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A B S T R A C T   

Laboratory incubation is a commonly used method to measure the decomposition of soil organic carbon (SOC). 
While incubation experiments are conducted across a wide range of durations that may vary from hours to years, 
no method is available to determine an optimal duration of the incubation experiment so that SOC decompo-
sition can be best understood. Here we presented a novel approach to determine the optimal duration called 
OPtimal Incubation Duration (OPID). The OPID approach quantifies information gained from an ongoing in-
cubation experiment and determines the time point when SOC decomposition rates can be well quantified. 
Statistically, the OPID approach is based on a progressive data assimilation algorithm that iteratively assimilates 
data from an ongoing incubation experiment into a three-pool first-order SOC decomposition model. Using a 
published incubation data set under different temperatures as a case study, we first generated synthetic daily 
data, and then fed the data into the three-pool model iteratively to observe the changes of model performance. 
We found that the accuracy of model projections increased with incubation period and exhibited a trade-off 
between initial model performance and the time towards accurate projection among different temperatures of 
incubation. The optimal incubation duration was 347, 212, and 126 days under incubation temperatures of 15 
◦C, 25 ◦C and 35 ◦C, respectively. Comparing the parameters with which from the synthetic daily data, if the 
incubation period was shorter than the optimal durations, then the decomposition rate of the fast-turnover pool 
was underestimated and those of the slow pools were overestimated. Sensitivity analysis indicated that optimal 
incubation duration was negatively correlated with proportion of slow-turnover carbon pools, turnover rates, 
and initial carbon content, respectively. Our study suggested that long-term incubation experiments are neces-
sary for capturing the dynamics of slow-turnover carbon pools. However, the additional data may not be helpful 
for model performance if the incubation duration is longer than the optimum. Our study provides a tool for soil 
scientists to design more effective incubation experiments. 

DA: data assimilation; PDA: progressive data assimilation; Cum CO2: cumulative CO2 emission from soil; opt: 
optimal duration;   

1. Introduction 

Globally, soils store ~3000 Pg of organic carbon (C) (Andriama-
nanjara et al., 2017; Giardina et al., 2014; Jobbágy and Jackson, 2000; 
Tarnocai et al., 2009), four times more C than the atmosphere, and six 

times more than vegetation (German and Allison, 2011; Goulden et al., 
2001). Soil releases ~100 Pg C to the atmosphere as CO2 each year 
(Bondlamberty and Thomson, 2010; Karhu et al., 2014). An important 
part of soil CO2 efflux is the product of SOC decomposition via microbial 
respiration. The predicted future global warming may have important 
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consequences for the emission of CO2 from soils as a positive feedback to 
the global C cycle (Cox et al., 2000; Knorr et al., 2005; Rey et al., 2010). 
In addition to the importance of SOC in the global terrestrial carbon 
cycle as the largest terrestrial carbon pool and as the source of one of the 
largest terrestrial carbon fluxes, soil organic matter turnover is a key 
factor in soil fertility and nutrient replenishment. Therefore, a better 
understanding of the decomposition of soil organic carbon is important 
(Ahrens et al., 2014). 

Laboratory incubations of soils under controlled environmental 
conditions have widely been used to measure C mineralization and 
investigate the environmental factors such as temperature and moisture 
controlling the decay of different pools (Dalias et al., 2001; Rey and 
Jarvis, 2006). The method allows control of the environmental variables 
and can compare the mineralization rates of soil samples from different 
locations under standardized conditions. Normally, the labile propor-
tion of C pools could be decomposed rapidly, but it takes a long time for 
slow turnover C pools to be decomposed (Zou et al., 2005). In the 
literature, incubation experiments have been conducted with a wide 
range of durations that vary from hours to years (Jian et al., 2020). The 
majority of incubation experiments lasted less than one year (Fig. S1), of 
which 45.87 % of the studies were less than 60 days. When feeding in-
cubation data to SOC decomposition models, different sections of the 
data contain uneven information for different soil pools. Due to the fast 
turnover rates of active pools, most of the CO2 released by SOC comes 
from the fast-decomposing part at the beginning of incubation, so the 
first few days of incubation data are obviously generated more from fast- 
decomposing SOC. Soil incubation studies that last longer than 100 days 
may contain more contributions from slow-decomposing C-pools (Lüt-
zow and Kögel-Knabner, 2009). Therefore, model parameters estimated 
from short- and long-term incubation dataset are quite different (Har-
aruk and Luo, 2014; Li et al., 2019). The inconsistency in incubation 
period across studies makes it difficult to compare SOC decomposition 
rates. 

