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Abstract

Extensive ecological research has investigated extreme climate events or

long-term changes in average climate variables, but changes in year-to-year

(interannual) variability may also cause important biological responses, even if

the mean climate is stable. The environmental stochasticity that is a hallmark

of climate variability can trigger unexpected biological responses that include

tipping points and state transitions, and large differences in weather between

consecutive years can also propagate antecedent effects, in which current bio-

logical responses depend on responsiveness to past perturbations. However,

most studies to date cannot predict ecological responses to rising variance

because the study of interannual variance requires empirical platforms that

generate long time series. Furthermore, the ecological consequences of

increases in climate variance could depend on the mean climate in complex

ways; therefore, effective ecological predictions will require determining

responses to both nonstationary components of climate distributions: the
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mean and the variance. We introduce a new design to resolve the relative

importance of, and interactions between, a drier mean climate and greater cli-

mate variance, which are dual components of ongoing climate change in the

southwestern United States. The Mean × Variance Experiment (MVE) adds

two novel elements to prior field infrastructure methods: (1) factorial manipu-

lation of variance together with the climate mean and (2) the creation of realis-

tic, stochastic precipitation regimes. Here, we demonstrate the efficacy of the

experimental design, including sensor networks and PhenoCams to automate

monitoring. We replicated MVE across ecosystem types at the northern edge

of the Chihuahuan Desert biome as a central component of the Sevilleta

Long-Term Ecological Research Program. Soil sensors detected significant

treatment effects on both the mean and interannual variability in soil mois-

ture, and PhenoCam imagery captured change in vegetation cover. Our design

advances field methods to newly compare the sensitivities of populations, com-

munities, and ecosystem processes to climate mean × variance interactions.

KEYWORD S
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INTRODUCTION

Anticipating the consequences of climate change is
arguably the most pressing challenge at the interface of
science and society. Not only is the mean temperature
rising, but precipitation is also becoming more variable
in many regions globally (Armal et al., 2018; Cook
et al., 2019; Fischer et al., 2013; IPCC, 2022). Much prior
ecological research on climate change has investigated
trends in mean climate variables or the impacts of single
extreme events (Easterling et al., 2000; Jentsch et al.,
2007; Malyshev et al., 2016, e.g., De Boeck et al., 2018);
however, robust theory predicts that changes in the vari-
ance of climate can also cause important biological
responses, even when the mean climate does not change
(Ruel & Ayres, 1999; Turelli, 1978; Jensen’s Inequality,
Pickett et al., 2015). First, increasing climate variance can
magnify the influence of environmental stochasticity,
i.e., the aspects of climate events that are randomly deter-
mined and cannot be predicted precisely (Ridolfi et al.,
2011). Second, greater variance can increase the fre-
quency, magnitude, and/or duration of climate extremes
that cause ecological tipping points, force transitions to
new ecological states, slow the rate of recovery from dis-
turbance, or alternatively, promote community or eco-
tone stability (Chesson, 2000; Doak & Morris, 2010;
Lynch et al., 2014; Peters et al., 2006; Scheffer et al., 2015;
Zinnert et al., 2021). Third, as climate variance increases,
differences in climate between consecutive years become
more dramatic, increasing the potential for antecedent

effects, in which current biological responses depend on
responses to past perturbations (Liu et al., 2019; Ogle
et al., 2015; Wood et al., 2022). For instance, current pri-
mary production may be lessened if the prior year is drier
than average (Reichmann et al., 2013).

Confronting variance has transformed other ecologi-
cal subdisciplines (Carpenter et al., 2015; Ridolfi
et al., 2011). For instance, models that incorporated intra-
specific trait variance altered predictions of population
stability, competitive dynamics, and rates of speciation
(Bolnick et al., 2011; Hart et al., 2016). Laboratory studies
and process measurements (Borken & Matzner, 2009;
Lawson et al., 2015; Sponseller, 2007; Vazquez et al.,
2017) indicate that short-term physiological responses to
variability in temperature or water availability are com-
mon. However, predicting the ecological responses to
climate variance at interannual time scales requires
observations and experiments that generate long time
series because a year is only one data point. Thus, most
studies to date cannot predict ecological responses to
greater variance in interannual climate (see Hsu &
Adler, 2014; Maurer et al., 2020).

Ignoring long-term climate variance could profoundly
underestimate or overshoot predicted responses to cli-
mate change, depending on whether greater variance in
climate poses a net cost or net benefit to the biological
response. For example, six years of experimentally
increased variability in precipitation had opposite effects
on a dominant grass and a co-occurring shrub; greater
variance reduced grass biomass by 80%, but boosted
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shrub cover nearly 70% (Gherardi & Sala, 2015a, 2015b).
Similarly, long-term observations signaled benefits of
greater variance in the summer drought index for pri-
mary production in a Chihuahuan Desert grassland
because small declines in plant biomass during dry sum-
mers were more than offset by large biomass gains in
years with wet summers. In contrast, evidence indicated
costs of greater variance for a nearby Plains grassland,
because nonlinear declines in biomass in dry summers
were not offset by the small gains in wet summers
(Rudgers et al., 2018). Global meta-analyses of observa-
tional data revealed a pivot point at ~300 mm mean
annual precipitation (MAP), in which the benefits of vari-
ance in precipitation for drier-than-300 mm MAP ecosys-
tems flipped to costs of variance for wetter ecosystems
(Gherardi & Sala, 2019; Hou et al., 2021).

