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Persistent and enhanced carbon sequestration capacity
of alpine grasslands on Earth’s Third Pole
Yuyang Wang1,2,3, Jingfeng Xiao4, Yaoming Ma1,3,5,6,7*, Jinzhi Ding1, Xuelong Chen1*,
Zhiyong Ding8, Yiqi Luo9

The carbon sequestration capacity of alpine grasslands, composed of alpine meadows and steppes, in the
Tibetan Plateau has an essential role in regulating the regional carbon cycle. However, inadequate understand-
ing of its spatiotemporal dynamics and regulatory mechanisms restricts our ability to determine potential
climate change impacts. We assessed the spatial and temporal patterns and mechanisms of the net ecosystem
exchange (NEE) of carbon dioxide in the Tibetan Plateau. The carbon sequestration of the alpine grasslands
ranged from 26.39 to 79.19 Tg C year−1 and had an increasing rate of 1.14 Tg C year−1 between 1982 and
2018. While alpine meadows were relatively strong carbon sinks, the semiarid and arid alpine steppes were
nearly carbon neutral. Alpine meadow areas experienced strong increases in carbon sequestration mainly
because of increasing temperatures, while alpine steppe areas had weak increases mainly due to increasing
precipitation. Carbon sequestration capacity of alpine grasslands on the plateau has undergone persistent en-
hancement under a warmer and wetter climate.
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INTRODUCTION
Terrestrial ecosystems, one of the crucial carbon sinks of Earth, se-
quester about one-third of the carbon dioxide (CO2) released by
human activities, having considerably mitigated global warming
(1). The net ecosystem exchange (NEE) of CO2, i.e., the difference
between the CO2 fixed by plants via photosynthesis and the CO2
released via ecosystem respiration, reflects to what extent an ecosys-
tem functions as a carbon source or sink (2). The quantification of
NEE at the regional and global scales is of vital importance to accu-
rately estimate the terrestrial carbon budget and to gain better un-
derstanding of the carbon cycle and carbon-climate feedbacks (3).
However, the lack of in situ observations and inadequate mechanis-
tic understandings lead to large uncertainties about NEE at the re-
gional scale. Therefore, it is urgent to accurately estimate regional-
scale NEE and understand the mechanisms underlying its spatial-
temporal variations by using robust methods to upscale ground-
based observations.
Ecosystem-scale NEE can be continuously measured in situ with

eddy covariance technique and has been used to estimate the re-
gional NEE, mainly using model-based and data-driven approaches
(4). Model-based approaches are usually based on ecosystem
models that use observations and/or remote sensing data to

optimize the model parameters (5). The resulting models are then
used to upscale NEE to the regional level. However, most ecosystem
models rely on local parameters, which may limit the accuracy of
simulations at larger scales and increase the uncertainty of the re-
sulting regional NEE estimates. Alternatively, the data-driven ap-
proach is based on statistical models and extends in situ NEE
measurements to the regional scale by constructing statistical rela-
tionships between observed values and the explanatory variables
(6). Although data-driven approaches differ from the model-
based approaches in that they do not explicitly consider biogeo-
chemical processes, they do not subjectively impose conditions on
the validity range of model parameters during training, and their
performance in estimating regional NEE value is reliable. Therefore,
on the basis of flux measurements and relevant satellite remote
sensing observations, data-driven methods have been widely used
to upscale observed carbon fluxes to regional and global scales
(7–10).
The Tibetan Plateau (TP) is known as the Third Pole of Earth

due to its unique terrain (11). Alpine grassland, an alpine ecosystem
in which the characteristic plants are grasses, is the main vegetation
type on the TP, with a total area of approximately 1.46 million km2

(12). The grasslands on the TP are mainly divided into two catego-
ries: alpine steppe and alpine meadow. Alpine steppes, with
drought-tolerant species, are distributed in the relatively arid west
and north of the plateau, while alpine meadows that are dominated
by mesic and meso-xeric species are distributed in the relatively
humid central and east regions (13). Alpine grassland ecosystems
on the TP are extremely vulnerable and sensitive to climate
change due to the high altitude and cold, semiarid climate with
strong solar radiation and winds, poor soil quality, and short
growing season (14). Previous studies have shown that the climate
warming rate on the TP is approximately twice the global rate and
that precipitation has also shown a significant increasing trend. As a
result, the plateau climate is becoming warmer and wetter (15, 16).
Under these conditions, grassland productivity has increased. In
addition, the intensity of human activities in recent decades, such
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as fence construction and grazing, has increased; nitrogen deposi-
tion has also shown an obvious increase; and permafrost thaw has
become intense, which has aggravated the degradation of alpine
grasslands (17–19). These changes have exacerbated the ecological
vulnerability of the region, leading to increased uncertainty about
the carbon cycle (20). Warming can not only increase gross
primary productivity (GPP) and lengthen the growing season but
also enhance ecosystem respiration. Thus, there are many uncer-
tainties around these two processes that make it challenging to
quantify NEE changes in the TP.
Given the crucial significance of the carbon cycle on the TP in

the context of the global climate change, many scholars have already
used models to assess NEE in the TP (21, 22). In general, these
models have large discrepancies in both the magnitude and
spatial distribution of their estimates. This is mainly due to the
fact that large amounts of data, such as flux observations, are re-
quired to drive carbon cycle models and to calibrate model param-
eters, but the scarcity and uneven distribution of ground-based
observations on the TP often lead to inaccurate parameter calibra-
tion (23). In recent decades, more flux observation stations have
been set up in the alpine region of the TP, providing strong data
support for upscaling NEE (24–26). Integrating these observations
and data-driven approaches can help us explore the spatial and tem-
poral patterns of the NEE and to better understand the carbon dy-
namics in the alpine grasslands in the TP in the context of
climate change.
The alpine steppes of the TP are typically water limited, while

alpine meadows tend to be temperature limited (27). Thus, a
warmer and wetter climate will alleviate restrictions to plant
growth. However, it remains unclear how carbon sequestration ca-
pacity has changed during the past few decades. In this study, we
applied the extremely randomized trees regression (ETR) algorithm
to estimate the annual NEE on the TP at a 0.05° × 0.05° spatial res-
olution during the period 1982–2018. The gridded NEE product
was generated from in situ eddy covariance measurements, satellite
remote sensing data, and meteorological data. Our main objectives
were to explore the spatial and temporal patterns of NEE in the TP
and to understand mechanisms of interannual NEE variations in
the past 37 years.