Previous studies suggested that long-term incubation experiments 
are necessary for estimating carbon pools with slow turnover rates (Jian 
et al., 2020), but no studies have quantified how long of an incubation 
period is necessary or if the incubation period should be as long as 
possible. Researchers usually do not describe the details of how to 
determine the incubation period in their study. It is known that a decline 
in the rate of decomposition is usually observed with the proceeding of 
incubation (Fang et al., 2005; Xu et al., 2010). They usually terminate 
the incubation experiment empirically, or when they think the rate of 
mineralization is stabilized. However, there exist different judgments of 
stability, and lead to large uncertainty in determining incubation period. 

Many process-based models have been developed to simulate the 
dynamics of SOC (Jenkinson et al., 1987; Katterer et al., 1998; Liang 
et al., 2015b; Luo et al., 2001). Most prevalent models use first-order 
kinetics, i.e. dividing SOC into multiple pools with cascading decom-
position rates modified by different environmental attributes such as 
climate and soil properties (Stefano and Amilcare, 2009). Therefore, 
decomposition rates of different C pools could be estimated by fitting the 
data from incubation experiments to the model. Although the model 
structure is simple, large uncertainties exist in the estimation of pa-
rameters (Toddbrown et al., 2014; Verstraeten et al., 2008; Yan et al., 
2014). 

Data assimilation (DA) is an effective approach to reduce the un-
certainties, by integrating observations of C efflux from incubation ex-
periments. (Ahrens et al., 2014; Li et al., 2013). The fundamental notion 
of DA is the capability of feeding data into a model iteratively and 
updating posterior parameters based on prior information (Schadel 
et al., 2013; Wieder et al., 2015; Yan et al., 2014). DA improves model 
parameters and the forecasts using information contained in observa-
tional data to obtain the posterior probability distributions of targeted 
parameters. Data assimilation can improve ecological forecasting by 
providing a probabilistic analysis to evaluate sampling strategies for 
future experiments and observations that will enable improvements to 

models and forecasts (Hood et al., 2007; Luo et al., 2011). Recently, the 
approach has been used to estimate soil carbon dynamics and responses 
of SOC to environmental factors such as temperature and moisture (Luo 
et al., 2020). Cumulative CO2 emission data of an incubation experiment 
come from decomposition of different components of SOC varying from 
labile to recalcitrant organic carbon. By feeding the data into a SOC 
decomposition model, one can inversely estimate the turnover rates of 
different SOC components. 

To explore the optimal incubation period that could be used to 
accurately estimate decomposition rates of different C pools, we first 
need to investigate how model projection is influenced by the length of 
the incubation period. Here, we developed a progressive data assimila-
tion algorithm that feeds reliable incubation data iteratively to constrain 
a first-order three-pool SOC decomposition model. Then, we used an 
observing system simulation experiment to address three specific ques-
tions: (1) is there an optimal incubation duration where additional 
experimental data do not significantly improve model performance; (2) 
how do temperatures influence the projection accuracy under different 
lengths of incubation data; and (3) how do the optimal length of incu-
bation period changes with model parameters? 

2. Materials and methods 

The OPID approach used a three-pool SOC decomposition model and 
the progressive data assimilation algorithm to get the optimal incuba-
tion duration of incubation experiments. To test the robustness of the 
algorithm, we first estimated parameters of a three-pool SOC decom-
position model using a case study of an incubation experiment. Then, 
synthetic daily data were generated from the estimated parameters. The 
synthetic daily data were treated as ‘observations’, which normalized 
data frequency in daily steps and eliminated sampling errors. This is 
widely known as an observing system simulation experiment (OSSE) in 
numerical weather prediction, which can be used to investigate the 
behavior of data assimilation systems (Arnold and Dey, 1986; Zeng 
et al., 2020). By feeding the synthetic data into the model continually, 
we can determine whether and when the constrained parameters could 
match true parameters, and how the uncertainty of forecasting changes. 
The optimal incubation duration could be reached when parameters are 
accurately estimated and the forecasted cumulative CO2 emissions 
match ‘observations’. At the end, we tested the algorithm using real data 
from the case study of an incubation experiment. 