These examples suggest that climate variance is
ecologically important (Benedetti-Cecchi et al., 2006;
Bertocci et al., 2005; Rudgers et al., 2018); however, the eco-
logical consequences of climate variance may additionally
depend on the climate mean. For example, climate variance
may be costly to plant productivity in environments where
mean climate conditions are wet and cool because extreme
droughts cause large declines in production. Conversely,
the influence of variance could reverse to be beneficial
under hot, dry conditions, for example, that occur at the
southern range limits of northern hemisphere ecosystems,
because extreme wet years cause large increases in produc-
tivity (see Figure 1; Rudgers et al., 2018). Therefore, climate
mean and variance could interactively influence organisms
and ecosystem processes in ways that cannot be predicted
from separate manipulations of the mean or variance.
These interactions could affect systems on multiple levels,
from populations of foundation plant species, to diverse
communities of consumers, to biogeochemical or biophysi-
cal process rates. Therefore, effective ecological forecasts
will require that we determine the ecological responses to
both nonstationary components of climate distributions: the
mean and the variance (Figure 1). However, we currently
lack empirical research platforms that test for mean ×
variance interactions.

Here, we describe a novel experimental design, modi-
fied from prior field infrastructure (Gherardi &
Sala, 2013), to test the hypothesis that the effects of vari-
ability in precipitation depend on mean precipitation.
Our Mean × Variance Experiment (MVE) adds two new
elements to previous designs. First, MVE tests for an
interaction between mean and variance in precipitation
with a factorial design that crosses a mean treatment
(ambient or drier) with a variance treatment (ambient or
more variable). Second, MVE adds stochasticity to the
variance treatment to allow for possible antecedent

effects caused by natural stochasticity, rather than regu-
larly alternating between dry and wet years as in the
prior design (Gherardi & Sala, 2013). We implemented
the new MVE infrastructure in four dryland ecosystem
types in the northern Chihuahuan Desert in central New
Mexico, USA to compare their susceptibility to interacting
changes in the mean and variance of precipitation.

Because drylands have highly variable climates
(Collins et al., 2014; Noy-Meir, 1973), they make excellent
test beds to advance general understanding of ecological
responses to environmental variability. The ecological con-
sequences of changes in both the mean and variance of
climate (Figure 1) may also be particularly potent in dry-
lands, where species commonly reach physiological and
ecological limits (Allen et al., 2015; Anderegg &
Diffenbaugh, 2015). Climate models consistently forecast
rising temperatures and greater variance in precipitation
for drylands (Feng & Fu, 2013; Zhang et al., 2020), even
while long-run mean precipitation trends are notoriously
unpredictable (Garfin et al., 2014; Gutzler & Robbins,
2011; Jones & Gutzler, 2016; Seager et al., 2007, 2013). In
the Chihuahuan Desert drylands of North America, obser-
vational data and models support a pattern of simulta-
neous change in the mean and variability of aridity.
Year-to-year variability in precipitation has increased sig-
nificantly along with greater aridity (Maurer et al., 2020),
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F I GURE 1 Conceptual diagram of future scenarios of climate

change considering change in both the mean and variance of

aridity. Aridity can be captured by metrics such as the Standardized

Precipitation Evapotranspiration Index (Vicente-Serrano

et al., 2010).
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reflecting trends that are consistent with modeled pre-
dictions for future climate in this region (Gutzler &
Robbins, 2011). In addition to amplified variation in
both seasonal and interannual precipitation, meteoro-
logical data reveal that droughts have already intensified
in this region (Zhang et al., 2021), and a suite of climate
models all indicate that the frequency, duration, and
intensity of drought will increase in the future (Bradford
et al., 2020; Cook et al., 2015). In theMethods section, we
describe the novel MVE experimental design and report
on treatment effectiveness for its longest running instal-
lation in the Plains grassland ecosystem in central New
Mexico. We address two questions: (1) How much do
MVE treatments alter the mean and variance in soil
moisture and soil temperature? (2) Does microenviron-
mental spatial variation influence howmuchMVE treat-
ments alter soil moisture profiles?

METHODS

Study location

To jointly manipulate the mean and variance of
precipitation, we installed infrastructure at the Sevilleta
National Wildlife Refuge (SNWR) in central New Mexico
at the northern edge of the Chihuahuan Desert biome.
The experiment is a central component of the Sevilleta
Long-Term Ecological Research Program (SEV-LTER,
sevlter.unm.edu). Thus far, we have installed the MVE in
four ecosystems at SNWR: Plains grassland (34�20020.4000,
−106�37052.3600, est. 2019) dominated by blue grama grass
(Bouteloua gracilis), Chihuahuan Desert grassland
(34�2008.2700, −106�43038.2800, est. 2020) dominated by
black grama grass (B. eriopoda), desert shrubland domi-
nated by creosote bush (Larrea tridentata) (34�20017.7300,
−106�44020.8600, est. 2021), and juniper savanna dominated
by one-seeded juniper (Juniperus monosperma) with an
understory of blue and black grama grass (34�1609.0500,
−106�37030.8400, est. 2022). We report treatment effective-
ness from our longest running site in Plains grassland.