RESULTS
Spatial and temporal patterns of the alpine grassland NEE
on the TP
Temporally, the higher- and lower-resolution, griddedNEE datasets
that we generated for a 19-year period (2000–2018) and a 37-year
period (1982–2018), respectively, using eddy covariance measure-
ments, satellite remote sensing data, and meteorological data,
along with the ETR algorithm, were highly consistent for the TP
alpine grasslands (Fig. 1E and fig. S1A). The correlation coefficient
of the regional mean NEE between the two datasets over their over-
lapping period 2000–2018 was 0.96, and the root mean square error
(RMSE) was 2.03 g C m−2 year−1. The seasonal distributions of the
two NEE datasets were also highly consistent, indicating a carbon
sink in the growing season from May to September and a weak
carbon source in the other months (Fig. 1F and fig. S1B). The
lower-resolution NEE dataset over the period 2000–2018 revealed
that the annual NEE of the alpine grassland region on the TP fluc-
tuated between −57.08 and −32.47 g C m−2 year−1, with an average

of−43.50 ± 5.34 g Cm−2 year−1, and showed a nonsignificant trend
of −0.38 g C m−2 year−1 (P > 0.05). In addition, the regionally av-
eraged annual NEE based on the higher-resolution NEE dataset
ranged from −49.66 to −30.68 g C m−2 year−1, with an average of
−42.19 ± 4.80 g C m−2 year−1, and also showed a nonsignificant
trend of 0.20 g C m−2 year−1 (P > 0.05).
At the regional scale, the spatial distribution patterns of the

higher- and lower-resolution NEE datasets for their overlapping
period 2000–2018 were also largely consistent (fig. S2, A and C).
The alpine meadows in the relatively humid eastern and northeast-
ern parts of the TP were strong carbon sinks (−150 to−100 g Cm−2

year−1); the carbon sink strength gradually weakened along the lon-
gitudinal gradient, and arid and semiarid alpine steppes in the
western and northern regions became weak carbon sinks or weak
carbon sources (0 to ±20 g C m−2 year−1). Patterns of NEE trend
in the two datasets during their overlapping period (i.e., 2000–
2018) were basically consistent and exhibited high spatial heteroge-
neity (fig. S2, B and D). In the alpine meadow region, the carbon
sink intensity mostly showed a positive trend, while in some parts
of the alpine steppe region, such as the Qiangtang Plateau, the ab-
solute values of NEE showed a decreasing trend. However, the
annual NEE trend was not significant (P > 0.05) for most grid
cells across the study region. Regions with significant decreasing
NEE were mainly distributed in the eastern and southwestern
parts of the plateau, while regions with significant increasing NEE
trends were primarily distributed in the central and northern parts
of the plateau. Given the highly consistent temporal and spatial var-
iations in the NEE of the alpine grassland on the TP between the
higher- and lower-resolution datasets over their overlapping
period (i.e., 2000–2018), we used only the NEE dataset based on
the lower resolution, which had a much longer time series (1982–
2018), to examine the spatial and temporal patterns of NEE on the
TP over the 37-year period in the following analyses.
Over the 37-year period from 1982 to 2018, annual NEE aver-

aged −35.59 ± 9.90 g C m−2 year−1 (−52.11 ± 14.50 Tg C year−1),
with a range from −18.02 to −54.08 g C m−2 year−1 (−26.39 to
−79.19 Tg C year−1) and a significant decreasing trend of −0.78 g
C m−2 year−1 (−1.14 Tg C year−1) (Fig. 1E). Since 1982–2018 was
such a long period (i.e., 37 years), we also analyzed the spatial and
temporal patterns of NEE over two subperiods: 1982–1999 and
2000–2018. Between 1982 and 1999, mean annual NEE was
−27.25 ± 5.81 g C m−2 year−1 (−39.90 ± 8.51 Tg C year−1) and
had a significant trend of −0.62 g C m−2 year−1 (−0.91 Tg C
year−1). The net carbon uptake and its increase rate were both
slightly lower during 1982–1999 than during the 37-year period.
Overall, NEE patterns during 1982–1999 and 1982–2018 remained
largely consistent with those of the 2000–2018 period (fig. S3A and
Fig. 1C). In addition, the proportion of pixels showing carbon
sources (>20%) was slightly larger during 1982–1999 than during
1982–2018 and 2000–2018. NEE showed a decreasing trend from
1982 to 1999, but areas with significant changes were small and scat-
tered. By contrast, most of the study region was dominated by a de-
creasing trend (>60%) during 1982–2018. Again, such trends
showed notable spatial heterogeneity, with the eastern alpine
meadow region reaching −3 to −2 g C m−2 year−1 and the
western alpine grassland region exhibiting significant decreasing
trends of about −2 to 0 g C m−2 year−1 (Fig. 1D).
The interannual variability in seasonal NEE during the 37-year

period between 1982 and 2018 is shown in Fig. 2. Alpine grasslands
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on the TP exhibited strong carbon sinks in summer but almost weak
carbon sources in the other seasons. The winter NEE of alpine
grasslands in the TP increased significantly (P < 0.01) at a rate of
0.14 g C m−2 year−1 during this period (Fig. 2D), suggesting that
the amount of CO2 released from alpine grasslands outside the
growing season was enhanced; NEE in spring, summer, and
autumn showed a significant (P < 0.01) decreasing trend at −0.18,
−0.61, and −0.13 g C m−2 year−1, respectively, indicating that the

carbon sink capacity of alpine grassland was strengthened in
these seasons.

