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Carbon-nitrogen coupling is a fundamental principle in ecosystem ecology. However, how the coupling responds to global
change has not yet been examined. Through a comprehensive and systematic literature review, we assessed how the dynamics of
carbon processes change with increasing nitrogen input and how nitrogen processes change with increasing carbon input under
global change. Our review shows that nitrogen input to the ecosystem mostly stimulates plant primary productivity but in-
consistently decreases microbial activities or increases soil carbon sequestration, with nitrogen leaching and nitrogenous gas
emission rapidly increasing. Nitrogen fixation increases and nitrogen leaching decreases to improve soil nitrogen availability and
support plant growth and ecosystem carbon sequestration under elevated CO2 and temperature or along ecosystem succession.
We conclude that soil nitrogen cycle processes continually adjust to change in response to either overload under nitrogen addition
or deficiency under CO2 enrichment and ecosystem succession to couple with carbon cycling. Indeed, processes of both carbon
and nitrogen cycles continually adjust under global change, leading to dynamic coupling in carbon and nitrogen cycles. The
dynamic coupling framework reconciles previous debates on the “uncoupling” or “decoupling” of ecosystem carbon and
nitrogen cycles under global change. Ecosystem models failing to simulate these dynamic adjustments cannot simulate carbon-
nitrogen coupling nor predict ecosystem carbon sequestration well.

nitrogen limitation, carbon-nitrogen interaction, global change, carbon sequestration, soil nitrogen cycle

Citation: Niu, S., Song, L., Wang, J., Luo, Y., and Yu, G. (2023). Dynamic carbon-nitrogen coupling under global change. Sci China Life Sci 66, https://doi.org/
10.1007/s11427-022-2245-y

Introduction

Nitrogen (N) is a life-supporting element in the earth
system. It controls plant primary productivity, influences
ecosystem carbon (C) sequestration, and regulates climate
change (Fernández-Martínez et al., 2014; Hungate et al.,
2003; Kicklighter et al., 2019). Nitrogen affects those
processes mainly via its influence on C metabolism
through processes such as photosynthesis, growth, and
decomposition. Thus, how C and N cycles interact or
couple with each other is crucial to predicting future

changes in plant production, ecosystem C sequestration,
and climate.
One of the commonly held concepts about C-N coupling

is the N limitation. The concept was originally established
for plant productivity as plant growth generally increases
with N availability either through N inputs or along natural
gradients (Vitousek and Howarth, 1991). The N limitation
of net primary productivity (NPP) has been widely ob-
served from N addition experiments (LeBauer and Trese-
der, 2008). Once this N limitation of NPP is incorporated
into C cycle models, simulated responses of global ter-
restrial C uptake to increasing CO2 usually decrease (Goll
et al., 2012). The inclusion of the N cycle in the land
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models also dampens the net land C exchange in response
to temperature and precipitation variation (Piao et al.,
2013; Thornton et al., 2007). Those C-N coupled models
simulate C sequestration with an assumption that N input
drives the C cycle in a whole ecosystem. This assumption
largely ignores microbial response and regulation (Wieder
et al., 2013) and results in a poor agreement between
modeled and observed C sequestration (Todd-Brown et al.,
2013).
The soil N availability itself is highly dynamic in re-

sponse to environmental change; long-term records espe-
cially demonstrate that N availability is declining in many
regions of the world (Mason et al., 2022). For example, N
leaching and gas emission usually increase soon after exotic
N input (Fang et al., 2011; Niu et al., 2016), resulting in a
temporal decrease in soil N availability. In contrast, soil N
mineralization may persistently increase for years resulting
in an increase in N availability and thus alleviating N
limitation of plant growth under elevated CO2 (Sun et al.,
2018; Wu et al., 2020). As both C and N cycles have tem-
poral dynamics, their coupling may shift if N processes do
not synchronically change with the C cycle or vice versa.
This shift in their coupling has recently been called “un-
coupling”, “decoupling”, “imbalance”, or “unbalance” be-
tween C and N cycles in previous studies (Asner et al.,
1997; Peñuelas et al., 2020; Peñuelas et al., 2012). These
terms, such as “uncoupling” or “decoupling”, generally
reflect changes in C and N stoichiometric relationships,
shifted allocation in different pools, and altered relative
amounts resulting from asynchrony in adjustment in C and
N cycles. Thus, it is important to examine how the coupling
of C and N processes dynamically adjusts in response to
various global change factors.
This review aims to comprehensively evaluate dynamic