Climate context

MAP ranges from ~230 to 330 mm among the four eco-
systems, and the majority (~60%) of precipitation falls as
rainfall during July–September when the North
American Monsoon drives localized convective storms
(Notaro et al., 2010). Regional climate models predict
warmer winter and summer annual temperatures, more
frequent and intense El Niño events (Bhattacharya
et al., 2022; Power et al., 2013), declines in winter/spring

precipitation, and more variable monsoon rainfall
(Gutzler & Robbins, 2011). However, dryland water avail-
ability is determined not only by precipitation inputs but
also by the strong influence of temperature on evaporative
demand (e.g., Williams et al., 2013). Since 1900, our region
has experienced declines in the mean of a commonly used
summer drought index, the Standardized Precipitation
Evapotranspiration Index (SPEI) (Vicente-Serrano et al.,
2010), that accounts for the influence of temperature on
water availability. At the same time, variance in SPEI has
increased since the 1980s (Rudgers et al., 2018), a scenario
of dual change in climatemean and variance (Figure 1).

Experimental design

The MVE design consists of a 2 × 2 factorial manipula-
tion of mean precipitation (ambient or drier) and vari-
ance in precipitation (ambient or more) (Figure 2). To
alter variance without changing the mean, we used
paired plots, one of which received more precipitation
and the other less precipitation, thereby amplifying
the extremes without changing the mean across the
pair. Each set of 6 plots (Figure 2) was spatially
blocked, with five blocks and a total of 30 plots per
ecosystem type (Appendix S1: Figure S1). Each plot
was hydrologically isolated with aluminum flashing
buried to 20-cm depth using a gas-powered trencher
(Figure 3). Sites were co-located with existing meteoro-
logical stations (Moore & Hall, 2022). All construction
documents, including price estimates for the first
installation (2019), are provided in Zenodo: https://
zenodo.org/record/7996101.

Drier Mean treatment

To reduce mean soil moisture, we intercepted 25% of pre-
cipitation (Figure 2) in our Drier Mean treatment, a mod-
erate forcing within range of likely futures for our region
(Seager et al., 2013). Roof panels intercepted precipitation
year-round (Figure 3) using a modified and larger version
of a published rainout shelter (Yahdjian & Sala, 2002).
Plots (5 × 5 m) consisted of nine metal T-posts pounded
into the ground ~0.7 m deep, with three posts placed
along the center roofline (2.44 m tall) and three shorter
posts (1.53 m tall) set along each side to create a peaked
roof (Figure 3). All plots were covered in ethyl acrylate
shingles (12.7-cm-wide, 244-cm-long, 0.3-cm-thick, Port
Plastics, Albuquerque, NM) bent with a heating element
into a 45� angle. Shingles were attached to metal conduit
using a nut and bolt, with both rubber and aluminum
washers placed at both ends of the shingle. Shingles to
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capture water were attached in a “
W
” shape, whereas

ambient rainfall plots used shingles attached downward
(shape = “⋀”) to shed water into the plot but control for
potential shelter effects.

More Variance treatment

To increase variance in soil moisture stochastically with-
out changing the mean, we paired plots and amplified
their precipitation regimes with a “More Variance” treat-
ment (Figures 2 and 3). Within a pair, one plot received
50% less precipitation and that water was diverted to the
other plot in the pair to increase precipitation by 50%. On
water reduction plots, water was shed from the clear,

plastic “
W
” shingles (described above) into PVC pipe

gutters (diameter 15 cm, length 5 m) that diverted water
through black plastic distribution line into a black plastic
rain barrel (208 L, Desert Plastics, Albuquerque, NM).
A float switch at the bottom of the rain barrel turned on
a solar-powered pump that delivered the captured rain to
the paired plot using nozzle-head rainfall sprinklers
installed along the peaked roof of the shelter. This design
delivered water from the barrel into the plot in real
time during precipitation events. To create stochastic
interannual trajectories for each pair of More Variance
plots, once yearly, plots were randomly assigned to either
flip the treatment between the plot pair or to maintain
the same treatment for the next year. If a flip was
assigned, the rainout infrastructure was moved between
the plots in the pair during the month of November. In
contrast to this stochastic design, Gheradi and Sala (2013,
2015a) alternated between high and low rainfall years in
a regular, repeated pattern, which reduces stochasticity
and limits the range of possible antecedent effects. Our
More Variance treatment instead created stochasticity
through random assignments of plots to either extreme
high or extreme low precipitation in a given year. Plots
receiving both 25% Drier Mean and More Variance
(Figure 2) randomly alternated between 75% less precipi-
tation (−25% for Drier Mean and −50% for More
Variance) or 25% more precipitation (−25% for Drier
Mean and +50% for More Variance).

Sensor network

In a subset of 18 plots per site (three of the five blocks,
Appendix S1: Figure S1), we installed sensors to track soil
moisture and temperature at three depths (12.5, 22.5, and
37.5 cm; Plains grassland: EC-TM5, Decagon, Pullman,
WA; all other sites, TEROS 11, Meter Group, Pullman,
WA). Sensors measured volumetric water content (VWC)
at a resolution of 0.001 m3/m3 (0.1% VWC) from 0 to 70%
VWC in units of cubic meters per cubic meter with a
1 L volume of influence. Sensors were installed up to
12 months in advance of MVE infrastructure installation to
capture baseline soil moisture for each plot prior to treat-
ment and to reduce ground disturbance during treatment
initiation.