Drivers of spatiotemporal variability of the NEE of the
alpine grasslands on the TP
The large heterogeneity of NEE is the result of a combination of
changes in several climatic and biotic factors. We adopted separa-
tion method to analyze the contribution of each explanatory vari-
able to the spatial variation in NEE to explore the leading factors

Fig. 1. Spatial predictions and temporal trends of the NEE in the alpine grasslands. (A) Flux site distribution for the NEE upscaling in the alpine grasslands on the TP
and a topographic map. (B) Alpine grassland distribution map. Spatial distribution of the (C) mean annual NEE and (D) NEE trend during 1982–2018 at a 0.05° resolution.
Inset in (D) indicates pixels with significant increasing (red) and decreasing (green) trend at P < 0.05. (E) Temporal changes in the regional annual average NEE during
1982–2018, while the shading indicates the 95% confidence interval, and (F) monthly averaged NEE during 1982–2018 at a 0.05° resolution. The black, blue, and red lines
denote 1982–2018, 1982–1999, and 2000–2018, respectively.
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influencing interannual variation. The contribution of each explan-
atory variable to the long-term trend of the NEE during 1982–2018
is shown in Fig. 3 (A1 to E1). Overall, annual precipitation and
mean temperature contributed notably to the trend of the alpine
grassland NEE in terms of magnitude, while the contribution of
other variables was almost negligible. Specifically, the contribution
of precipitation was largest in the alpine steppe region of thewestern
and northwestern areas of the plateau (Fig. 3A1), while the contri-
bution of temperature was largest in the alpine meadow region on
the eastern and southern areas of the plateau (Fig. 3B1). To better
explain the relationship between them, scatterplots of variation
trends on a pixel basis and their contributions to the NEE trend
were examined on the basis of plant community types (steppe
and meadow) (fig. S4, A1 to E1). In the alpine steppe region, pre-
cipitation made a remarkable contribution to the NEE trend, while
the contributions of the other variables were limited. Regarding pre-
cipitation, in the alpine steppe regions (red line), more than 97% of
the grid cells were plotted in the second and fourth quadrants, sug-
gesting that the increase in precipitation led to the decrease in the
NEE (i.e., the increase in net carbon uptake), while the increase in
NEE (i.e., the decrease in net carbon uptake) was associated with a
decrease in precipitation (fig. S4A1). In the alpine meadow region,
mean temperature made a marked contribution to the NEE trend,
and more than 95% of the grid cells were plotted in the second and
fourth quadrants (fig. S4B1), indicating that the increase in the
mean annual temperature led to the decrease in the NEE. Similar
effects were observed for precipitation and radiation, but they
made smaller contributions.
We used the same method to examine the dominant climatic

factor controlling interannual variation of NEE during 1982–1999
and 2000–2018 (Fig. 3, A2-E2 and A3-E3). The results revealed that
these two time periods remained largely consistent with the general
trend. That is, mean temperature and precipitation were the domi-
nant drivers of NEE interannual variation in alpine meadow and
alpine steppe regions, respectively. However, compared with

1982–1999 and 1982–2018, the results in the steppe region during
2000–2018 were slightly different, as precipitation was positively
correlated with NEE over a larger area (Fig. 3A3). For precipitation,
the proportion of pixels plotted in the second (47.09%) and fourth
(38.72%) quadrants exceeded 85% (fig. S4A3). However, the de-
crease in precipitation during 2000–2018 shifted some regions of
the alpine steppe toward carbon sources.
To quantify the proportion of the areas dominated by diverse

drivers, we calculated the absolute values of the contributions of
the explanatory variables. During 1982–2018, precipitation was
the dominant factor for 84% of the entire alpine steppe region,
while temperature was the dominant factor for 55% of the entire
alpine meadow region. Precipitation and temperature were the
dominant factors for 54 and 30% of the entire alpine grassland
region on the TP, respectively, while the other variables accounted
for small proportions (Fig. 4, A and B). The basic patterns of pre-
cipitation and temperature dominated the interannual variations in
the NEE in the alpine steppe and alpine meadow regions, respec-
tively, and they did not change between 1982–1999 and 2000–
2018. From 1982–1999 to 2000–2018, the proportion of the alpine
steppe region for which precipitation was the dominant factor de-
creased from 53 to 48%, while the proportion of the alpine meadow
region for which temperature was the dominant factor increased
from 38 to 43% (Fig. 4, C to F). In general, the interannual variabil-
ity of the NEE tended to be predominantly controlled by precipita-
tion in the alpine steppe region while by temperature in the alpine
meadow region.
On the basis of the attribution results of spatial trends, we further

analyzed the relationship between interannual variation of NEE and
dominant factors in the entire alpine grassland region and in alpine
meadow and alpine steppe regions separately during 1982–2018.
For the entire alpine grassland region, annual precipitation and
annual temperature explained 80 and 62% of the NEE variations,
respectively; precipitation accounted for a greater proportion
because of the relatively larger water-limited area (Figs. 5, A and

Fig. 2. Temporal variations of seasonal NEE in the alpine grasslands. (A) Spring, (B) summer, (C) autumn, and (D) winter. The dashed lines indicate the linear fit for the
seasonal NEE, while the blue shading represents the 95% confidence band of the fits.
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Fig. 3. Spatial distribution of the contribution of each explanatory variable to the NEE trends over the alpine grasslands during different periods. (A1 to A3)
Precipitation. (B1 to B3) Mean air temperature. (C1 to C3) Normalized difference vegetation index. (D1 toD3) Maximum air temperature. (E1 to E3) Downward shortwave
radiation. The first to third columns refer to the periods of 1982–2018, 1982–1999, and 2000–2018, respectively.
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B, and 6, A and B). For the alpine meadow region, annual mean
temperature and precipitation explained 68 and 49% of the NEE
variation, respectively (Figs. 5, C and D, and 6, C and D), indicating
the prominent effects of temperature on the NEE variability of the
alpine meadow region. For the alpine steppe regions, precipitation
(87%) explained a much larger portion of the NEE variations than
temperature (38%), and this indicated the importance of water
availability on the interannual variability of NEE in water-limited
regions (Figs. 5, E and F, and 6, E and F). Consequently, these anal-
yses further suggested that temperature and precipitation predom-
inantly controlled the interannual variations in the NEE in alpine
meadow and alpine steppe regions, respectively.