C-N coupling by reviewing the responses of C processes to
N overload and the responses of N processes to changes in
C input under CO2 enrichment and ecosystem succession or
other regulatory environmental changes. Specifically, we
addressed two questions in this study: (i) how do C pro-
cesses dynamically change under N loading to shift their
coupling? (ii) How do various N processes adjust their
balance with changes in the C cycle under global change?
To address these two questions, we reviewed the results of
previously published studies. Our synthesis relies on results
from studies of natural ecosystems and many meta-ana-
lyzes, representing general patterns in C and N responses
among different studies across ecosystems. We also ex-
amined how the coupling of C and N cycles shifts under
global change, under which we reconcile recent new terms
in the literature, such as “decoupling” and “uncoupling”
between C and N cycles. Finally, we proposed future stu-
dies focusing on testing and applying dynamic C-N cou-
pling in global change.

Dynamic changes of C processes with increasing N
availability

Lots of N addition experiments, e.g., Nutrient Network,
NITREX, NIPHYS and NitroEurope, have been conducted
in the past three decades to investigate how N influences C
cycling and associated ecosystem functions. We mainly re-
viewed three processes, plant growth and biomass accumu-
lation, microbial biomass and decomposition, and soil C
sequestration and net ecosystem exchange, to examine how
different C processes change to dynamically couple with
increasing N loading. Those processes represent key com-
ponents of the terrestrial C cycle.

Pervasive increase of plant growth and biomass accumu-
lation

There is ample evidence to support the notion that plant
growth and NPP are pervasively increased in terrestrial
ecosystems (Elser et al., 2007; Fay et al., 2015; Harpole et
al., 2011; Vitousek and Howarth, 1991; Yang et al., 2022).
This notion develops from three lines of evidence, namely, N
addition experiments, N gradient observations, and stoi-
chiometric ratios.
Hundreds of N addition experiments have shown increases

in NPP under N addition (Figure 1). By synthesizing 257
experimental studies, Lu et al. (2011) showed an average
increase of 35.7% in above-ground plant biomass. Another
meta-analysis of 126 N addition experiments showed that N
limitation constrains productivity in most ecosystems, al-
though the degree of limitation varies with biomes over
geographical regions (LeBauer and Treseder, 2008). How-
ever, with the continually increasing N input, the increase of
NPP and plant N uptake will eventually plateau and perhaps
even decline at high levels of N loading, forming a nonlinear
response (Aber et al., 1998; Niu et al., 2016; Tian et al.,
2016a; Tian et al., 2016b). These findings from N addition
experiments advance our understanding of C-N coupling and
indicate that N limitation on plant growth is pervasive.
In addition to experimental evidence, observations of NPP

over large spatial scales indicate a strong coupling between
NPP and N availability. In temperate forests in Western
Europe and North America, NPP was higher at sites with
more N deposition along a gradient of N deposition than at
sites with less N deposition (Magnani et al., 2007). Other
studies also suggest that ambient rates of N deposition likely
increase forest growth (de Vries et al., 2008; Fang et al.,
2014; Sutton et al., 2008). These observations are supported
further by the results of temporal changes in N deposition
and their consequences on NPP. Tree diameter measurements
from 1984 to 2004 along an ambient N deposition gradient in
the Adirondack Park, USA, indicate that N deposition leads
to an increase in woody biomass, especially for the smaller
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size groups of several species (Bedison and McNeil, 2009;
Ibáñez et al., 2018).
Another approach to studying C-N coupling is based on