The calculation of the optimal incubation duration was as follows: 
(1) derive maximum likelihood estimates of model parameters (Table 1) 
from the incubation data of Haddix et al. (2011) as a case study; (2) use 
the parameters to generate a time series of 600 days daily incubation 
data, treated as ‘observations’, named synthetic data here after; (3) use 
the first n0 days of the synthetic data, n0 = 10 in this paper, to constrain 
the mineralization rates (ki) by the Metropolis-Hastings (M− H) algo-
rithm; (4) update parameters ki when adding new data points of the 
synthetic data; (5) update the prior parameter distribution using outputs 
from the posterior distribution, and repeat until all synthetic data is 
used; (6) use a t-test to get the difference between model predictions and 
the synthetic data for each data assimilation; and (7) calculate the 
optimal incubation duration by using logic regression of the binary 
outputs from the t-test. The R script can be found in the online supple-
mental materials. 

2.1. Source of soil incubation data 

Original soil incubation data used in this study were extracted from 
Haddix et al. (2011), which has been used for fitting multiple SOC 
decomposition models (Li et al., 2013; Liang et al., 2015a; Xu et al., 
2010). The soil was obtained from cultivated land in Indian Head, Sas-
katchewan, Canada (50.533◦N, 103.517◦W). The mean temperature was 
2 ◦C and precipitation was 421 mm. Information about soil sampling and 
incubation detail was described in Haddix et al. (2011). Briefly, the soil 
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samples were incubated at 15, 25, and 35 ◦C, respectively, for 588 days 
(number of laboratory replicates = 3). In the first two weeks, CO2 
emission rates were measured daily, then weekly for the next two weeks, 
and every-four weeks for the last 80 weeks. Overall, there were 36 
samples over the 588-day incubation. Data at all the 15, 25 and 35 ◦C 
were used to estimate parameters of the three-pool SOC decomposition 
model. 

2.2. Model description 

We used a classic three-pool first-order SOC decomposition model 
(Katterer et al., 1998; Liang et al., 2015a). The model contains three SOC 
fractions representing different physicochemical properties with 
different turnover time. An active pool consists of living microorganisms 
and microbial products as well as soil organic matter with a short 
turnover time (1–5 yr); a slow pool is physically protected and/or 
chemically recalcitrant, with more biological resistance to decomposi-
tion and an intermediate turnover time (20–40 yr); and a passive pool is 
stabilized by mineral protection, with the longest turnover time 
(200–1500 yr) (Morra and Dick, 1989). The process of SOC minerali-
zation can be described in the function below. 

dCi

dt
= kiCi (1)  

Ci(t = 0) = fiCtot  

∑n

i=1
fi = 1  

where Ci is carbon pool size of fraction i, with C1, C2, and C3 represents 
active, slow, and passive pools, respectively. fi and ki are the initial 
fraction and mineralization rate of the i th pool. The sum of fi is 1. The 
change in C pool size for fraction i was modeled by a first order differ-
ential equation with C-pool i decaying at a temperature-dependent rate 
ki over time (t) multiplied by the dynamic C pool size. Ctot is the total 
initial C of the three pools, which is 22.9 g/kg soil when t = 0, based on 
the curve fitting of Haddix et al. (2011). 

2.3. Progressive data assimilation (PDA) 

We used a probabilistic inversion approach based on Bayesian 
framework to drive posterior probability density function of parameters 
ki in this paper, as in (Xu et al., 2016). 