DISCUSSION
A warmer and wetter climate increased carbon
sequestration in the alpine grasslands
Our study showed that the carbon sequestration capacity of the
alpine grasslands on the TP increased markedly from 19.98 g C
m−2 year−1 in 1982 to 49.86 g C m−2 year−1 in 2018 at a rate of
7.8 g C m−2 decade−1 on a per-unit area basis (i.e., from 29.26 to
73.01 Tg C year−1 with a rate of 11.4 Tg C decade−1 on a spatially
integrated basis). The attribution analyses demonstrated that annual
mean temperature and precipitation dominated the interannual
variation of NEE in alpine grassland of the TP. Temperature and
precipitation were the main factors regulating the NEE as in
similar ecosystems (10, 28, 29). That is, the warming and wetting
of the plateau enhanced the carbon sink intensity of the alpine hab-
itats (Fig. 7). Warming enhanced plant growth and processes such

Fig. 4. Distribution of the dominant variables to the NEE trends and the proportion of the contribution of each variable over the different regions during
different periods. (A and B) The 1982–2018 period. (C and D) The 1982–1999 period. (E and F) The 2000–2018 period. TP in (B), (D), and (F) consists of both alpine
steppe and alpine meadow.
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as photosynthesis and transpiration, leading to a longer growing
season (30, 31). Enhanced photosynthesis and extended growing
season increased gross carbon uptake (i.e., GPP) (32). Warming
also boosted root and microbial activity and, hence, ecosystem res-
piration (33, 34). However, plant dormancy outside the growing
season led to a substantial CO2 loss due to warming, reducing
annual net carbon sequestration capacity (35). This was evidenced
by the increase in NEE during winter and the decrease in summer
(Fig. 2D). However, the overall higher carbon sequestration in this
study suggests a larger increase in GPP than in ecosystem respira-
tion. With rising air and soil temperature, atmospheric dryness and
evapotranspiration will also increase, accelerating soil moisture de-
creases and water stress, adversely affecting carbon sequestration in
water-limited regions. In other words, the effect of warming on net
carbon sequestration in alpine grasslands is regulated by regional
water supply (25). Therefore, warming made substantial contribu-
tion to the increase in net carbon sequestration in the wet alpine
regions but had little effect in dry alpine steppes and even decreased

net carbon sequestration capacity in the desert steppe region in the
northwest of the plateau (Fig. 3B1).
Precipitation outweighed other factors in the water-limited

region and enhanced the net carbon sequestration capacity. Precip-
itation was more abundant on the eastern and southeastern parts of
the plateau, and thus, the temperature was only a limiting factor for
plant growth where water was nonlimiting (15, 27, 36). Therefore,
the substantial warming of the alpine meadow region between 1982
and 2018 contributed to the marked decline in NEE (i.e., the en-
hanced carbon sink capacity) in the region. However, for the
alpine steppes, soil moisture was a limiting factor of the vegetation
growth, and increased precipitation made the soil environment
moister, improved the supply of nutrients, promoted plant photo-
synthesis, and enhanced the carbon sequestration capacity (37). The
relationship between precipitation and NEE directly reflected the
impact of water availability on plant productivity in the alpine
steppe regions. Precipitation was the dominant variable controlling
the productivity and carbon sequestration of semiarid grasslands,
which has been largely shown in previous studies (28, 29, 38).

Fig. 5. Time series of and relationships between T and the NEE absolute value anomalies. T: annual mean air temperature. (A and B) Entire alpine grassland region of
the TP. (C andD) Alpine meadow region. (E and F) Alpine steppe region. The solid lines in (B), (D), and (F) indicate the linear fit, while the blue shading represents the 95%
confidence band of the fits.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Wang et al., Sci. Adv. 9, eade6875 (2023) 17 May 2023 7 of 15

D
ow

nloaded from
 https://w

w
w

.science.org at C
ornell U

niversity on Septem
ber 05, 2023



The weakening of increasing carbon sequestration intensity in
alpine grasslands on the TP from 2000 to 2018 was caused by the
lack of water availability due to the decrease in precipitation from
2014 to 2015, and if the effects of these two years were excluded, the
carbon sequestration intensity on the TP actually would have con-
tinuously enhanced (Fig. 1E). Moreover, warming and wetting
could also contribute to net carbon sequestration in alpine grass-
lands through effects on biogeochemical cycling. For instance,
warming can enhance soil nitrogen transformation rates and in-
creasing precipitation can boost nitrogen availability, both of
which can alleviate nitrogen limitation of alpine grassland (12).
In addition to warming and wetting, other factors such as nitro-

gen deposition, permafrost thawing, CO2 fertilization effect,
fencing, and grazing may also have altered carbon sources and
sinks of alpine grasslands. Previous studies showed that nitrogen
enrichment generally increases plant productivity and reduces or
has negligible effect on ecosystem respiration (34, 39, 40), thus gen-
erally boosting ecosystem carbon sequestration. However, most of
the nitrogen fertilization experiments were located in the eastern

alpine meadow region, and the resulting findings may not apply
to alpine grasslands in other parts of the plateau. Actually, the ni-
trogen deposition on the TP is relatively low, so its enhancement
effect on carbon sequestration in alpine grasslands is limited (12).
Furthermore, as the largest alpine permafrost region in the middle
latitudes, the TP alpine grassland region has huge soil organic
carbon storage (20). The thawing of permafrost caused by
warming will accelerate the release of carbon, which may weaken
the carbon sink capacity of the TP (19). Moreover, rising atmo-
spheric CO2 can directly enhance net ecosystem carbon uptake by
enhancing photosynthesis through CO2 fertilization, which has
been confirmed by the CO2 enrichment experiment on the TP
(41). Although the contribution of CO2 fertilization can be quanti-
fied at the ecosystem scale through controlled experiments, its
quantification at the regional scale requires scaling with modeling
approaches and the simulations are often subject to large uncertain-
ties mainly due to imperfect assumptions and uncertain parameters
in the models. Meanwhile, grassland degradation due to increased
grazing may also adversely affect the carbon sink potential of alpine

Fig. 6. Time series of and relationships between PPT and theNEE absolute value anomalies. PPT: annual precipitation. (A and B) Entire alpine grassland region of the
TP. (C and D) Alpine meadow region. (E and F) Alpine steppe region. The solid lines in (B), (D), and (F) indicate the linear fit, while the blue shading represents the 95%
confidence band of the fits.
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grasslands. Therefore, the influences of these factors should be fully
taken into account in future assessments of the carbon sequestration
intensity in alpine grasslands on the TP.