stoichiometry, which provides valuable insights into poten-
tial element constraints of plant growth and activity. Nitro-
gen inputs always increase NPP and decrease C:N ratios
substantially (Yang et al., 2011). The low C:N ratios and very
high N:P ratios in lowland tropical forests suggest that N
generally is less limiting in such systems. In contrast, tropical
montane forests could be limited by N, as indicated by their
higher C:N ratios (Cleveland et al., 2011).
Overall, the accumulated evidence from multiple studies

over decades suggests that terrestrial plant C uptake and
ecosystem NPP generally increase with increasing N avail-
ability (Figure 1), although there may be considerable het-
erogeneity in magnitude across ecosystems.

Decrease in soil microbial biomass and respiration under
N enrichment

In coupling with increasing N availability, microbes do not
have to decompose organic matter to obtain N. So, both
microbial biomass C and respiration show significantly ne-
gative responses to N addition across experiments conducted
in the world (Figure 1). A previous global meta-analysis also
reported a 15% decrease in microbial biomass (Treseder,
2008). The microbial composition, such as fungi/bacteria
ratio and gram-negative/gram-positive bacteria ratio, is im-
peded by N enrichment as well (Janssens et al., 2010; Zhang
et al., 2018a). Those changes in microbial biomass and
composition lead to lower microbial respiration, hindering
the decomposition of soil organic matter (Zhang et al.,

2018a). A meta-analysis across litter decomposition experi-
ments showed no significant response of microbial decom-
position to N addition (Knorr et al., 2005). In regions with
high N deposition, microbial decomposition rates either de-
crease or have no clear response. In contrast, other studies
suggest that microbes are N-limited in natural soils where
low soil N availability reduces microbial respiration (Hu et
al., 2001). The apparent contradiction between the two per-
spectives can be reconciled by considering that the maximal
rate of microbial decomposition only requires relatively little
N to maintain (Schimel and Weintraub, 2003).
Microbes can mine N from the soil. Low N availability can

increase litter decomposition because microbes usually use
labile C substrates to acquire N from recalcitrant organic
matter, which is called “microbial N mining” (Chen et al.,
2014; Craine et al., 2007; Meyer et al., 2017; Moorhead and
Sinsabaugh, 2006). Increasing mineral N input makes mi-
crobes reduce their breakdown of organic material to acquire
N (Craine et al., 2007; Wild et al., 2019), leading to a re-
duction in microbial activity with the addition of N (Hartman
and Richardson, 2013). Additionally, besides the higher
availability of N, the increased mineral N input also results in
soil acidification and accumulation of toxic metals, which
hinders microbial growth and activity (Tian and Niu, 2015;
Treseder, 2008).

Increase of soil C sequestration to long-term N enrichment

Nitrogen is thought to be a key parameter in regulating ter-
restrial C sequestration. It can be predicted that progressive
N limitation would increasingly constrain C sequestration if
the ecosystem N capital does not change over time (Luo et

Figure 1 Conceptual diagram depicting the effects of N addition on C pools and fluxes. AGB, above-ground biomass; BGB, below-ground biomass; MBC,
microbial biomass C; GEP, gross ecosystem productivity; ER, ecosystem respiration; MR, microbial respiration; SOC, soil organic C; SOM, soil organic
matter. The red arrow indicates an increase, whereas the blue arrow indicates a decrease. ns means non-significant change. Numbers indicate the number of
observations. We used the global meta-analysis dataset in Zhou et al. (2017), Zhang et al. (2018b), and Xu et al. (2021) to summarize the influence of N
enrichment on ecosystem C cycling processes.
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al., 2004). However, N addition experiments show that net
ecosystem C sequestration inconsistently responds to N en-
richment, with either positive (Niu et al., 2010), negative
(Bubier et al., 2007), or no change (Metcalfe et al., 2013;
Xing et al., 2022). Previous global synthesis studies also
demonstrated that adding N into the ecosystem does not
necessarily lead to increases in C sequestration in many N
addition experiments (Crowther et al., 2019; Lu et al., 2011).
In fact, some studies even revealed a decrease in soil C under
N addition (Bubier et al., 2007; Mack et al., 2004). Never-
theless, a recent synthesis study including more observations
on long-term N addition treatment reported an average of 4%
increase in soil organic C under N addition globally (Xu et
al., 2021). This implies that a detectable C sequestration
under N addition requires a gradual accumulation over a long
period.
Consistent with the increase in soil C storage, our recent

