products/climate-data-records/leaf-area-index-and-fapar.
Current air temperature and relative humidity data were obtained
from the Climatic Research Unit/National Centers for Environmental
Protection (CRU/NCEP) 6-hourly dataset (https://data.ucar.edu/
en/dataset/cruncep-version-7-atmospheric-forcing-data-for-
the-community-land-model). Future daily air temperature and relative
humidity data were obtained from the Lawrence Livermore National
Library (https://esgf-node.lInl.gov/projects/esgf-lInl/).

Code availability
Code used for dataanalysisin thisstudyis available at https://figshare.
com/articles/online_resource/code_docx/23514492.
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Extended Data Fig. 1| Response of ecosystem respiration (ER) to daily
temperature at the 11 sites from 11 different vegetation types. Points and
Error barsindicate mean +s.d. for each temperature bin. The vegetation types
are as follows: (a) croplands (CRO), (b) deciduous broadleaf forests (DBF),

(c) deciduous needle-leaf forest (DNF), (d) evergreen needle leaf forests (ENF),
(e) evergreen broadleaf forests (EBF), (f) grasslands (GRA), (g) mixed forests
(MF), (h) opened shrublands (OSH), (i) savanna (SAV), (j) wetlands (WET),

(k) woody savanna (WSA).
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the fitted quadratic function. (b) Distribution of P value of the fitted quadratic function at the 0.05 level.
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