Increasing in situ measurements improved the estimation
of the carbon sequestration for the TP
Although an increasing number of studies have been conducted to
quantify carbon sequestration of the TP at the regional scale using
distinct methods, these carbon sequestration estimates still have
large uncertainties (fig. S5). The large variability of the upscaled es-
timates was caused by various factors, such as ground flux data,
model structure, and parameterization (42). The alpine grassland
NEE for the TP from 2001 to 2015 extracted from different regional
and global machine learning upscaling studies varied widely (fig.
S6). Specifically, in some studies (fig. S6, B and D), the source-
sink pattern of alpine grasslands did not match that of flux obser-
vations (8, 43). The remaining studies reported a gradual transition
from a stronger carbon sink in the eastern alpinemeadows to a weak
carbon source or sink in the western alpine steppes, which could
basically capture the spatial pattern of observation-based net
carbon sequestration intensity in the alpine grasslands. The main
reason for the large discrepancies among previous upscaling
studies, ground-based observations, and our findings is that the per-
formance of machine learning methods is greatly influenced by the
availability and representativeness of training data, while previous
synthesis and upscaling studies on the TP typically used NEE mea-
surements from only a few flux sites (3, 8, 43). For example, Yao
et al. (3) used five grassland sites, while other studies used only
two sites. The NEE dataset developed in this study used observa-
tions from a much larger number of sites across the plateau that en-
compass various climate and vegetation types, which could increase

the accuracy of the carbon sequestration estimation for the alpine
grasslands on the TP.
We also extracted the NEE estimates for the TP alpine grasslands

from the global simulations based on eight terrestrial biosphere
models over 1982–2010 from the Multi-scale Synthesis and Terres-
trial Model Intercomparison Project (MsTMIP) (fig. S7). The
spatial patterns of the NEE results of the diverse models exhibited
substantial discrepancies and also had large differences from the ob-
served NEE (25). These model simulations were conducted on a
global scale, and key parameters were not calibrated for the TP.
These models were based on imperfect assumptions and ecosystem
processes, while model input data (e.g., climate and soil properties)
also had substantial uncertainty. As a result, the model simulations
have limited accuracy (44). What is more, we compared the NEE
estimates for the alpine grassland region on the TP obtained
using other process-based models (21, 22, 26). For example, one
study used the Lund-Potsdam-Jena model to estimate the alpine
grassland net ecosystem productivity on the TP from 1979 to
2005 with soil texture and CO2 concentration data as the inputs
and the observation flux data as the constraints. Their results
showed that the annual mean NEP increased from approximately
36 g C m−2 year−1 in 1979 to more than 80 g C m−2 year−1 in
2005 (26). For the overlapping period, the estimates of the magni-
tude and trend in carbon sequestration of that study were much
larger than those of our study likely because input datasets, model
mechanisms, and model parameters were different. The data pro-
cessing method used in the abovementioned research may have
overestimated carbon sink on the TP (45). This also indicates that
there is still a great deal of uncertainty in quantifying the alpine
grassland NEE on the TP and that further research is urgently
needed to reduce its uncertainties.

Fig. 7. Schematic diagram for the warmer and wetter climate increases the carbon sequestration capacity of the alpine grasslands.
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The results of this study may also be subject to various sources of
uncertainty. First, the observations from all the sites used in this
study were concentrated in 2002–2018, and the training of the
model was therefore limited to this period. Because of the lack of
observations before 2002, the gridded NEE estimates from 1982
to 2001 may have larger uncertainty. However, we analyzed the
probability density distribution of regional mean temperature and
precipitation during 1982–2001 and 2002–2018 and found that
there was a high degree of overlap between the two periods (fig.
S8). This indicates that the training data of the latter period could
capture the climatic conditions of the previous period fairly well and
that the model developed with data for 2002–2018 could be used to
estimate NEE for 1982–2001. Many previous studies also used
machine learning models trained with data from one period to es-
timate carbon and/or water fluxes for another period (42, 46–47). In
addition, although machine learning–based methods are widely
used in upscaling estimation of regional carbon fluxes and their up-
scaling results are often used as benchmarks for process-based
models, the representativeness of flux sites and the inadequate se-
lection of explanatory variables will cause uncertainty in regional
NEE estimations (3, 8). For example, the 25 alpine grassland sites
used in this study were mainly located in the alpine meadow
region on the eastern and central parts of the plateau, and there is
a lack of observation sites on the western part of the plateau. Thus,
the NEE estimation for the alpine steppe region may have certain
uncertainty. Moreover, the explanatory variables applied in this
study may not be sufficient to adequately capture the changes in
the NEE. Despite the various sources of uncertainty, our gridded
NEE estimates had reasonable accuracy (figs. S9 to S11) and the un-
certainty (as measured by SD) of the annual NEE was relatively low
(fig. S12). Although the changes in the NEE on the monthly scale
are closely related to precipitation, temperature, radiation, vegeta-
tion greenness, and canopy development, they are also closely
linked to other factors such as topsoil water content, nitrogen dep-
osition, fencing, grazing, and above/subsurface biomass that were
not considered (34, 48). For some of the variables (e.g., fencing
and grazing), regional-scale data are not yet available for the TP;
for the variables having data available for the TP, the data tend to
have large uncertainties and very coarse spatial resolutions, and they
might only be available for part of our study period (49, 50).
Besides the “bottom-up” upscaling estimates based on flux ob-