P(θ|Z)∝P(Z|θ)P(θ) (2)  

Where posterior probability density function P(θ|Z) of the model pa-
rameters (θ) can be obtained from prior knowledge of parameters rep-
resented by a prior probability distribution P(θ) and information in the 
soil incubation data represented by the likelihood function P(Z|θ). The 
prior probability density function was specified as the uniform distri-

butions over a range of a specific parameter (Liang et al., 2015a; Xu 
et al., 2016). Ranges in this paper are shown in Table 1 based on Liang et 
al (2015). The likelihood function P(Z|θ) was calculated under the 
assumption that errors between observed values and modeled values 
were independently distributed according to the equation: 

P(Z|θ)∝exp

{

−
1

2σ2

∑

t∈obs(Zi)

[Zi(t) − Xi(t) ]2
}

(3)  

where Z and X are the observed and modeled cumulative CO2 emission 
values, respectively, and σ is the standard deviation of measurements. 

The probabilistic inversion is performed using the M− H algorithm, 
which is a Markov Chain Monte Carlo (MCMC) technique (Liang et al., 
2015a), for constructing the posterior PDFs of parameters. Briefly, the 
M− H algorithm repeats the proposing step and moving step. In the 
proposing step, a new θnew is generated based on the previously accepted 

point θold with a proposal distribution P
(

θnew|θold
)

: 

θnew = θold +
r(θmax − θmin)

D
(4)  

where θmax and θmin are the maximum and minimum values in the prior 
range of the given parameter, r is a random variable between − 0.5 and 
0.5 with a uniform distribution, and D is used to control the proposing 
step size and was currently set to 20. In the moving step, the new point θ 
is tested according to the Metropolis criterion to examine if it should be 
accepted or rejected. Because the initial accepted samples are in the 
burn-in period (Xu et al., 2006), the first half of accepted samples were 
discarded and only the remaining were used to generate posterior PDFs. 
The M− H algorithm was formally run 500,000 times for each lab in-
cubation data. 

In this paper, daily synthetic data adding one by one fed in pro-
gressive data assimilation after standardized. We recorded the posterior 
distribution of parameters and projected SOC dynamics after each of the 
data assimilation. Ideally, the projected SOC dynamics would match the 
synthetic data; the constrained parameters would equal the parameters 
we used to generate synthetic data. However, using part of the data 
could result in bias in parameter estimations and projected SOC dy-
namics. We calculated the root-mean-square error (RMSE) between 
synthetic data and the model simulations after each of the data assimi-
lation. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(modi − obsi)

2

n

√
√
√
√
√

(5)  

where modi is the mean value model predicted for each day, obsi is the 
synthetic data of cumulative CO2, and n is 600 as the number of days. 

Table 1 
The range and value of parameters used for data assimilation.  

Parameter Description 15C 25C 35C 

min max min max min max 

k1 Decomposition rate of active pool (mg • g− 1Cd− 1) 3.25E-04 7.32E-02 6.81E-04 1.53E-01 1.40E-03 3.17E-01 
k2 Decomposition rate of slow pool (mg • g− 1Cd− 1) 7.22E-06 1.60E-03 1.45E-05 3.30E-03 3.83E-05 8.60E-03 
k3 Decomposition rate of passive pool (mg • g− 1Cd− 1) 1.41E-06 3.17E-04 2.63E-06 5.91E-04 3.62E-06 8.14E-04  

Parameter Description value 
f1 fraction of active pool (%) 4.65 
f2 fraction of slow pool (%) 14.53 
f3 fraction of passive pool (%) 80.82 
Ctot initial carbon content (g/kg) 22.9  
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2.4. Optimal incubation duration and the sensitivity analysis 

We assumed that the optimal length of an incubation experiment 
could be reached when the forecasted cumulative CO2 emission matched 
the synthetic data, given the first-order decay model. Model prediction 
from each data assimilation with part of the synthetic data should be 
compared with the whole data set to determine whether model predic-
tion could match synthetic data. First, we applied a t-test to find the 
difference between model predictions and the synthetic data at day 600 
for each single data assimilation. We produced a series of binary values 
(1, 0), where 1 indicated a significant difference and 0 was non- 
significant, for different lengths of incubation data. To determine the 
optimal incubation duration, we performed generalized linear regres-
sion using the ‘logit’ link function on the binary data. The turning point, 
where the second derivative of the fitted line equals to 0, was considered 
to be the optimal duration. 