global synthesis study also revealed an increase in net
ecosystem productivity (NEP) under N enrichment (Figure
1). Although both ecosystem C uptake and release are
stimulated by N addition, the increase in gross ecosystem
productivity is relatively larger than that of ecosystem re-
spiration, which leads to the increased NEP. This also
contributed to the net accumulation of soil C pool over
time.

Dynamic N processes and availability under global
change

Section 2 examined how ecosystem C cycling changes to
couple with changing N availability. This section examines
how N processes can adjust to influence the dynamics of soil
N availability in response to global change factors. Under-
standing the dynamics of soil N availability is crucial for
evaluating C-N coupling.

Nitrogen leaching

Although plant N uptake increases under N enrichment, most
of the added N can be rapidly lost through leaching within a
few days (Hall and Matson, 1999; Niu et al., 2016). For
example, in European forests, it was documented that when
N deposition was above 25 kg N ha−1 yr−1, significant
leaching occurred at all 65 surveyed sites (Dise and Wright,
1995). The slope of N input via deposition and N leaching
was about 0.45 (Figure 2), indicating that almost half of N
input leaches out from the ecosystem. It appears from the
curvature of the leaching-deposition relationship that the
leaching rate is much higher at high N input levels than at
low N input levels (Figure 2A). Similarly, leaching from 69
forest ecosystems at 50 sites throughout China also shows
that on average 32% of the throughfall dissolved inorganic N
input leaches out (Figure 2B) (Fang et al., 2011).
A recent study in global forest ecosystems detected a sa-

turation response of photosynthetic rate and large increases
in N leaching once N deposition exceeded approximately
8 kg N ha−1 yr−1 (Fleischer et al., 2013). Nitrate leaching from
the catchments varied between 2.8 and 100 kg N ha−1 yr−1

in Finland forests (Kortelainen et al., 1997) and from 0 to
85 kg N ha−1 yr−1 in German forests (Kiese et al., 2011).
Using a mass balance approach, our global meta-analysis
found that more than half of the added N is lost from the
ecosystem, whereas the rest goes to above-ground plant N
pool (~9%), litter N pool, and below-ground plant N pool
(2%) and soil total N pool (25%) (Niu et al., 2016). The
continually increasing N inputs to ecosystems lead to great N
losses at the global scale (Braakhekke et al., 2017, Cheng et
al., 2020). The great loss of the added N is a key mechanism
that leads to a quick decrease of soil inorganic N concentra-
tions to ambient levels within two years after cessation of a
12-year continuous addition of N (O’Sullivan et al., 2011).
On the other hand, elevated CO2 levels result in decreased

Figure 2 Nitrogen losses versus N input across 65 forested plots and catchments in Europe (A) (Date from Dise and Wright, 1995) and across 21 forest
ecosystems in China (B) (Adopted from Fang et al., 2011).
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N leaching (Figure 3A, Liang et al., 2016), primarily due to
the increased plant N uptake and N sequestration in plant and
soil pools (Finzi et al., 2006; Norby et al., 2010). Nitrogen
leaching under climate warming is more uncertain (Figure
3B). Warming commonly stimulates leaching due to the in-
creased N mineralization (Rustad et al., 2001). But no re-
sponse of leaching to warming was reported from an
experiment in four European shrubland ecosystems due to
small changes in N mineralization under water limitation
(Beier et al., 2008). Warming could also decrease leaching
due to increased N uptake by vegetation in arable land in
Denmark (Patil et al., 2010). Increased precipitation usually
results in increases in N leaching due to the increased runoff
(Braakhekke et al., 2017; Lewis et al., 1999). Therefore, soil
N leaching can rapidly adjust to influence soil N availability
and ecosystem C cycle under environmental change.

