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Abstract 

Background: Large uncertainty in modeling land carbon (C) uptake heavily impedes the accurate prediction of the 
global C budget. Identifying the uncertainty sources among models is crucial for model improvement yet has been 
difficult due to multiple feedbacks within Earth System Models (ESMs). Here we present a Matrix-based Ensemble 
Model Inter-comparison Platform (MEMIP) under a unified model traceability framework to evaluate multiple soil 
organic carbon (SOC) models. Using the MEMIP, we analyzed how the vertically resolved soil biogeochemistry struc-
ture influences SOC prediction in two soil organic matter (SOM) models. By comparing the model outputs from the 
C-only and CN modes, the SOC differences contributed by individual processes and N feedback between vegetation 
and soil were explicitly disentangled.

Results: Results showed that the multi-layer models with a vertically resolved structure predicted significantly 
higher SOC than the single layer models over the historical simulation (1900–2000). The SOC difference between 
the multi-layer models was remarkably higher than between the single-layer models. Traceability analysis indicated 
that over 80% of the SOC increase in the multi-layer models was contributed by the incorporation of depth-related 
processes, while SOC differences were similarly contributed by the processes and N feedback between models with 
the same soil depth representation.

Conclusions: The output suggested that feedback is a non-negligible contributor to the inter-model difference of 
SOC prediction, especially between models with similar process representation. Further analysis with TRENDY v7 and 
more extensive MEMIP outputs illustrated the potential important role of multi-layer structure to enlarge the current 
ensemble spread and the necessity of more detail model decomposition to fully disentangle inter-model differences. 
We stressed the importance of analyzing ensemble outputs from the fundamental model structures, and holding a 
holistic view in understanding the ensemble uncertainty.

Keywords: Soil organic carbon, Inter-model comparison, Uncertainty analysis, Carbon–nitrogen coupling, Vertical 
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Introduction
Whether or not the current land carbon (C) sink will 
persist into the future is a major source of uncertainty in 
assessing the global C budget (Friedlingstein et al. 2019; 
Piao et al. 2020). Proper understanding and identification 
of the sources of uncertainty is a critical step to improve 
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the prediction of C dynamics in a fast-changing world 
(Hoffman et al. 2017).

Outputs of Model Inter-comparison Projects (MIPs) 
provide information of global land C storage and budget 
for single model and ensembled projections. Meanwhile, 
uncertainty widely exists over the various components 
of the ensemble outputs (Friedlingstein et  al. 2006). 
Model analysis indicated that various potential uncer-
tainty sources, e.g., climate forcing (Ahlström et al. 2017; 
Bonan et  al. 2019; Wu et  al. 2018), process representa-
tion (Koven et al. 2015; Wang and Houlton 2009; Wieder 
et  al. 2018, 2013; Zaehle et  al. 2015) and parameteriza-
tion (Keenan et al. 2012; Luo and Schuur 2020; Shi et al. 
2018), can cause substantial differences in model outputs. 
However, it is difficult to fully distinguish the contribu-
tion of each factor, with little information being extracted 
from the model structure. One important reason for the 
situation is that the earth system itself is holistic, with 
multiple feedbacks among different components (Heinze 
et  al. 2019). Every single model advance in one compo-
nent probably causes changes in the related components 
to varying degrees. The complexity then dramatically 
increases in the ensemble simulations, with models shar-
ing similar general structures but are divergent in repre-
senting specific processes (Rogers et al. 2017). Until now, 
little quantitative information has been attained on the 
uncertainty contributions from the process itself and the 
interactions between different processes.