Sensitivity analysis was performed to assess how the optimal dura-
tion would be influenced by the parameters (f1, f2, k1, k2, k3) and initial 
soil carbon content (Ctot), representing different soil properties. We used 
a Latin hypercube sampling (LHS) algorithm (Mckay et al., 1979) to 
produce 5,000 sets of parameters values. The LHS algorithm allows an 
unbiased estimate of the average model output, which requires fewer 
samples than simple random sampling. We then calculated the param-
eter sensitivity index using the partial rank correlation coefficient 
(PRCC), which performs a partial correlation between specific 

parameter and model outputs based on rank-transformed data. PRCC is a 
robust sensitivity measure for nonlinear but monotonic relationships 
between parameters and model outputs (Marino et al., 2009; Moore 
et al., 2015). Finally, generalized linear regression was performed to 
explore the relationships between optimal duration and the parameters 
containing information of decay rates, pool composition, and SOC 
content. 

3. Results 

3.1. Constrained parameters change with incubation period 

We first investigated when the constrained parameters from pro-
gressive data assimilation could match the given parameters from the 
synthetic data. We found that most estimated parameters were well 
constrained. However, the constrained values were biased if incubation 
periods were not long enough (Fig. 1). The mineralization rate of active 
pool (k1) was overestimated at the very beginning of the incubation 
experiment, and then was underestimated until 375 days later. The 
mineralization rate of slow pool (k2) and passive pool (k3) were over-
estimated for short periods of incubation. With the incubation period 
increases, the estimated parameters approach true values. Although the 
biases to true parameter values were larger at higher temperatures, the 
time to approach true values seemed to be shorter. For example, at the 
incubation temperature of 15 ◦C, the estimated parameters matched true 

Fig. 1. Constrained decomposition rates (k1, k2, k3) under different incubation temperatures (15 ◦C 25 ◦C, and 35 ◦C) and different incubation periods. Constrained 
decomposition rates are derived from the Progressive Data Assimilation (PDA) and the synthetic CO2 emission data are used as observations of the PDA. Red lines are 
the given parameter values which generated the synthetic CO2, the blue points corresponding to the mean values of posterior parameters distribution for each day of 
PDA. The three circles in yellow, red and green are parameter values picked at day 100, 200, and 365 for Fig. 2. 
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values around one year of incubation, whereas at 35 ◦C, parameters 
matched true values at roughly half of a year. 

3.2. Performance of model predictions 

The performance of model predictions improved with increased in-
cubation period (Fig. 2). The prediction of soil organic carbon miner-
alization was overestimated when short-term incubation data were 
used, e.g., 10 days of incubation under 25 ◦C (Fig. 2a). As the incubation 
experiment lasted longer, the model’s predictions gradually approached 
the generated synthetic data. The uncertainty of model predictions was 
also reduced with increasing incubation period. The model predictions 
under incubation temperature of 15 ◦C and 35 ◦C were similar to that of 
25 ◦C (Fig. S2, Fig. S3). It was further confirmed that the overestimated 
cumulative CO2 emission mainly resulted from an overestimated 
contribution of slow and passive pools (Fig. S4). 

As expected, RMSE decreased with the incubation period (Fig. 3). 
After a certain incubation period, the predictions match data well and 
the RMSE was close to 0. When short-term incubation data were used, 
say less than 60 days, the RMSE was larger under higher incubation 
temperature than lower ones (Fig. 3a). However, the RMSE dropped 
faster under higher incubation temperature when additional data were 
fed into the model. When using the real experimental data for the pro-
gressive data assimilation, we found similar patterns in changes of 
model performance with increasing incubation period (Fig. 3b). 

3.3. Optimal duration and sensitivity analysis 

There was an optimal length of incubation period below which 
model projections differed significantly from the ‘observation’ at day 
600. The optimal duration was shorter under higher incubation tem-
perature. For example, the optimal duration of incubation experiment 
was 347, 212, and 126 days in 15, 25, and 35 ◦C, respectively, for the 
parameter settings of our study (Fig. 4). 

Sensitivity analysis showed that the optimal duration was related to 
initial soil carbon content (Ctot), decomposition rates, and the relative 
fraction of different carbon pools (Fig. 5). A shorter length of incubation 
period was needed for soils with higher Ctot. The optimal duration also 
decreased with the decomposition rates, especially for the fast turnover 
pools. Soil with a higher fraction of active pool needed a longer incu-
bation period to get the optimal duration. Consistent with the PRCC, 
when changing each parameter separately, optimal duration increased 
with f1 linearly, but decreased with other parameters (Fig. S5). 