Nitrogenous gas emissions

N2O emission exponentially increases with the amount of N
deposition as N deposition provides an abundant substrate
for N2O production (Cheng et al., 2016; Shcherbak et al.,
2014). High N2O emission usually happens within days after
N input into the soil (Hall and Matson, 1999). As time goes
on, the higher nitrifier and denitrifier abundances after N
input also contribute to the increased N2O emission (Lour-
enço et al., 2018). Although elevated CO2 and warming may
result in increased N2O emission (Li et al., 2020a), it occurs
only in N-fertilized ecosystems but not in unfertilized eco-
systems (Figure 3, Liang et al., 2016). A recent meta-analysis
showed that N2O emission was not affected by elevated CO2

with reduced soil inorganic N (Liu et al., 2018). This may be
due to the deficient available N under elevated CO2 could
constrain the growth of microbes, especially for the group

containing functional genes of N2O emission (Butterly et al.,
2016). Similarly, the enhanced N2O emission under warming
treatment was accompanied by increased soil mineralization
and inorganic N (Figure 3B, Bai et al., 2013; Dai et al.,
2020). Decreased or unchanged N2O emission with warming
also happened in some N-limited ecosystems (Carter et al.,
2012). The N2O emission could be constrained by the lower
denitrifier abundance with warming (Li et al., 2020a). Ap-
parently, there is increasing N2O emission with warming
treatments when the ecosystem has enough N. In short,
ecosystems can maintain N balance by controlling N2O
emission. They increase N2O loss when N is abundant but
have no or low gaseous N loss when there is N scarcity
(Figure 3).

N fixation and gains

Biological N fixation is a major pathway through which at-
mospheric N2 is converted into N available to plants (Cle-
veland et al., 2013). It is estimated that N inputs via
symbiotic and free-living N fixation are roughly 70–
140 Tg N yr−1 in Vitousek et al. (2013), 100–290 Tg N yr−1

in Cleveland et al. (1999), and 195.1 Tg N yr−1 in Elbert et al.
(2012), whereas the free-living N fixation may be as high as
10–15 kg N ha−1 yr−1 in some ecosystems (Reed et al., 2011).
Global models forecasting C-N interaction generally assume
that N fixation rates increase as a function of NPP (Wieder et
al., 2015). Thus, N fixation is basically demand-driven. The
increased plant growth and C storage under elevated CO2 are
often accompanied by N accumulation in ecosystems (Figure
3A). In fact, CO2 enrichment significantly enhanced N influx
to ecosystems by 44.3% through biological N fixation
(Figure 3A) (Liang et al., 2016). In some ecosystems, this
increase in N fixation is only realized in the first few years of

Figure 3 Conceptual diagram depicting the effects of elevated CO2 (A) and climate warming (B) on nitrogen pools and transformation processes. The
results are summarized mostly from a few meta-analyzes (Bai et al., 2013; Dai et al., 2020; de Graaff et al., 2006; Liang et al., 2016; Sun et al., 2022; Yue et
al., 2019; Zheng et al., 2020). The red arrow indicates an increase, whereas the blue arrow indicates a decrease.
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CO2 experiments because the availability of molybdenum, a
key micronutrient of nitrogenase, gradually reduced as the
number of treatment years increased (Hungate et al., 2004).
The common increase in N fixation under elevated CO2 is
attributable to the stimulating activities of symbiotic and
free-living heterotrophic N-fixing bacteria. These N-fixing
organisms usually have an enormous competitive advantage
over plants to fix N into the ecosystem (Vitousek and Ho-
warth, 1991).
Besides, anthropogenic N fixation has doubled the total