Soil organic carbon (SOC) is the largest C reservoir 
in the biosphere, and its interactions with vegetation 
and atmosphere substantially influence the variability of 
global C cycling and C-climate feedback (Cox et al. 2000; 
Friedlingstein et  al. 2006; Jones et  al. 2003; Koven et  al. 
2011). Despite its importance, great uncertainty exists in 
estimating SOC stocks and fluxes and the correspond-
ing responses to key environmental variables. Ensemble 
outputs from Coupled Model Intercomparison Project 5 
(CMIP5) suggested that the estimated global SOC varied 
from 510 to more than 3000 Pg C and the spatial distri-
butions are poorly correlated with observation-based 
data (Anav et  al. 2013; Luo et  al. 2015a; Todd-Brown 
et al. 2014). Outputs from the Multi-Scale Synthesis and 
Terrestrial Model Inter-comparison (MSTMIP) showed 
a similar spread of global estimation of historical SOC 
storage to that from CMIP5 (Tian et al. 2015). Such large 
inter-model differences seriously affect the credibility of 
our prediction on future global land C budget.

A major recent advance in SOC modelling in earth sys-
tem models (ESMs) is the explicit representation of the 
vertically resolved structure of SOC exchange and mix-
ing (Burke et al. 2017; Camino-Serrano et al. 2018; Koven 
et  al. 2013). This helps ESMs to make better SOC pre-
diction over the permafrost areas, which contain large 

quantities of soil organic material (SOM) in deep frozen 
soils and is sensitive to future warming (Schuur et  al. 
2015). With the quantification of deeper soils, a signifi-
cant increase of the global estimation of SOC storage 
was found in land models (Shi et  al. 2018). In addition, 
the feedback of C and N cycling to climate warming was 
predicted to be significantly modified once the deeper 
SOM was explicitly considered, especially through the 
release of C from deeper soils over permafrost ecosys-
tems (Koven et  al. 2015; McGuire et  al. 2018). These 
model advancements have potentially improved the esti-
mation of current and future amount of SOC stocks and 
fluxes. However, it remains largely unknown that if incor-
porating such a new process in specific models would 
cause larger uncertainty of SOC predictions in ensemble 
simulations.

A matrix-based framework has been developed to 
decompose various land C processes into unified compo-
nents (Xia et al. 2013). Using a unified framework, crucial 
elements of the land C cycling can become traceable in 
a matrix form. Then the inter-model differences can be 
explicitly analyzed and quantified using the traceabil-
ity analysis. This framework offers effective diagnosis of 
model uncertainty through a three-dimensional model 
output space: C residence time, C flux, and C storage 
potential (Luo et al. 2017), which has been widely applied 
in multiple state-of-art land models, such as in the com-
munity land model (CLM) (Huang et  al. 2018a; Lu 
et  al. 2019), the community atmosphere biosphere land 
exchange model (CABLE) (Xia et al. 2013), the organiz-
ing carbon and hydrology in dynamic ecosystems model 
(ORCHIDEE) (Huang et  al. 2018b) and the boreal eco-
system productivity simulator (BEPS) (Chen et al. 2015). 
Following the framework, the inter-model differences 
can be quantitatively attributed to the sources.

We developed a Matrix-based Ensemble Model Inter-
comparison Platform (MEMIP, ver. 1.0) targeting to fully 
disentangle the uncertainty sources in inter-model com-
parisons. We incorporated SOC modules from differ-
ent land models as ensemble members, and a vertically 
resolved biochemistry structure into an ESM, CIESM 
(Fig. 1). Each ensemble member was converted to a uni-
fied matrix form. Following the framework from Luo 
et  al. (2017), we then decomposed and compared the 
SOC components in single-layer (SL) and multi-layer 
(ML) models using members in MEMIP. Through this 
study, we investigate how the ML structure modifies the 
SOC prediction and the corresponding traceable compo-
nents, the explicit contribution of the process (PC), and 
the N feedback results from the competition between 
vegetation and soil (NFB) to the inter-model difference, 
and illustrate the potential implications to future MIP 
analysis.
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Methods
Development of the MEMIP
SOC modeling schemes and the multi‑layer structure
The land biosphere model used in this study is the land 
component of community integrated earth system model 
(CIESM), CIESM-LAND. The model is based on the 
framework of the Community Land Model version 4 
(CLM 4.0). The CN biogeochemistry module (CLM-CN) 
is from Biome-BGC, which is a first-order kinetic scheme 
of 7 pools (3 litter and 4 soil pools) specified with dif-
ferent decomposition rates (Oleson et al. 2010). The soil 
temperature (ξT) and water scalars (ξW) were considered 
to limit SOC decomposition. In the single layer version of 