4. Discussion 

4.1. Length of incubation duration 

Soil incubation is a useful method to measure the decomposition rate 
of SOC. However, almost all the incubation experiments of SOC 
decomposition do not justify how they determine the duration of their 
experiments. Experiments longer than 200 days are considered a long- 

Fig. 2. The observed and predicted cumulative CO2 emission under 25 ◦C when different incubation data are fed into the PDA model. Incubation data of (a) 10, (b) 
100, (c) 200, and (d) 365 days. The gray shaded area denotes the data used in the PDA model. The blue lines show the mean predicted cumulative CO2 emission using 
model simulation, and the light-blue areas represent the mean ± standard deviation ranges of the model prediction. 
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term incubation experiment (Rey and Jarvis, 2006). Despite the general 
agreement that long-term incubation is needed to estimate the miner-
alization rate of the recalcitrant fractions of soil C, no studies can tell 
how long of an incubation period is sufficient. Our study indicated that 
most short-term studies might not be able to capture the dynamics of 
slow-turnover carbon pools so that SOC decomposition would not be 
reliably quantified. Using the OPID approach we developed, we identi-
fied the optimal duration of incubation length, i.e., ~ 347, 212, and 126 
days under temperatures of 15, 25, and 35 ◦C, respectively, given our 
parameter settings. Temperature is one key variable that often de-
termines the length of an incubation experiment. Our results were 
consistent with general knowledge that temperature is a factor that has 
the greatest influence on soil organic carbon mineralization (Shi et al., 
2020). 

Most of the short-term incubation experiments were aimed at 
obtaining the soil mineralization rate of labile carbon (Schädel et al., 
2020; Wang et al., 2020; Xu et al., 2010), or to explore certain treatment 
effects (e.g. nitrogen additions and land use changes) on soil organic 
carbon mineralization (Liu et al., 2019; Wang et al., 2019). However, if 
the purpose of the study was to learn the long-term process of soil 
mineralization, short-term incubation data are not enough to provide 
sufficient information on decomposition rates of slow turnover pools. 
Parameters estimated from short-term datasets are usually higher than 
those from long-term datasets (Li et al., 2019). Zou et al. (2005) used a 
fumigation-incubation procedure to obtain pool sizes and potential 
turnover rates of different fractions of soil organic carbon through 
measuring microbial biomass. They found that a period of less than three 
months can get enough mineralization information of labile organic 
carbon. However, it is difficult to obtain the characteristics of a stable 
carbon pool within such a short period. Therefore, most incubation ex-
periments reported in literature were less than three months (59 %) 
(Fig. S1), and thus could not have captured mineralization information 
of stable carbon pools. A study by Schadel et al. (2013) found that data 
from a long-term incubation of 385 days was not able to well constrain 
parameters of the passive pool, which was longer than our evaluation. 
This difference was probably due to a much lower fraction of the passive 
pool (only 22 %) in their study than the data we used from Haddix et al. 
(2011). 

Uncertainty in parameter estimation, especially SOC decomposition 
rates, is one of the main sources of uncertainties in soil C dynamics 
prediction (Jiang et al., 2018; Luo et al., 2016). Using the three-pool 
model, we found that the decomposition rates of slow-turnover and 
passive-turnover pools were overestimated, while the fast-turnover pool 
was underestimated when short-term data were fed into the model. 
These discrepancies were probably because information from the fast- 

Fig. 3. RMSE between model outputs and incubation data under different in-
cubation temperatures. (a) Synthetic data and (b) real data. Scatters and lines in 
color represent the RMSE value and fitting lines in 15 ◦C (blue), 25 ◦C (red), and 
35 ◦C (orange). 