PhenoCams

To detect changes in plant phenology and activity, we
deployed digital cameras (“phenocams”) to provide consis-
tent data at fine spatial and temporal resolution (Figure 4).
Imagery and data from the cameras are remotely available
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F I GURE 2 Mean × Variance Experiment design. The Drier

Mean treatment reduces total annual precipitation by 25%. For the

More Variance treatment, plots are paired, and within each pair,

one plot receives 50% less precipitation in a given year, and the

other plot receives 50% more precipitation by moving water from

the reduction plot, as illustrated in the bar graph. When the Drier

Mean treatment is combined with More Variance, one plot receives

75% less precipitation, and the other plot receives 25% more, again

by moving water from one plot to the other. To simplify

construction, the +25% treatment receives all 75% of removed

precipitation from the paired plot, and the shelter intercepts 50% of

ambient precipitation to achieve the 25% increase. The numbers of

plots indicate replication within each ecosystem type.

ECOSPHERE 5 of 18

 21508925, 2023, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4603 by C

ornell U
niversity, W

iley O
nline L

ibrary on [05/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



through the PhenoCam Network website: https://
phenocam.nau.edu/webcam/network/search/?sitename=
sevmve. Phenocam imagery provides a continuous visual
record of the temporal progression of the experiment; the
value of which has been previously demonstrated at the
SPRUCE global change experiment in Minnesota
(Richardson, Hufkens, Milliman, Aubrecht, Furze,
et al., 2018).

Following the standard PhenoCam Network deploy-
ment protocol (Richardson, Hufkens, Milliman, Aubrecht,
Chen, et al., 2018), prescribed cameras (model NetCam SC
SD500BN, StarDot Technologies, Buena Park, CA) were
configured using automated scripts (the PhenoCam
Installation Tool, or PIT). Cameras were paired with and
installed in the 18 plots monitored for soil moisture, spread
across three experimental blocks (Appendix S1: Figure S1).
Cameras were mounted at a height of 2 m on the southwest
center T-post of each plot, with a view down and across the
plot, providing the greatest field of view. For protection
against weather and animals, cameras were installed inside
lightweight, weatherproof housing, which performs reliably
in all climates, and all cables were sheathed in PVC split
loom conduit. DC power to each camera was provided
through a POE-enabled (power-over-ethernet) gigabit
switch (model GS108PP, Netgear, San Jose, CA) for each
block of cameras. Every 60 min, from 8:00 to 16:00, JPEG
images from each camera are sent to the PhenoCam
Network server via file transfer protocol (FTP) over the SEV
Wireless Research Network. A metadata file containing
information about camera settings, exposure time, and

other diagnostic information is uploaded with every
image. To reduce the likelihood of synchronized bursts of
network traffic, the scheduled camera uploads are stag-
gered with each spatial block and powered on for 10 min
with 5-min breaks between blocks, and cameras are
start-delayed 1 min among cameras within a block.
Cameras were programmed by the PIT to log both visible
(red, green, blue [RGB]) and visible infrared (VIS+IR)
images, which allows us to calculate “camera NDVI”
(Filippa et al., 2018; Petach et al., 2014). Data processing
follows previously established protocols for PhenoCam
images (Richardson, 2019; Richardson, Hufkens,
Milliman, Aubrecht, Chen, et al., 2018; Seyednasrollah
et al., 2019) and is conducted nightly for specified regions
of interest within the field of view of each camera.

Soil profiles

To evaluate the second question – does microenviron-
mental spatial variation influence how much MVE treat-
ments alter soil moisture profiles? – we excavated by
hand four soil pits (1 m across, 1.5 m long, 1.5–1.8 m
deep) in each of the four ecosystem types and also dug
smaller pits (to 40-cm depth) in the center of 18 of the
30 plots. All sites had sandy loam to sandy clay loam tex-
tured soils, with the top 5–15 cm of soil depth similar in
texture across sites. In the Plains grassland, clay content
increased at 20–50 cm depth, and we observed a weak to
rock-like carbonate buildup beginning at 30–50 cm,

F I GURE 3 TheMean × Variance Experiment in the ChihuahuanDesert grassland site at the SevilletaNationalWildlife Refuge, Socorro,

NM, showing paired plots of theMore Variance treatment. On the right, V-shaped shingles catch precipitation on the−50% precipitation plot,

which then shunt thewater into a black rain barrel through gutters and distribution lines. A float switch in the rain barrel turns on a solar-powered

water pumpwhen the barrel fills with water. Overhead sprinklers deliver water to the +50% precipitation plot during the precipitation event. All

plots have the same overhead shelter infrastructure andwere trenchedwith aluminum flashing to prevent runoff and overland flow. Infrastructure

was stabilized against high winds with tensioned cables that form an “X” across the plot interior. Photo credit: A. Luketich.
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which continued to more than 150 cm in one pit and
overlaid a buried soil at 100 cm (i.e., a repeat of the tex-
tural sequence described) in the other pit, downslope.
The Chihuahuan Desert grassland had a sandy loam to
loamy sand soil to 20–40 cm depth over a rock-like soil
carbonate horizon that extended deeper than 100 cm.
The creosote bush-dominated shrubland had two soil
profiles, both with sandy loam for the top 10–15 cm
depth. One profile then transitioned to sandy clay loam
textures with reworked clasts of rock-like soil carbonate
overlying a continuous horizon of rock-like soil carbon-
ate at ~25–40 cm depth. The other profile transitioned
from sandy loam textures to redder, sandy clay loam tex-
tures at 20–30 cm depth, with dispersed clay soil carbon-
ate buildups that continued to a depth of ~70 cm, after
which the profile was sandy loam parent material. Soils
at the juniper savanna were largely sandy clay loams.
Clay buildup and minor soil carbonate buildup began at

~15–25 cm depth and continued to increase in clay and
carbonate content until limestone was met; depth to bed-
rock ranged from 0 to 90 cm.