the Biome-BGC model (BGC-SL), the weighted means of 
surface soil temperature and water potential from the top 
5 soil layers were used to quantify ξT and ξW, respectively. 
The organic N cycling follows the same pool structure 
with the C cycling. N mineralization and immobiliza-
tion occur along with the C decomposition. The N scalar 
(ξN) is the ratio of actual and potential N immobilization, 
which is determined by the N competition between veg-
etation and soil (Additional file 1: Text S1).

CIESM-LAND introduced following modifications: 
a newly released global soil property database and 
an improved thermal roughness parameterization. 
The International Geosphere–Biosphere Programme 

Fig. 1 Framework of the Matrix-based Ensemble Model Inter-comparison Platform (MEMIP Ver 1.0). The bright green boxes represent the 
components that are modified by feedback. The orange arrow shows that in multi-layer models, environmental scalar (ξ) modifies baseline C 
residence time (τ′E)
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(IGBP) soil data sets was replaced by the Global Soil 
Data set for use in ESMs (GSDE, Shangguan et  al. 
2014). GSDE provides soil texture information of 
eight layers extending from the surface to the deep 
soil which will impact the land surface heat and water 
flux, as well as soil respiration. Meanwhile, a new 
thermal roughness length scheme developed by Yang 
et  al. (2008, 2002) was adopted to improve the sensi-
ble heat flux and land surface energy budget. A test of 
the scheme in the Noah land surface model suggested 
that simulated land surface temperature was improved 
relative to the original scheme (Chen et al. 2011). Full 
introduction about CIESM-LAND can be found in Lin 
et al. (2020).

Four additional SOC models from CENTURY, 
CABLE, the Lund–Potsdam–Jena model (LPJ), and 
the Joint UK Land Environment Simulator (JULES) 
were explicitly implemented as ensemble members of 
MEMIP (Fig.  1). The models share similar multi-pool 
structure with first-order decay equations, but with 
different designs of SOM pools, transferring scheme 
and environmental scalars. The CENTURY scheme 
has a 6-pool structure of SOC, with 3 litter and 3 soil 
pools. Equations for ξT and ξM are the same as the BGC 
scheme. The CABLE scheme has a 5-pool SOC struc-
ture, with 2 litter pools (structure and metabolic litter 
pools) and 3 soil pools (microbial, slow and passive 
pools). The LPJ scheme is a 4-pool model, with C tran-
sitions from the above- and below-ground litter pools 
to the fast soil pool with a fixed proportion and the rest 
to the slow soil pool. The JULES scheme follows a Roth-
C framework, with plant materials input to decomposa-
ble (DPM) and resistant (RPM) litter pools. C goes into 
the two soil pools [microbial biomass (BIO) and long-
lived humified (HUM) pools]. In the CABLE, LPJ and 
JULES models, the surface soil temperature and water 
content, i.e., the average condition of soil water content 
from top 5 layers, are used to quantify ξT,  ξW, respec-
tively. Detail equations for each model can be found in 
Additional file 1: Table S1.

The vertically resolved biogeochemistry model, i.e., 
the multiple layer (ML) structure, was further incorpo-
rated following Koven et al. (2013). In the model, SOM 
dynamics of each soil layer and the vertical exchanges 
were explicitly considered. More detailed information 
can be found in Additional file 1: Table S1 and Text S2.