servations, the “top-down” atmospheric inversion methods are
also admittedly indispensable tools (51). There are mounting satel-
lite sensors and platforms, such as OCO-3 and GOSAT, that can
observe the atmospheric CO2 vertical column concentration. The
combination of these satellite data with increasingly sophisticated
atmospheric inversion methods may lead to more accurate NEE es-
timation than previous inversion efforts. The NEE estimates based
on inversion methods and those resulting from bottom-up upscal-
ing methods and ground-based flux observations can be compared
against each other, which can potentially improve the future estima-
tion of carbon sink capacity in the alpine grasslands of the TP. In
addition, with the increase of government investment in the study of
the TP and the implementation of some major scientific research
projects (e.g., the Second Tibetan Plateau Scientific Expedition
and Research program), there will be a growing number of
ground flux observation sites on the plateau (52). Moreover,
besides the sites that we used, there are a number of existing flux
sites on the TP that the flux observations are not yet publicly

available. The growing number of flux sites and increasing aware-
ness of data sharing among researchers will likely allow us to better
quantify the carbon sink capacity of the alpine grasslands on the TP
in the future.

Implications and outlook
Accurately estimating the carbon sequestration of the alpine grass-
lands on the TP is crucial to understanding their role in regional and
global carbon cycles and has prominent implication for future pro-
jections of carbon-climate feedbacks. On the basis of our upscaled
estimation, the amount of carbon that the alpine grasslands on the
TP sequestrated ranged from 18.02 to 54.08 g C m−2 year−1 (i.e.,
from 26.39 to 79.19 Tg C year−1) with an average of 35.59 ± 9.90
g C m−2 year−1 (i.e., 52.11 ± 14.50 Tg C year−1) during 1982–
2018. In general, the alpine grassland region on the TP is an impor-
tant carbon sink. Our upscaling method did not explicitly consider
factors such as grassland grazing (53), aquatic carbon export (54),
and fire emissions. If these factors were taken into account, the
carbon sequestration capacity of the alpine grasslands on the TP
could be lower. Moreover, warming and increased precipitation
dominated the enhancement of carbon sequestration intensity in
alpine meadows and alpine steppes, respectively. Warmer and
wetter climate is projected to continue on the TP, and thus, the in-
creasing trend of carbon sinks in alpine grasslands is likely to be
maintained. Further, it is known that the TP is the largest alpine
permafrost region in the world, and the permafrost is basically
located in the alpine grassland area (20). The rising temperatures
on the TP in recent decades have led to the thawing of the perma-
frost and thickening of the active layer, which may have accelerated
the release of the carbon stored in the permafrost (19). Our research
shows that the carbon sequestration capacity of the alpine grass-
lands on the TP has been enhanced by a warmer and wetter
climate. This indicates that, annually, the carbon input is still
greater than the carbon output in the alpine grassland region of
the TP. However, if the temperature continues to rise in the
future, the melting of the permafrost is likely to accelerate, and
the amount of carbon released may increase, which might weaken
the carbon sink capacity of alpine grasslands on the TP.

MATERIALS AND METHODS
Dataset
Collection of eddy covariance flux data
In total, data from 25 carbon flux observation sites on the TP were
obtained in this study (Fig. 1A and table S1). These sites covered
most of the typical grassland ecosystem types in the region: alpine
Kobreia meadow (11 sites), alpine swamp meadow (6 sites), alpine
shrub meadow (2 sites), and alpine steppe (6 sites, of which NMC,
DX, QM, and ND66 were alpine meadow steppes, and NASDE and
Muztagh were alpine desert steppes). Most of these flux observation
sites were located in the central and eastern parts of the TP, and
there were fewer sites in the western and northern parts of the
plateau, especially in regions such as the Qiangtang Plateau, due
to the harsh environment and lack of convenient roads.
A total of 107 site-year of data from all of the sites combined were

acquired in this study, with an average of 4.3 years of data per site.
These site data can be divided into three types: (i) raw 10-Hz data
available; (ii) 30-min data acquired using flux processing software;
and (iii) daily data obtained from the literature. Specifically, the data
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from NMC, Muztagh, NASDE, QM_a, and QM_b belonged to type
1. At these sites, the eddy covariance instruments were set up and
maintained by the Institute of Tibetan Plateau Research, Chinese
Academy of Sciences. The data from AR, MQ, HLG, BJ, AD,
NPAM, YK, JYL, DSL, LB, ND66, Haibei_a, and Haibei_b belonged
to type 2, and most of these data were downloaded from the Big
Earth Data Platform for Three Poles (https://poles.tpdc.ac.cn/en/).
The data from sites GL (55), NQ (38), REG (56), SZ (57), Haibei-c,
DX_a, and DX_b belonged to type 3. The data for Haibei-c and DX-
a were downloaded from the official website of ChinaFlux (http://
chinaflux.org/enn/). For the sites with type 1 data, standardized
procedures were adopted to process the raw 10-Hz data to 30-min
carbon flux data. Furthermore, to obtain the daily and monthly in-
tegrated data, we used the R-based package (REddyProc) developed
by theMax Planck Institute for Biogeochemistry to fill in the gaps in
the half-hour NEE for the type 1 and 2 data (58). In total, 1223 site-
month flux data were used to construct the machine learning model
for the development of the TP alpine grassland NEE dataset.
Satellite and climate input datasets
The NEE is the synergistic result of photosynthesis and respiration
and is influenced by a variety of biological, atmospheric, hydrolog-
ical, and soil factors (2). At the ecosystem scale, the GPP is mainly
affected by environmental factors, such as solar radiation, air tem-
perature, vapor pressure deficit, and water availability, and biolog-
ical factors, such as canopy development and phenology. Ecosystem
respiration consists of autotrophic and heterotrophic respiration,
with soil respiration accounting for the largest proportion. Ecosys-
tem respiration is closely related to plant photosynthesis, metabo-
lism, and litterfall. Specifically, autotrophic respiration can be
expressed empirically as a function of the air temperature and
GPP, while heterotrophic respiration is usually modeled as a func-
tion of the soil temperature andmoisture and the substrate (59). It is
obvious that these variables affect the NEE either directly or indi-
rectly, and many of these variables can be assessed using satellite
remote sensing and reanalysis data. For example, the normalized
difference vegetation index (NDVI) and the enhanced vegetation
index (EVI) are biophysical indicators of vegetation canopy devel-
opment, phenology, and greenness, and they are closely related to
the photosynthetic intensity of the vegetation and seasonal changes
in the biomass. In contrast to remote sensing vegetation indices,
which can better reflect the greenness of vegetation, the sun-
induced chlorophyll fluorescence (SIF) is considered to be an indi-
cator of the actual photosynthetic function of plants. Previous
studies have also revealed the notable relationship between the
SIF and photosynthesis at the ecosystem scale (60).
Therefore, in this study, the temperature, precipitation, radia-