Statistical analysis

We used data from soil moisture and temperature sensors
at the longest running site, Plains grassland, to address
the first question – how much do MVE treatments
alter the mean and variance in soil moisture and soil
temperature? Because our infrastructure created a gradi-
ent from 75% less precipitation to 50% more precipitation
within a treatment year (Figure 2), we used a general lin-
ear mixed-effects model with the fixed, continuous vari-
able of treatment (−75%, −50%, −25%, 0, +25%, +50%)
interacting with soil depth (12, 22, or 37 cm) (Bates et al.,
2015). We included soil depth as a categorical, rather

F I GURE 4 PhenoCam images used to calculate the green chromatic coordinate (an index of vegetation “greenness”). Images of one

plot pair in the Drier Mean + More Variance treatment at the Plains grassland site at the Sevilleta National Wildlife Refuge, Socorro,

NM. Plot 4 (a, b) received 75% less precipitation during October 2021–October 2022, while plot 5 (c, d) received 25% more precipitation

during the water year. Images display plots during two phenological stages in June 2022 (a, c) prior to the start of summer monsoon season

or October 2022 (b, d) after four months of summer monsoon growth. In the −75% precipitation treatment, GCC was the same for both June

(a) and October (b) phenological stages (plot 4 GCC = 0.33). In the +25% precipitation treatment, GCC was 0.35 in June (c) and increased to

0.39 by October (d). Photo credits: A. Richardson and S. Watson via PhenoCams.
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than continuous, variable because the soil profile infor-
mation on clay content suggested that soil moisture may
not change linearly with depth, which would be assumed
if depth were continuous. A separate analysis was
used for each water year, which begins 1 October of
the prior year, because treatments within the More
Variance are re-randomized within each pair in each year
to create stochastic trajectories. For Plains grassland,
this re-randomization occurred on 30 October 2020,
9 November 2021, and 7 November 2022, and we accom-
modated minor differences in the date of the flip by ana-
lyzing hourly sensor records over each year preceding the
date of flip. Our repeated measures statistical models
included the random effects of sensor identity nested
within plot and plot nested within spatial block
(Appendix S1: Figure S1: 3 blocks had sensors, with
6 plots and 18 sensors per block). Because plots varied in
initial soil moisture, likely due to variations in the distri-
bution of sand, clay, and soil carbonate with depth (see
Soil profiles), we included pretreatment mean soil mois-
ture for each sensor (1 November 2018–30 April 2019) as
a covariate in the analysis. Models accounted for tempo-
ral autocorrelation with an autoregressive 1 (AR1)
variance–covariance matrix using the lme function in
R package nlme (Pinheiro et al., 2016), and were fit with
maximum likelihood estimation. For each soil depth, we
used the emtrends function in R package emmeans
(Lenth, 2018) to test whether the slope (β) of soil mois-
ture against precipitation treatment (−75%, −50%, −25%,
0, +25%, +50%) statistically differed from zero. All R code
is publicly available along with the datasets (https://
zenodo.org/record/7996101).

Our treatments were designed to reduce mean precip-
itation and increase its variance at the interannual scale,
and we estimated the deviation in precipitation received
by each plot relative to ambient precipitation on each day
(Figure 5). From the daily data, we estimated the mean
and CV of estimated daily precipitation received by each
plot and treatment combination (Figure 5).

In addition, to evaluate treatment effectiveness for
interannual variance in soil moisture, we calculated the
mean daily VWC for each sensor in each water year, then
used these data to determine the interannual CV across
the three water years. A linear model tested whether the
interannual CV of soil moisture responded to the fixed
factors of Mean treatment (ambient/more) and Variance
treatment (ambient/more) using the function lm in base
R (R Core Team, 2022). Three years is a narrow window
to detect a response in the interannual variation in pre-
cipitation, and the treatments are designed to run for
many years (not only three). However, this analysis
provided an initial assessment of the MVE to alter vari-
ance without changing the mean.

RESULTS

How much do MVE manipulations alter
the mean and variance in soil moisture and
temperature?

Mean precipitation gradient

MVE infrastructure to impose a gradient from 75% less
precipitation to 50% more precipitation (Figures 2 and 5)
significantly altered mean soil moisture in all years at our
longest running site in Plains grassland (Figure 6, water
year 2020: χ2 = 38.2, p < 0.0001; 2021: χ2 = 14.0,
p = 0.0002; 2022: χ2 = 11.17, p = 0.0008). From the −75%
treatment to the +50% treatment, average soil moisture
differed by 44%–50% at the shallowest soil depth (12 cm)
(Figure 6a). Treatment effects on soil moisture were simi-
larly strong at 22-cm depth, with 41%–56% greater mois-
ture in the +50% addition treatment compared with −75%
removal (Figure 6b). MVE treatment effects on soil mois-
ture were somewhat weaker at 37-cm depth (26%–48%,
Figure 6c), likely because many rain events are too small
to reach deep soil, but the MVE treatment did not signifi-
cantly interact with soil depth in the first two water years
(2020: χ2 = 4.3, p = 0.11; 2021: χ2 = 2.1, p = 0.36).
Although the effects of MVE infrastructure on soil mois-
ture were generally consistent across soil depths, in water
year 2022, soil moisture did not significantly respond to
the MVE precipitation gradient at 37-cm depth (Figure 6c;
2022: treatment × depth, χ2 = 26.1, p < 0.001).