At the current stage, two members, Biome-BGC 
(BGC) and CENTURY (CEN), were coupled with the 
ML structure. Therefore, seven ensemble members 
were created in total, i.e., BGC-SL, BGC-ML, CEN-SL, 
CEN-ML, CABLE-SL, LPJ-SL and JULES-SL (Fig.  1). 
The same CN coupling model, i.e., CLM-CN, was used 
for all members.

Matrix representation of the models
All ensemble members were organized in one matrix 
form that captures the entire SOC dynamics. The overall 
control equation is

The left side of the equation represents the net C pool 
changes per unit time.

The first term on the right side of the equation, U(t), 
is the vector representing the C influx into the system 
at time t. It is the product of the C input rate at time t 
(Cin(t)) and the vector representing the C input allocation 
into different pools (B):

The second term of Eq. (1), ξ(t)A KX(t), represents the C 
transfers and losses over different C pools at the same soil 
layer. ξ(t) is the matrix for environmental scalar at time t:

where ξT(t), ξW(t), ξN(t) and ξD(t) are the soil temperature, 
water, N and depth scalars at time t. In the SL models, 
ξT, ξW, and ξN are considered as the average condition of 
surface layers; in the ML models, ξT, ξW, and ξN are calcu-
lated for every single layer and an extra depth scalar (ξD) 
was considered following the scheme of CLM 4.5 (Oleson 
et al. 2013).

Matrix A is the C transfer matrix and Matrix K is a 
diagonal matrix for baseline decomposition rates of each 
C pool.

The third term, V(t)X(t) represents the vertical 
exchange between different SOC layers per unit time. 
This term is only for the ML models. N cycling mainly 
influences SOC prediction by modifying U(t) through 
limiting vegetation C assimilation and modifying SOC 
decomposition through ξN (see detail in Additional file 1: 
Text S1).

To verify the validity of the matrix models, both origi-
nal and matrix models were created for each member in 
the MEMIP. We conducted 100-year global simulations 
for both original and matrix models. The results proved 
that the matrix models can exactly reproduce the outputs 
from the original models (Additional file 1: Fig. S1).

Model simulations
We conducted spin-ups for each ensemble member 
to get equilibrium conditions using the climate forc-
ing of 1900–1920, and pre-industrial atmospheric  CO2 
concentration and N deposition. Then we ran tran-
sient simulations of CIESM-LAND for the historical 

(1)
dX(t)

dt
= U(t)− ξ(t)AKX(t)− V (t)X(t)

(2)U(t) = Cin(t)B

(3)ξ(t)=ξT (t)ξW (t)ξN (t)ξD(t)
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period (1900–2000) using each ensemble member, 
which represent different SOC calculations, in paral-
lel. All ensemble members were run using the same 
climate forcing, CRU-NCEP v4.0 (Viovy 2012), tran-
sient historical atmospheric  CO2 concentration, and 
N deposition dynamics (Lamarque 2005). We ran each 
ensemble member under both C-only and CN modes.

Traceability analysis
To explicitly trace and disentangle the sources of 
model difference, we applied the traceability analysis 
framework following Luo et al. (2017):

where X(t), Xc and Xp are the C storage, C storage capac-
ity and the C storage potential at time t, respectively. Xc(t) 
represents the C storage at the equilibrium condition, 
which is the product of C residence time (τE(t)) and Cin(t):

τE(t) can be further decomposed into baseline residence 
time 

(

τ ′E

)

 and ξ(t):

where τ ′E is determined by baseline decomposition rate 
and C transfer schemes in the SL models:

In the ML models, an additional depth-related factor 
was added to modify τ ′E (Additional file 1: Text S2). ξ(t) is 
calculated as the product of multiple soil environmental 
variables including ξT(t), ξM(t) and ξD(t) (the depth scalar 
is only for ML members).