tion, NDVI, EVI, and SIF, which are strongly correlated with eco-
system carbon fluxes, were mainly selected as the explanatory
variables for the NEE upscaling simulation. The moderate-resolu-
tion imaging spectroradiometer (MODIS) 16-day composite NDVI
and EVI products (MOD13Q1) with a 250-m spatial resolution
from 2000 to 2018 were used in this study (https://search.
earthdata.nasa.gov/). The original 16-day NDVI and EVI data
were first aggregated to monthly intervals using a maximum
value composition approach and then were resampled to a 1-km
resolution. Moreover, the advanced very high-resolution radiome-
ter version 6 (AVHRR-V6) NDVI products with a 0.05° × 0.05°
spatial resolution and a daily temporal resolution collected by the
AVHRR sensors were used (https://ncei.noaa.gov/products/

climate-data-records/normalized-difference-vegetation-index). To
minimize the atmospheric and cloud pollution effects, we used
the monthly maximum synthesis to calculate the monthly scale
NDVI datasets. It has been verified that the monthly AVHRR
NDVI and MODIS-NDVI are basically consistent over the TP, ex-
hibiting good reliability. In addition, monthly SIF data used in this
study were obtained from the Earth System Research Center at the
University of New Hampshire, USA (http://data.globalecology.unh.
edu/data/GOSIF_v2/). The regional-scale gridded reanalysis mete-
orological datasets, including air temperature, precipitation, and
downward shortwave radiation, were derived from the China Mete-
orological Forcing Dataset (61). The dataset has a temporal resolu-
tion of daily scale and a spatial resolution of 0.1° × 0.1°. In this study,
daily-scale meteorological data were aggregated to monthly-scale
data, including monthly mean temperature (Tmean), monthly
mean downward shortwave radiation (Rd), monthlymaximum tem-
perature (Tmax), and monthly cumulative precipitation (PPT). To
match the spatial resolution of the two NDVI datasets described
in the previous section, we resampled the regional-scale meteoro-
logical data to a resolution of 1 km and 0.05°, respectively.
Independent NEE datasets
In this study, besides the gridded NEE data that we generated by
upscaling flux observations to the regional scale, six existing region-
al NEE datasets developed by previous studies via upscaling and
based on different machine learning methods were also used. The
regional results for the TP were extracted from these independent
datasets and were compared with the upscaled results in this study.
Specifically, Yao et al. (3) created a regional NEE dataset for China
based on carbon flux observations from 46 flux sites (5 sites on the
TP) combined with remote sensing and reanalysis data using the
model tree ensemble method. Zeng et al. (43) created a global
carbon flux dataset based on the FLUXNET 2015 dataset and
other data using the random forest (RF) method to obtain a
global carbon flux dataset. The remaining four datasets were the
FluxCom datasets of the global carbon fluxes created by Jung
et al. (8) based on the upscaling of 224 flux sites from FLUXNET.
Among them, MTE (RS) was obtained entirely from remotely
sensed data using a model tree ensemble approach, while the re-
maining three were obtained from remotely sensed data with rean-
alyzed meteorological data (CRU JRA) driven by multivariate
adaptive regression splines, RF, and artificial neural networks. In
addition, in this study, the NEE results were also compared with
the model simulations from the MsTMIP (https://daac.ornl.gov/
cgi-bin/dsviewer.pl?ds_id=1225). The MsTMIP dataset provides
global gridded estimates of the carbon fluxes between the land
and atmosphere for 15 terrestrial biosphere models in a standard
format. The temporal and spatial resolutions of the data are
monthly and 0.5°, and the time span is 1982–2010 (44). The
dataset of the MsTMIP simulations (BIOME-BGC, CLASS-
CTEM-N, CLM4, CLM4VIC, DLEM, ISAM, TEM, and
TRIPLEX-GHG) was divided into five categories based on the
changes in the climate driving variables, land use data, and CO2
and nitrogen deposition, of which the BG1 simulations were select-
ed for use in this study.

Construction of monthly regional NEE estimation model
Considering the differences in the availability of theMODIS higher-
resolution (1 km) remote sensing data from 2000 to 2018 and the
AVHRR NDVI lower-resolution remote (0.5°) sensing data from
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1982 to 2018, we used two groups of explanatory variables for the
model development and the estimation of the regional NEE (table
S2). Moreover, the simulation involving the shorter-term (2000–
2018) higher-resolution MODIS NDVI and EVI data was referred
to as case 1, while the simulation involving the longer-term (1982–
2018) lower-resolution AVHRR NDVI was referred to as case 2
(table S2). Since case 1 adopted more variables with higher-resolu-
tion (1 km; e.g., NDVI, EVI, and SIF) data, the regional NEE ob-
tained by case 1 following upscaling might have better reliability.
Thus, the higher-resolution, shorter-term regional NEE dataset
can be used as a comparison benchmark for the longer-term region-
al NEE dataset, while the longer-term regional NEE can be further
used to analyze the spatial and temporal patterns and driving factors
of NEE for alpine grasslands on the TP. Further, in this study, we
applied regression-based machine learning approaches to upscale
the flux NEE measurements. In this study, four machine learning
methods were selected: the support vector regression (SVR) (7),
RF regression (62), ETR (63), and extreme gradient boosting
(XGBoost) (64) methods, which have been widely used in previous
regional upscaling studies. First, the site observed NEE data and the
explanatory variables corresponding to the site grid were randomly
divided into two groups: 70% of the data (884 site months) were
used as the training dataset, and the remaining 30% (380 site
months) were used as the testing dataset (mainly to test the perfor-
mance of the trained model). For the training dataset, the parame-
ters of the machine learning model were optimized and selected
using the k-fold cross-validation and grid search method. The spe-
cific process was as follows. We randomly and equally divided the
training dataset into k parts. In each parameter grid search process,
(k – 1) parts of the data were used as training data, and the kth part
of the data was used as validation data. The training was repeated k
times in turn to ensure that each part of the data was involved in the
training and validation. Then, k training model metrics were ob-
tained, and the average of these kmetrics was the k times cross-val-
idation of the model metrics. Although k-fold cross-validation takes
a long time in practical applications, the data are fully used. The
mean absolute error (MAE), RMSE, and correlation coefficient
(R2) were used to evaluate the performance of each model