Stochastic variance in precipitation

The More Variance treatment amplified the CV in soil
moisture by ~25% relative to ambient climate variance
during 2019–2022 (Figure 7, χ2 = 7.0, p = 0.039) similar to
its estimated effects on the CV of daily precipitation
(Figure 5). Effects on CV in soil moisture were statistically
invariant across soil depths (variance treatment × depth,
χ2 = 0.3, p = 0.73), ranging from 24% larger CV in the
More Variance treatment than under ambient variance at
the shallowest depth to 27% larger CV for the deepest sen-
sor (Figure 7). By design, the More Variance treatment did
not significantly alter mean soil moisture at any depth
(χ2 = 2.05, p = 0.20, variance treatment × depth, χ2 = 0.3,
p = 0.75).

Soil temperature

The MVE precipitation gradient from −75% to +50% did
not have any nontarget effects on soil temperature during
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F I GURE 5 (a) Trajectories of estimated monthly precipitation for each treatment combination of the Mean × Variance Experiment

(MVE) in the Plains grassland site at the Sevilleta National Wildlife Refuge, Socorro, NM. Precipitation treatments were established by

October 2019 (the beginning of water year 2020), and the deviation in precipitation from the monthly mean for ambient plots was estimated

for each month of the time series. Positive deviations are plots receiving supplemental precipitation; negative values are drought plots.

(b) Histograms of estimated precipitation for each treatment combination of the MVE, including the mean and CV over the time series.
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any water year (2020: χ2 = 0.61, p = 0.99; 2021:
χ2 = 0.88, p = 0.97; 2022: χ2 = 0.77, p = 0.97). At the
daily scale, mean soil temperature varied from a mini-
mum of −0.8�C at 12 cm deep on 31 December 2018 to a
maximum of 38.4�C at 12-cm depth on 11 July 2020.
Mean daily soil temperature did not vary with soil depth
(2020: χ2 = 0.01, p = 0.99; 2021: χ2 = 0.01, p = 0.99;
2022: χ2 = 0.43, p = 0.80). Variability in soil temperature
was 81% greater in the More Variance treatment than
under ambient variance in precipitation (CV daily tem-
perature, Variance treatment, χ2 = 8.55, p = 0.026), but
did not vary with the Drier Mean treatment (χ2 = 0.73,
p = 0.42) or with soil depth (depth χ2 = 0.70, p = 0.53;
variance treatment × depth χ2 = 0.75, p = 0.51).

Does microenvironmental spatial variation
influence how treatments alter soil
moisture profiles?

Microenvironmental spatial variation among plots, caused
in part by spatial variation in the amount and depth of clay,
influenced the magnitude to which soil moisture responded

to MVE infrastructure (Figure 8, χ2 = 46.25, p < 0.0001).
Precipitation treatment effect sizes ranged from a −58%
decline in soil moisture relative to pretreatment levels to
+13% increase because the pretreatment soil moisture
was, on average, greater than soil moisture during the
years of the experiment. During six months of
pretreatment observations (November 2018–April 2019),
individual plots differed from each other more than two-
fold in mean VWC from the driest plot at 8% average VWC
to the wettest plot at 19% VWC. Plots with greater soil
moisture prior to treatment installation had stronger
declines in soil moisture under precipitation reductions
(−75, −50, or −25) but smaller increases in soil moisture
under precipitation additions (+25%, +50%; Figure 8). For
example, for a plot that had pretreatment soil moisture that
was 10% greater than the average, the precipitation reduc-
tion effect size was ~20% stronger and precipitation addition
was ~20%weaker than the average effect size (slope of treat-
ment effect size against pretreatment soil VWC: β = −2.0 ±
0.55). The magnitude of influence of the pretreatment
microenvironment on the responsiveness of soil moisture
to MVE infrastructure was consistent across the MVE treat-
ment levels (pretreatment soil moisture × precipitation

F I GURE 6 Mean volumetric water content (VWC, mean ± 95% CI) for the precipitation gradient of the Mean × Variance

Experiment for the Plains grassland site at the Sevilleta National Wildlife Refuge, Socorro, NM. Precipitation treatments were

established by October 2019 (the beginning of water year 2020), and mean VWC was calculated for each water year. The slope (β)
is provided for each soil depth and water year slope and indicates the % change in soil moisture due to % change in precipitation

treatment level.
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gradient, χ2 = 1.59, p = 0.90). However, the influence of
microenvironment varied with soil depth (χ2 = 6.65,
p = 0.036); it was strongest at intermediate soil depth
(22 cm: β = −4.5) and weakest at the shallowest depth
(12 cm: β = −1.9).

DISCUSSION

A novel experimental design factorially
alters the mean and variance of
precipitation

To our knowledge, we designed the first field experiment
to simultaneously impose climate drying and increase
interannual climate variability, which have already
changed in tandem in the southwestern United States
(Maurer et al., 2020; Rudgers et al., 2018). Our design is
important to improving predictions on future population,
community, and ecosystem responses to climate change,
and in particular, to detecting whether a drying mean cli-
mate will alter the ecological consequences of an increas-
ingly more variable climate. Our design will uncover the
impacts of climate change across major dryland ecosys-
tem types (Kreyling & Beier, 2013) because we imposed
the same treatments in four ecosystem types that repre-
sent >60 million ha of the southwestern United States
(Anderson-Teixeira et al., 2011).