Xp(t) defines the ecosystem potential to store or lose 
C in addition to C storage capacity. It is the product 
of C storage change rate 

(

X ′(t)
)

 and the chasing time 
(τch(t)):

where τch is defined as the common part for Xc and Xp, 
which represents the expected residence time for C 
transferring among different SOC pools (Luo et al. 2017):

In this study, we focused on Xc analysis as the contribu-
tion of Xp to the total amount of SOC is very small (~ 10 
Pg  C for Xp versus 600–1000  Pg  C for Xc, Additional 
file 1: Fig. S2).

(4)X(t) = Xc(t)− Xp(t)

(5)Xc = τE(t)Cin(t)

(6)τE(t) = τ ′Eξ(t)
−1

(7)τ ′E = (KA)−1B

(8)Xp(t) = X ′(t)τch(t)

(9)τch(t) = (KAξ(t))−1

Quantifying the contribution of modeled SOC differences
Following the model decomposition scheme introduced 
above, the SOC differences between ensemble members 
can be represented as following:

where RSOC,MOD12 , t,  RCin ,MOD12 , t,  Rτ ′E , MOD12 , t and 
Rξ−1, MOD12 , t

 are the ratios between SOC, Cin, base-
line residence time, and environmental scalars from 
one model to another, respectively (i.e., RSOC,MOD12 , t  
=  SOCMOD1,t  /SOCMOD2,t, RCin ,MOD12 , t = Cin,MOD1,t  /
Cin,MOD2,t, Rτ ′

E
, MOD12 , t = τ ′

E, MOD1,t

/

τ ′
E,MOD2,t

 , Rξ−1, MOD12 , t
 = 

 ξMOD1,t/ξMOD2,t). Rξ−1, MOD12 , t
 was further decomposed into 

components of different environmental scalars of soil tem-
perature 

(

Rξ−1,T ,MOD12 , t

)

 , soil moisture 
(

Rξ−1,M, MOD12 , t

)

 , 
N 
(

Rξ−1,N ,MOD12 , t

)

 , and depth 
(

Rξ−1,D, MOD12 , t

)

.
Equation 10 was then log-transformed to quantify the 

additive contribution of different components:

Thereafter, the following approach was used to calculate 
the relative changes of each component against the SOC 
change:

where fi is the multi-year mean of the contribution of 
component i (i.e., Cin, τ ′E  and ξ−1) relative to the SOC 
difference. Its positive or negative value represents if the 
change direction of component i is the same or the oppo-
site to SOC change direction.

We then conducted a pairwise comparison to illustrate 
the sources of SOC difference with two SOC decompo-
sition structures (CEN versus BGC) and two SOC layer 
representations (SL versus ML). The specific compari-
sons are BGC-SL versus BGC-ML (Layer_BGC compari-
son), CEN-SL versus CEN-ML (Layer_CEN comparison), 
BGC-SL versus CEN-SL (Model_SL comparison), and 
BGC-ML versus CEN-ML (Model_ML comparison).

When included in CIESM-LAND, MEMIP can explic-
itly attribute inter-model differences to processes and 
feedbacks. In this study, the relative contributions from 
processes (PC, i.e., different SOC decomposition struc-
tures and layer representations) and NFB (i.e., N com-
petition between vegetation and soil) were explicitly 
disentangled. To quantify the relative contributions of PC 
and NFB, the C-only outputs of the 4 ensemble members 

(10)
RSOC,MOD12 , t = RCin , MOD12 , t Rτ ′E , MOD12 , t Rξ−1 , MOD12 , t

(11)

log
(

RSOC,MOD12 , t

)

= log
(

RCin,MOD12 , t

)

+ log
(

Rτ ′
E
,MOD12 , t

)

+ log
(

Rξ−1,MOD12 , t

)

(12)

fi =

∑

t

log
(

R i,MOD 12 , t

)

∣

∣ log
(

R SOC,MOD 12 , t

)∣

∣

log
(

R SOC,MOD 12 , t

)

∑

t

∣

∣log
(

RSOC,MOD 12 , t

)∣

∣
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were compared to determine the relative changes of the 
corresponding component induced by PC. Thereafter 
the outputs were compared against the results from CN 
mode to get the contributions derived from NFB.