R2 ¼

Xn

i¼1
ðEi � OiÞ

2

Xn

i¼1
ðOi � OiÞ

2
ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðEi � OiÞ

2

s

ð2Þ

MAE ¼
1
n

Xn

i¼1
jEi � Oi j ð3Þ

In Eqs. 1 to 3, Ei is the monthly NEE simulated by the models
and Oi is the measured monthly NEE. We chose the model with the
smallest MAE and RMSE and the largest R2 as the best model. The
four machine learning methods (ETR, RF, SVR, and XGBoost) ba-
sically have the same model configuration process. However, the
SVR method needs to standardize the input data because the

different dimensions of the data will affect the division of the hyper-
plane, while the other methods with decision trees as the basic
structure have only small differences. In terms of the model appli-
cation, the monthly NEE of the alpine grassland region on the TP
was generated using the trained model and the regional explanatory
variables presented in table S2 (the results of the two cases with
spatial resolutions of 1 km and 0.05°).

Performance of the regression machine learning methods
We used the regression machine learning method to construct data-
driven models at the site scale during the training process, and ob-
servation data were used to constrain the model parameters. Then,
the training results of the models were verified using the testing
data. Case 1 involved shorter-term (2000–2018) and higher-resolu-
tion (1 km) variables, while case 2 involved longer-term (1982–
2018) and lower-resolution (0.05°) variables. The training and
testing results of case 1 are shown in figs. S9 and S10. The training
results of the four machine learning methods show that the ETR,
RF, and XGBoost methods were close in terms of accuracy and
that they all outperformed the SVR method (fig. S9). The test
results show that the accuracies of the four methods were not very
different, with the ETR method (MAE = 0.34, RMSE = 0.51, R2 =
0.75) performing slightly better than the other three methods (fig.
S10). Therefore, on the basis of the assessment results of the above-
mentioned models, we used the ETR method for the estimation of
the monthly-scale NEE of the TP alpine grassland during 2000–
2018 on a per-pixel basis using the explanatory variables for case
1. For case 2, we also used the ETR method to train and test the
observed NEE and the relevant explanatory variables to facilitate
the comparison and analysis of the regional upscaling results with
case 1. Since there were fewer explanatory variables in case 2 than in
case 1, the performance of case 2 was somewhat lower than that of
case 1 for both the training (MAE = 0.26, RMSE = 0.37, R2 = 0.85)
and testing results (MAE = 0.34, RMSE = 0.54, R2 = 0.72), but the
difference was not large (fig. S11). Then, the monthly-scale NEE of
the alpine grassland region on the TP during 1982–2018 was esti-
mated on a per-pixel basis using the explanatory variables associat-
ed with the ETR optimal model trained in case 2.

Analysis methods
In this study, the attribution analysis of the contribution of each
driving variable to the changes in the trend of the NEE was
based on the upscaling results obtained for case 2. The driving
factors of the NEE included the PPT, NDVI, Rd, Tmean, and Tmax.
A control experiment (Expert_CON) and sensitivity experiment
(Expert_SEN) were set to attribute the regional interannual varia-
tion trend of the NEE. Taking 1982–2018 as an example, the actual
values of each explanatory variable in the control experiment re-
mained unchanged during 1982–2018, and five sensitivity experi-
ments were conducted on the explanatory variables, namely,
exper_PPT, exper_NDVI, exper_Rd, exper_Tmean, and exper_Tmax.
In each sensitivity test, the measured explanatory variables were
kept constant at their mean values from 1982 to 2018, and the
other variables were kept the same as in the control test. The differ-
ence in the NEE trends of the control test and the sensitivity test was
considered to be the contribution of this explanatory variable to the
NEE trend. However, there are interactions between these drivers,
which may introduce some uncertainty into the estimation of each
factor ’s individual contribution to the change in the NEE.
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Therefore, in this study, the separation method proposed by Sun
et al. (65) was used, which can minimize the error caused by the
interactions between the explanatory variables and has been
better applied in several studies (66, 67)

Xn

k=i
Ck ¼ Eexper i ð4Þ

where
Pn

k=iCk is the total contribution of all the remaining explan-
atory variables to the NEE trend of the control experiment, except
the ith factor; Ck is the contribution of the kth factor to the NEE
trend; n is the number of sensitivity experiments (n = 5 in this
study); and Eexper_i is the NEE trend of each sensitivity experiment.
By solving the abovementioned equations, we can obtain the con-
tribution of each driver to the NEE trend Ci

Ci ¼

Xn

k=i
Eexper k � ðn � 2Þ�Eexper i

n � 1
ð5Þ

Similarly, following the same analysis for 1982–2018, we also an-
alyzed the contribution of each explanatory variable to the trend of
the NEE during the two time periods of 1982–1999 and 2000–2018.
The Mann-Kendall test is a nonparametric trend test method that
has been widely used in hydrometeorological time series analysis.
Compared with the linear regression method, it can provide a
more accurate estimation of the skewness of the data (68). The
Theil-Sen method was used to calculate the magnitude of the
trend, and the nonparametric Mann-Kendall method was used to
determine the level of significance of the interannual trends in
the NEE and climate variables.

Supplementary Materials
This PDF file includes:
Figs. S1 to S12
Tables S1 and S2

View/request a protocol for this paper from Bio-protocol.
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