Fig. 4. T-test of difference between model predictions and synthetic data at day 600 when different lengths of incubation data were used under 15 ◦C (a), 25 ◦C (b), 
and 35 ◦C (c). H equals 1 when model predictions were significantly different from synthetic data at day 600, otherwise H equals 0. Logistic regression was performed 
to get optimal duration, where the second derivative of the fitted line equals 0 (yellow dot). The inset graphs illustrate the frequency distribution (x-axis) of model 
prediction (y-axis) at day 600 when 200 days of incubation data were used. The red line represents ‘observation’ at day 600. 
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turnover pool were incorrectly attributed to slower pools. As incubation 
experiments continue, the contribution of slow- and passive-turnover 
pools gradually increases (Fig. S4), and thus improves model predict-
ability. Our sensitivity analysis further implied that a longer duration of 
incubation is needed for soils with a larger proportion of slow turnover 
pools (Fig. 5). Using the OPID approach during the experiment could 
reduce the uncertainty caused by short incubation duration. 

The progressive data assimilation algorithm we developed could be 
used to forecast CO2 emission from SOC decomposition for on-going 
incubation experiments. If forecasting of CO2 emission becomes stabi-
lized with adding incubation data, one would decide to stop their in-
cubation experiment. Using synthetic data, our study eliminated 
experimental errors that would influence data assimilation and model 
projections. Data quality, frequency, and length of the observed data 
play a large role in estimating model parameters (Luo et al., 2009). In 
practice, experimental errors and data quality may result in higher 
RMSE, which implies longer incubation periods are needed than we 
expected. Further studies should be investigated to explore how data 
quality affects the optimal duration. However, we suggest using the 
average RMSE of the last 10 days to determine when it is appropriate to 
stop the incubation experiment. Take 35 ◦C as an example, after 126 
days, the difference between the two days of RMSE was less than 0.05, 
which means the additional incubation data no longer contributed 
significantly to the decline of RMSE. Our algorithm could be integrated 
into the online interactive model-data fusion systems such as EcoPAD 
(Ecological Platform for Assimilation of Data) and PEcAN (The Predic-
tive Ecosystem Analyzer). Models could be improved through updated 
data as well as guides the method of data observed (Huang et al., 2019). 
Experimenters could decide the length and frequency of data collection 
based on the model prediction when using those systems. 

4.2. Factors influence optimal duration 

While the accuracy of model projections increases with incubation 
period, their response patterns are different among different tempera-
tures and exhibit a trade-off between initial model performance and the 
time towards accurate projection. That is, when the incubation period is 
relatively short, e.g., 60 days or shorter, the model performs better 
under lower temperatures than higher temperatures. In contrast, the 
relative performance switches with increasing incubation period. At the 
very beginning of an incubation experiment, data collected from CO2 
emissions were largely from the decomposition of the active fraction of 
soil carbon (Zou et al., 2005). At that time point, all three parameters 
would be overestimated and contribute to the overall overestimation of 
decomposition. The slow and passive pools are more sensitive to tem-
perature than the active pool (Zhou et al., 2018). Therefore, under 

higher temperature, more CO2 emission from slower pools would result 
in bias of parameter estimations. As the model can easily mistake CO2 
from slow pools for active pool, at the beginning of incubation experi-
ment (Li et al., 2013). That is why we need to be more careful about 
experiment duration to determine whether we are getting enough in-
formation. As the experiment progresses, the decomposition of the slow 
and passive carbon pools begin to dominate. When feeding these data 
into a model, the model performance could increase dramatically. Under 
lower temperature, the slow and passive carbon pools still decompose 
slowly due to lower microbial activities. However, at higher tempera-
tures, microorganisms are more active, and CO2 emission data contains 
more mineralization information of the slow turnover carbon pools (Li 
et al., 2013; Wang et al., 2014). Therefore, the model performance under 
higher temperature increases faster than under lower temperature. 