In this case, fτ ′E is mainly from PC, i.e., different SOC 
decomposition scheme and depth representation. NFB 
also contributes to fτ ′E in ML models with the incorpora-
tion of the vertical mixture term through modifying can-
opy condition and then the soil moisture and temperature 
(Additional file  1: Text S2). Model differences in fCin is 
from NFB through soil-vegetation N competition. f

ξ−1
T

,   
f
ξ−1
M

 and f
ξ−1
N

 are contributed by both PC and NFB. f
ξ−1
T

 
and f

ξ−1
M

 are from the different uses of soil temperature 
and soil moisture layers as the PC term, and soil tempera-
ture and moisture modifications due to vegetation struc-
ture changes with the NFB term. f

ξ−1
N

 differences are from 
different N pool structures and corresponding parame-
terization as the PC term, and the modification through 
C input to the soil as the NFB term (See detailed explana-
tions in Additional file  1: Text S3). The magnitude and 
direction of ξN contribution depend on the relative mag-
nitude of changes in PC and NFB (Additional file 1: Text 
S1). Briefly, higher τ ′E increases (i.e., change from PC) the 
demand of soil N immobilization and, therefore, 
decreases ξN, which in turn, promotes SOC accumula-
tion, while lower Cin (i.e., change from NFB) decreases 
both total mineral N and vegetation N demand. The for-
mer (i.e., lower total mineral N) decreases ξN (thereby 
increasing SOC) and the latter (i.e., lower vegetation N 

demand) increases ξN (thereby decreasing SOC). There-
fore, the final contribution of NFB depends on the rela-
tive importance of the two components.

Due to the same biophysical model being used in all 
simulations, the contributions of NFB to fτ ′E,  fξ−1

T
 and f

ξ−1
M

 
were very small in this study (Additional file 1: Fig. S3). 
Hence, we assumed fτ ′E,  fξ−1

T
 and f

ξ−1
M

 were all from PC.

Results
Comparison between the single and multiple layer models
By explicitly representing the vertically resolved soil 
biogeochemistry structure, the two ML models pre-
dicted higher SOC amounts across large regions 
(Fig.  2). Areas with increasing SOC over the high-lat-
itudes of the Northern hemisphere were mainly pro-
duced through the prolonging of τE, while the other 
regions with increasing SOC had co-contributions by 
the changes in both Cin and  τE (Fig.  2). For example, 
SOC increase in major parts of China was the result 
of Cin increase and τE decrease in the Layer_BGC 
comparison and the increase of both Cin and τE in 
the Layer_CEN comparison, respectively. Areas with 
decreasing SOC were mainly located in central Sibe-
ria, eastern Europe and part of Canada, mainly due to 
Cin decreases in the ML models. Further decompos-
ing τE into separate components, the ML structure 
caused similar changes of spatial patterns in various 
τE components for the two models compared to the 
SL structure (Fig.  3). ξT only increased in areas with 
latitudes approximately higher than 40°N and the 

Fig. 2 Global map of the inter-model difference of a soil organic C (ΔSOC), b C input (ΔCin) and c soil C residence time (ΔτE). BGC: ML-SL is the 
difference between BGC_ML and BGC_SL of a specific variable; CEN: ML-SL is the difference between CEN_ML and CEN_SL of a specific variable; 
SL: BGC-CEN is the difference between BGC_SL and CEN_SL of a specific variable; ML: BGC-CEN is the difference between BGC_ML and CEN_ML 
of a specific variable
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Tibetan plateau, while it showed major decreases for 
the remaining land areas (Fig. 3a). ξM showed an over-
all increase in the ML models (Fig. 3b). The spatial pat-
tern of ξN was similar for the two comparisons. Larger 
ξN decrease was found for the Layer_CEN comparison, 

especially for Eastern Europe, Canada, South Africa 
and Australia (Fig.  3c). τ ′E increase was also found for 
major land areas, except Western North America, Cen-
tral Asia, Southern Africa, and Australia (Fig. 3d). The 