global flux of N to the biosphere during the 20th century. The
increased N input via fixation and deposition coupled with
the decreasing N losses through leaching lead to increased N
retention under CO2 enrichment, especially in plant and litter
pools (Figure 3A). Increases in biological N fixation and
decreases in N loss directly promote N availability for plant
growth, and thus support the net accumulation of organic
matter in ecosystems. The net C and N accumulation in plant
and soil pools under elevated CO2 indicate the adjustment of
soil N cycling to meet N demand.
This adjustment of soil N cycling with changing C input is

also reflected during primary or secondary forest succession
(Figure 4) (Alexander and Mack, 2016; Kirschbaum et al.,
2008; Vitousek, 2004). Plant N demand is generally higher
during the active growth period before canopy closure
(Chapin et al., 2011). If there is no sustainable N input, it is
expected that the increasing N uptake and N accumulation in
standing biomass will result in a decrease in soil N pools
during forest succession. Nevertheless, soil N stock also
increases with succession (Figure 4) (Li et al., 2012). The
linear increase in the N stock associated with plant C stock
indicates that there are long-term sources of N attributable to
atmospheric N deposition and biological N fixation during
forest succession (Morris et al., 2007; Yang et al., 2011). For
example, Houlton et al. (2008) demonstrated that biological
N fixation rates are 2.9, 4.9, and 2.2 g N m−2 yr−1 for tropical,
temperate, and boreal forests, respectively. Atmospheric N
deposition varies from <0.2 g N m−2 yr−1 in rural areas to
>5 N m−2 yr−1 in industrial or intensive agriculture regions
(Dentener et al., 2006). Around 40%–70% of the soil N in-
crease can be attributed to N deposition and asymbiotic N
fixation in southwest Michigan’s afforested sites (Morris et
al., 2007). Some other mechanisms, like N release by lit-
terfall, N redistribution within soil profiles, and mining of
deep soil N, are also thought to contribute to the increase in
soil N during forest succession, especially at the later stage of
succession (Knops and Tilman, 2000; Wang et al., 2019).
Soil available N linearly increases with soil C stocks as
succession progresses, whereas gaseous and leaching N
losses generally decrease with succession (Figure 4) (Tian et
al., 2018). The combination of those N sources is about
3–14 g N m−2 yr−1, which can roughly explain the observed
N accruement during forest succession (9.5±4.5 g N m−2 yr−1

when forest succession >50 years).
Besides elevated CO2 and forest succession, other global

change factors also modify N availability by rapidly ad-
justing N fixation and other processes. A meta-analysis re-
vealed that N addition inhibits N fixation by 19.0% on
average, regardless of biome type, due to decreased ni-
trogenase synthesis (Zheng et al., 2019). The decreased N
fixation under N enrichment is also reported in other studies
(Dynarski and Houlton, 2018; Hedin et al., 2009). This de-
crease in N fixation is partially eased by the addition of
micronutrients, e.g., Mo and Fe, but not consistently by P
addition (Zheng et al., 2019). Although the effects of global
warming on N fixation remain inconclusive (e.g., Gundale et
al., 2012; Hungate et al., 2004; Rousk and Michelsen, 2017),
it has been reported that warmer climate can increase N
fixation rates by a factor of 1.5–2 in the arctic regions due to
increased metabolic processes in soil microorganisms (Fig-
ure 3B, Chapin and Bledsoe, 1992). However, this increase
may be lowered by the light limitation and extreme tem-
perature events (Gundale et al., 2012).
All these phenomena demonstrate the dynamic adjustment

of N cycling with respect to plant growth and ecosystem N
demand after disturbance. Nonetheless, pinpointing where
the N originally comes from or how much each N process
contributes to the total plant demand is still a major chal-
lenge. Closing this knowledge gap should be a priority for
future research.