A key design element is the inclusion of a stochastic
(random) component to treatments that increase
interannual climate variance. Precipitation often has a sub-
stantial stochastic component (Ridolfi et al., 2011).
Although there are strong deterministic influences on
climate in our region, including the Pacific Decadal
Oscillation, El Niño Southern Oscillation, and intra-annual
seasonality of the summer monsoon (e.g., ~60% of precipi-
tation in our focal ecosystems occurs during the monsoon
season), these can and have been addressed by specific
prior climate experiments. An important aspect of the nov-
elty of our experimental design is that our methods are not
aimed to replicate any of these nonrandom forcings on cli-
mate, but rather to amplify the stochastic (random) com-
ponent of climate variability.

The precipitation manipulations of MVE successfully
altered soil moisture by ±50%, measured as VWC with
hourly sensors in a subset of the plots. We did not expect
to achieve a −75% to +50% gradient in soil moisture by
altering precipitation because of the small event sizes
and the low number of days with precipitation events in
this semiarid region. The mean daily event size was
3.6 mm ± 0.4 from 1 October 2018 to 1 October 2022.
And, the number of days with precipitation events
ranged from only 58 days in 2022 to 96 days in 2020
(water year 2019: 70 days [19% of days], 2020: 96 days
[26%], 2021: 66 days [18%], 2022: 58 days [16%]). In
drylands, extended periods with no precipitation cause
strong down-weighting of average soil moisture and
reduce the ability to detect treatment effects because con-
secutive days of low soil moisture translate to no differ-
ence between precipitation treatments. The strength of

F I GURE 7 The CV in mean volumetric water content

(VWC) ± SE by the Variance treatment and soil sensor depth in the

Mean × Variance Experiment, Plains grassland site in the Sevilleta

National Wildlife Refuge, Socorro, NM. Precipitation treatments

were established by October 2019 (the beginning of water year

2020), and the CV of VWC was calculated from treatment initiation

until 6 November 2022.
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F I GURE 8 Microenvironmental spatial differences among plots in pretreatment soil moisture influenced the magnitude of

precipitation manipulations using Mean × Variance Experiment (MVE) infrastructure at the Plains grassland site in the Sevilleta

National Wildlife Refuge, Socorro, NM. Across all treatments, greater pretreatment soil moisture resulted in larger declines in soil

moisture with drought treatments (−75%, −50%, or −25%) and weaker increases in soil moisture (less negative effect size) with

water addition treatments (+25%, +50%) (χ2 = 46.25, p < 0.0001). The slope of the influence of pretreatment microenvironment on

the effect size of the precipitation manipulation (−2.0 ± 0.55 SE) did not vary significantly among MVE treatments

(χ2 = 1.59, p = 0.90).
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the effect of our precipitation treatments on mean soil
moisture declined with soil depth, as we anticipated.
Most rain events in our region are small in size, with an
average magnitude of 2.1 mm over the long-term record
(Petrie et al., 2014), which cannot penetrate into deep
soil layers. However, because most plant roots are
concentrated in the upper 20–30 cm of soil (Kurc &
Small, 2004), treatment effects at shallow soil depths are
ecologically relevant. In water year 2022, the soil mois-
ture response to the precipitation gradient was nonsignif-
icant at the deepest sensor depth (Figure 6), consistent
with this expectation.

Our design not only altered mean soil moisture over
a gradient of six levels, but also successfully increased
interannual variation in soil moisture by 25% during
just a three-year period (Figure 7). We are now three
years into this long-term experiment at our longest run-
ning site, and we intend to run it for 20+ years because
each year provides only one replicate of interannual
variability. Thus far, we have not detected nontarget
effects of MVE treatments on soil temperature at any
measured depth, and our manipulation of variability in
precipitation has remained independent of changes in
mean soil moisture, as we intended in our factorial
design.

Legacy effects of precipitation
manipulation

The effectiveness of rainout and rain-addition infrastruc-
ture to alter soil moisture could decline over the planned
lifetime of the experiment if strong legacy effects of past
year’s treatments occur. Here we explore three possible
legacy effects. First, a prior experiment that imposed a
66% growing season drought reduced the abundance of
cyanobacteria that form biological soil crusts up to 95%
(Fernandes et al., 2018). Altered soil microbial communi-
ties can influence water infiltration (Kidron et al., 2012),
thereby creating a legacy effect of past precipitation on
current soil moisture. In our system, the loss of biological
soil crusts under drought is predicted to increase water
infiltration by reducing soil hydrophobicity caused by
cyanobacteria (Chung et al., 2019); however, biological
soil crusts of different compositions can have the reverse
effect, instead increasing infiltration in some ecosystems
(Kidron et al., 2012). Therefore, we have archived soils
to monitor microbial legacy effects in the MVE. Second,
prior drought experiments in Chihuahuan Desert grass-
lands caused mass mortality of the dominant grass
species (Ladwig et al., 2012; Loydi & Collins, 2021)
and also altered its population genetic structure, likely
favoring the survival of drought-resistant genotypes