Our sensitivity analysis indicated that the optimal duration was 
influenced by soil properties that were related to SOC decomposition 
rates, fractions of different components, and the initial carbon content. 
The higher the mineralization rate was, the earlier the sufficient infor-
mation of each pool was obtained, and the model could sooner achieve 
precise projections. Factors such as clay content, C:N ratio, and field 
water holding capacity (WHC), which affect decomposition rates and, 
therefore, the optimal duration of the experiment (Xu et al., 2016). The 
soil with high clay content may have more SOC been protected and 
recalcitrant to decomposition (Kölbl and Kögel-Knabner, 2010; Krull 
et al., 2001), which is reflected in the model parameters as decreased 
values of k1 and k2. The C:N ratio directly controls the nitrogen(N) 
availability for decomposers and WHC governs microbial decomposition 
and oxygen supply by influencing the soil water availability(Schjønning 
et al., 1999). Both of these factors may affect the decomposition rates, 
and influence optimal duration of the experiment indirectly. The pro-
portion of SOC fractions will also influence optimal duration. If there is 
more active carbon in SOC (large f1), the duration that the active pool 
acts as the major pool to release CO2 is longer. Therefore, the model has 
difficulty in catching more information on the slow and passive pools 
from the short-term incubation data and needs more time to make 
precise predictions. It was a surprise that soil with higher carbon content 
could reach optimal duration earlier, despite that soil with a higher 
carbon content needs more time to decompose. Incubation of soils with 
higher carbon content will produce larger CO2 emission, which may 
provide enough information for data assimilation and precise predic-
tion. Overall, our results implied that any soil properties that result in 
less information on the slow and passive pools, or more information on 
the active pool, would lead to larger predicted deviations and would 
need a longer incubation period. 

To consider differences between sampling frequency of synthetic and 
real data and to further test the contribution of sampling frequency to 

Fig. 5. Partial Rank Correlation Coefficient (PRCC) of optimal incubation period and parameters. Notations of the parameters are shown in Table 1.  
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model parameters, we changed the daily synthetic data to four different 
sampling frequencies: every 3 days, weekly, bi-weekly, and monthly. We 
ran the OPID approach following the steps in the methods, then 
compared the parameters posterior distribution and the range of the 
estimated values (Fig. S6). We found that the uncertainties of parame-
ters estimation from the incubation durations of 30, 100, 200, and 365 
days changed slightly with sampling frequency. The reduced frequency 
increased parameter uncertainty, and this phenomenon was only 
obvious in the active pool with a 30-day incubation duration. However, 
the range of estimated values in k2 and k3 was not influenced by the 
sampling frequency. In addition, the peak of each distribution did not 
skew so that the sampling frequency did not influence the estimation of 
parameters value. The added test implied that the sampling should be 
highly frequent during the first 30 days of the incubation experiment to 
reduce the uncertainty of the active pool. 

Uncertainty of model structure might influence the performance of 
our approach. There are a number of models for soil organic carbon 
decomposition, such as CENTURY model(Parton et al., 1987), RothC 
model(Coleman and Jenkinson, 1996), and DocMod model(Currie and 
Aber, 1997). In this study we used the classic three-pool model, in which 
different pools were separated according to their decomposition rate. 
Recent developments on SOC stabilization mechanisms explained that 
SOC with physical protection or with chemical recalcitrance was defined 
as slow pool, and that with mineral protection was defined as the passive 
pool (Chen et al., 2021). Our three-pool based model still persist for 
those SOC stabilization as long as three SOC pools can be defined. Mi-
crobial communities could regulate decomposition rate of SOC. There 
developed microbial-explicit models such as MEND model (Wang et al., 
2015), MESDM model (Zhang et al., 2022), aim to capture decomposi-
tion patterns mediated primarily by saprophytic microorganisms such as 
microbial dormancy, microbial functional groups, priming effect. 
However, including nonlinear microbial process could result in oscilla-
tion of CO2 release, which can not realistically represent soil carbon 
dynamics (Wang et al., 2016). In addition, microbial-explicit models 
have more parameters than first-order kinetic models, and therefore 
increase the parameter uncertainty. If future advances in experimental 
techniques that could monitor soil fraction data through incubation, 
other complex models could be tested. 

5. Conclusion 

In summary, the OPID approach developed in this paper utilized 
incubation data to effectively determine the optimal duration of an in-
cubation experiment. Our approach can make predictions on SOC 
mineralization after the incubation begins, but a longer period was 
needed to constrain the parameters. Researchers can decide when to 
terminate the experiment according to the purpose of their research. In 
future studies, to efficiently design an experiment, a range of simple to 
complex soil C decomposition models could be tested with our pro-
gressive data assimilation approach. 
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