Other N processes: rock release, transformation, and N
resorption

Apart from the above-mentioned dynamic changes in N
losses and accumulations under environmental change, other

Figure 4 A conceptual figure on C and N cycle processes along forest
succession, including NPP, plant N uptake, soil N storage and availability,
N fixation, N leaching, and N gases emission. This conceptual figure was
summarized according to Crews et al. (2016), Li et al. (2012) and Menge
and Crews (2016).
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N cycling processes are also involved in influencing soil N
availability and regulating C cycling. Ecosystems are ex-
pected to be N limited partly because N is considered largely
absent in the parent rock. However, a recent study indicates
that more than a quarter of the N available to plants comes
from bedrock (Houlton et al., 2018). According to their
estimation, bedrock weathering releases about 11.2–
18.2 Tg N yr−1, although it varies largely in different regions.
This overlooked source of ecologically available N con-
tributes largely to terrestrial C cycling. Forests associated
with N-rich parent materials contain 42% more C in tree
biomass and 60% more C in the top 30 cm soil than similar
sites underlain by N-poor rocks (Morford et al., 2011; Mor-
ford et al., 2016). Unfortunately, how rock N release changes
with global change factors has not been determined yet.
Soil microbial mineralization plays a more important role

than the external N input (N fixation and deposition) in ra-
pidly adjusting N availability. Recycled N from the soil N
biogeochemical cycling accounts for 90% of the annual de-
mand of terrestrial plants (Figure 5) (Cleveland et al., 2013).
Model simulation suggests that the N input required to
completely eliminate N limitation is 441 Tg N yr−1 for each
land grid cell on average, which is four times higher than
the estimated N inputs from atmospheric deposition
(6 Tg N yr−1) plus biological N fixation (104 Tg N yr−1)
(Thornton et al., 2007). This further suggests that soil bio-
geochemical N cycling is important for meeting plant N
demand. The global soil N transformation rates change lar-
gely with temperature and precipitation (Li et al., 2019; Li et

al., 2020b; Li et al., 2022), indicating that soil N transfor-
mation will adjust under global change. In fact, warming
results in increased soil N mineralization, where the soil
microbial biomass becomes larger (Dai et al., 2020; Xu and
Yuan, 2017). Soil nitrification is also stimulated by warming,
but the nitrifier abundance does not show a clear change (Dai
et al., 2020). Furthermore, N resorption from leaves before
senescence, which is less under N enrichment but more un-
der N poor conditions and decreases with increasing mean
annual temperature and mean annual precipitation, also ad-
justs to global change to regulate plant growth and C cycling
(Vergutz et al., 2012; Yuan and Chen, 2009). Altogether,
these N processes account for the substantial N regulations
on C cycling under global change.

Dynamic C and N coupling and its implications for
C sequestration

From the above illustrations, we demonstrate how ecosystem
N and C processes are dynamically coupled with each other
under global change. The N processes rapidly adjust to ex-
ternal changes, such as N deposition or fertilization, elevated
CO2, disturbances, and subsequent recovery to couple with
the C process in a new balance. The shifts in C and N cou-
pling are mainly reflected in three aspects, namely relative
changes in total C and N amounts, changes in the allocation
of C and N amounts among different pools, and changes in
stoichiometric relationships (i.e., C:N ratios).

Figure 5 Different nitrogen sources and contributions of NPP in different biomes (adopted from Cleveland et al. (2013)). ENF, evergreen needle leaf forest;
EBF, evergreen broad-leaf forest; DNF, deciduous needle leaf forest; DBF, deciduous needle leaf forest; MIX, mixed forest; SHB, shrubland; WSV, wet
savanna; SVN, savanna; GRS, grassland.
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Nitrogen fertilization or deposition adds exotic N to an
ecosystem, leading to shifts in coupling between C and N
cycles. In response, a major fraction of the added N is lost by
volatilization and denitrification to the atmosphere within
days and weeks and by leaching to aquatic systems within
months (Figure 6). The rest of the added N goes to the plant
and soil as an ecosystem has no capacity for net mineral N
retention (Mack et al., 2004; Niu et al., 2016). The N taken
up by plants leads to lowered C:N ratios in plant tissues and
stimulates photosynthesis and growth. Consequently, more N
is allocated to plant pools than that without N fertilization or
deposition. The N in plant pools resides in the ecosystem for
months and years before transferring to litter pools and
subsequent loss to the atmosphere, with a very small fraction
going to the soil C pools via decomposition and microbial
immobilization. Unless N fertilization or deposition recurs,
the extra N from fertilization or deposition is eventually lost
over time to maintain a balance with the C cycle (Sardans et
al., 2016; Tian et al., 2019).
Similarly, changes occur in total C and N amounts, their