(Griffin-Nolan et al., 2019; Whitney et al., 2019).
Therefore, additional legacy effects of prior precipitation
could include reduced plant water uptake (and greater
soil moisture) due to a combination of reduced plant bio-
mass and changes in how plants that survived drought
use water. For example, drought-resistant genotypes can
have greater water use efficiencies than drought-sensitive
genotypes (Attia et al., 2015; Chaves et al., 2003).
Drought can also increase the water use efficiency of sub-
dominant C3 plant species as evidenced by enriched δ13C
isotopes (Fain, 2022). Third, an extreme drought in our
grasslands also altered community-weighted mean
plant and seed traits, including height, leaf carbon con-
tent (Luo et al., 2021), and seed coat thickness (Luo
et al., 2022), and extreme drought increased the collective
plant community’s drought-escape strategies, rather than
drought-resistance strategies (Griffin-Nolan et al., 2019).
Such changes in plant species-level and community-level
traits could alter water relations, creating legacy effects on
soil moisture in subsequent years. For example, a one-year
experiment to remove small rain events (<3.8 mm)
constrained grassland plant and soil responses to supple-
mental rain in a subsequent year, slowing grassland recov-
ery (Petrie et al., 2015).

Our new experimental design creates a tractable plat-
form for assessing such legacy effects as they accumulate
over time. However, we did not create replicated plots
with identical antecedent conditions that would enable
us to analyze specific antecedent effect scenarios statisti-
cally. This would require a large number of plots and
could quickly become cost-prohibitive. The benefit of our
design is the increased generalizability gained by ran-
domizing antecedent conditions with our stochastic treat-
ment assignments. Across our design at a single site,
there are 10 plots in the More Variance treatment, each
with an individual precipitation trajectory. This design
enables us to evaluate the general impacts of increased
stochastic variance without tying results to a specific
future trajectory (e.g., wet–dry–wet–dry cycles).

Experiments to speed climate change in
drylands

Our new experimental design is particularly relevant for
dryland ecosystems where water is not only the most
vital resource (Noy-Meir, 1973) but also has large tempo-
ral variability at both local and regional scales (Gutzler &
Robbins, 2011; Milne et al., 2003; Notaro et al., 2010). In
the northern Chihuahuan Desert, variability in precipita-
tion has increased in recent decades along with an overall
drying trend (Maurer et al., 2020; Rudgers et al., 2018),
highlighting the relevance of experiments that alter both
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mean and variance in precipitation. Although the
average number of rain events per day has increased dur-
ing the summer monsoon, the average size of daily rain
events has declined during the past 100 years, resulting
in no net change in average precipitation across the
region (Petrie et al., 2014). However, models and tree ring
data show greater variability and more intense winter
El Niño events in recent decades (Grothe et al., 2020; Liu
et al., 2017) along with intensification of sub-daily rain
events during the summer monsoon (Demaria
et al., 2019). Furthermore, tree ring data indicate that the
rate of “flipping” between wet and dry years has recently
accelerated in the southwestern United States (Oliver
et al., 2019). As a consequence, year-to-year variability in
precipitation has increased significantly throughout the
region alongside aridification (Maurer et al., 2020),
reflecting trends that are consistent with model predictions
for climate in the future (Gutzler & Robbins, 2011).
Meteorological data also show that droughts have already
intensified in this region (Zhang et al., 2021), and a suite of
climate models all indicate that the frequency, duration,
and intensity of drought will increase in the future
(Bradford et al., 2020; Cook et al., 2015). Together, observa-
tional data and models support a pattern of simultaneous
change in the mean and variability of aridity throughout
the northern Chihuahuan Desert. The MVE infrastructure
will help to understand the ecological impacts of these com-
bined changes for the coming decades, and in particular
their potential impacts on the carbon cycle. Of all the land
cover classes, arid and semiarid ecosystems contribute most
to interannual variability in global carbon flux due to their
high year-to-year variability in primary production
(Ahlstrom et al., 2015; Fu et al., 2019) and large surface area
(~45%), which is rapidly expanding (Huang et al., 2016;
Pr�av�alie, 2016; Pr�av�alie et al., 2019). Experiments, like
MVE, that directly manipulate interannual climate variabil-
ity have the potential to provide new inference on the direct
influence of climate variance on carbon fluxes.

Design considerations for other ecosystem
types

We successfully established the MVE in four semiarid
ecosystem types: two grasslands, one shrubland, and one
savanna. In all plots, we included one or more individ-
uals of small-statured shrubs (creosote bush) or trees
(one-seeded juniper). However, larger statured plants,
including dominant woody species (e.g., pines), would
require alternative designs with taller rainout shelters or
below-canopy throughfall catchment systems (e.g., Plaut
et al., 2013; Sevanto et al., 2014). Our design may
additionally require maintenance or repair in situations

of extreme wind. Several of our plots at the Plains grass-
land site, which experiences upwards of 30 m/s winds,
sustained wind damage during initial establishment and
required additional stabilization (Figure 3). The orienta-
tion of shelters such that one slanted side of the peaked
roof faces the prevailing wind direction can help reduce
wind stress, and our re-design of the variance infrastruc-
ture (see construction documents, https://zenodo.org/
record/7996101) improved wind resistance. Finally, eco-
systems with large overland flow and runoff during rain
events or that occur on sloped surfaces may require addi-
tional infrastructure beyond trenched flashing (Figure 3)
in order to maintain effective water manipulations.

CONCLUSION

In sum, we designed and implemented the first experiment
to factorially reduce the precipitation mean while simulta-
neously increasing the variance of interannual precipita-
tion in a way that captures the stochastic nature of climate
variability. We hope that our novel design will inform pre-
dictions on future ecological responses to the interactive
effects of changes to climate mean and variance.
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