allocation, and C:N ratios in response to additional C input
under elevated CO2 (Sun et al., 2018) and during forest
succession (Li et al., 2012). Under these conditions, higher C
availability shifts both C and N cycles. More C is allocated to
roots to acquire N resources, resulting in more N allocation
to the above-ground biomass. As N demand increases, N loss
is reduced via decreased leaching and gaseous emission,
whereas N fixation increases, resulting in an increase in the
total N amount. When the increase in total N amount cannot
match the increase in C input, C:N ratios increase in plant
tissues, litter and soil pools, resulting in the downregulation
of photosynthesis (Luo et al., 1994; Ruiz-Vera et al., 2017).
Those processes, such as downregulation of photosynthesis,
increase in N fixation, and more C allocation to root growth,
help to shift C and N coupling to reach a new balance (Figure
6).
The shifts in C-N coupling have important implications for

modeling ecosystem C sequestration under global change.
The main motivation for developing coupled C-N models is
to represent the constraints of N limitation on plant pro-
ductivity (Zaehle and Dalmonech, 2011). Thus, those studies
mainly focused on variables related to C uptake, like primary
productivity and N use efficiency, rather than on various
processes leading to shifts in C-N coupling. The dynamics of
N leaching, gas emission, fixation, and other N cycling
processes, and their regulation of the C cycle, are generally
not well represented and/or constrained in the models (Da-
vies-Barnard et al., 2020; Zaehle et al., 2014). Without rea-
listic representation or data constraints on those processes,
models cannot simulate the shifts in C-N coupling well and
are deemed to cause large uncertainty in the prediction of C
sequestration. For example, a model that is primarily based
on the N limitation concept likely overestimates ecosystem C

sequestration under N deposition because the model may not
adequately represent N leaching and emissions and thus
predict continuous increases in gross primary productivity
and NEP with N addition (Sutton et al., 2008; Thomas et al.,
2013).
In contrast, models that incorporate the N cycle usually

overestimate N limitation under elevated CO2, likely due to
inadequate representation of adjustments in N processes.
These models likely underestimate ecosystem C sequestra-
tion (Esser et al., 2011; Walker et al., 2015). Similarly,
models that do not realistically consider adjustments in many
C and N processes likely overestimate C loss under climate
warming because they assume that the C cycle under
warming is mainly determined by soil organic C decom-
position. It is, therefore, critical to consider adjustments in
various processes leading to shifts in C-N coupling in order
to accurately predict ecosystem C sequestration under global
change.

Concluding remarks

C-N coupling is among the most widely held concepts on
interactions of C and N cycles. The concept has two com-
ponents: regulation of C processes by N availability and
dynamic changes of N availability itself over time. This re-
view comprehensively evaluates the two components. Our
review indicates that N input to the ecosystem mostly sti-
mulates plant primary productivity but not microbial activ-
ities or inconsistently stimulates soil C sequestration. On the
other hand, many N processes adjust to change soil N

Figure 6 A conceptual framework of the dynamic C and N coupling
under global change.
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availability and thus its coupling with the C cycle. Nitrogen
leaching and N gas emission rapidly increase after N addi-
tion, whereas increases in N fixation and decreases in N
leaching occur over the years to influence soil N availability
and support plant growth and ecosystem C sequestration
under elevated CO2 and temperature or along ecosystem
succession. In this review, we argue that many processes
adjust to shift the coupling between C and N cycles in re-
sponse to environmental change. This dynamic C-N coupling
is fundamental for understanding and predicting ecosystem
C sequestration under global change.
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