Fig. 3 Global map of inter-model differences of a T_scalar (ΔξT), b W_scalar (ΔξW), c N scalar (ΔξN), and d baseline soil C residence time 
(

�τ ′
E

)

 . 
BGC: ML-SL is the difference between BGC_ML and BGC_SL of a specific variable; CEN: ML-SL is the difference between CEN_ML and CEN_SL 
of a specific variable; SL: BGC-CEN is the difference between BGC_SL and CEN_SL of a specific variable; ML: BGC-CEN is the difference between 
BGC_ML and CEN_ML of a specific variable

Fig. 4 Global synthesis of historical (1900–2000) traceability components: a soil organic C (SOC), C input, and soil C residence time, b soil C 
residence time, baseline soil C residence time, and environmental scalar, and c the temperature, water, and nitrogen scalars from different models. 
The impact of depth scalar is showed as the environmental scalar difference between multi-layer models with depth scalar (denoted as BGC_ml 
and CEN_ml) and without depth scalar (denoted as BGC_ml_no_depth and CEN_ml_no_depth)
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Layer_CEN comparison exhibited a larger magnitude 
of changes of τ ′E (Fig. 4b).

Globally, the ML models showed higher τE, but lower 
Cin (Fig.  4a). The combination led to higher predictions 
of global SOC from 664 and 662.3 Pg  C to 881.8 Pg  C 
and 1003.4 Pg C for the BGC and CEN models, respec-
tively. Changes in τE resulted from both τ ′E and ξ (Fig. 4b). 
Extra consideration of the depth scalar (ξD) was the main 
source of ξ changes, accounting for 14.5% (from 0.144 to 
0.123) and 14% (from 0.152 to 0.131) of τ ′E   changes for 
the BGC and CEN models, respectively (Fig. 4b).

Comparison between the BGC and CEN models
SOC divergences between the two model schemes were 
larger with the ML structure (i.e., the Model_ML com-
parison) compared to that with the SL structure (i.e., 
the Model_SL comparison). Differences of SOC in the 
Model_ML comparison greatly increased over 10 times 
for most of the land pixels compared to those from the 
Model_SL comparison (Fig. 2a). Spatially, the SOC differ-
ence between BGC-SL and CEN-SL was relatively small 
in magnitude with no consistent spatial patterns. Pre-
dicted SOC of BGC-ML exceeded CEN-ML mainly over 
the permafrost areas, and the pattern reversed in the rest 
part of global land (Fig. 2a). In the Model_ML compari-
son, the SOC difference was primarily from the τE differ-
ence with very similar spatial patterns for the BGC and 
CEN models (Fig.  2). Cin difference influenced the pat-
tern of predicted SOC over particular areas, e.g., North-
eastern North America and Western Europe (Fig.  2). 
Differences in ξT and ξM presented small magnitude of 
changes in both comparisons (Fig. 3a and b). The spatial 
pattern of ξN was similar for the two comparisons. Main 
differences are from Northwestern North America, Sibe-
ria, South Africa and Australia, where ξN from the BGC 
model was higher in the Model_ML comparison but 
was lower in the SL comparison (Fig.  3c). τ ′E displayed 
an overall larger discrepancy in the Model_ML compari-
son and the spatial distribution was similar to that from 
τE. Taken together, SOC difference between models in 
the Model_ML comparison was 71.5 times of that in the 
Model_SL comparison (Fig. 4a).

Vertical distribution of soil organic carbon 
and environmental scalars
Vertical distribution of SOC from the ML models 
showed a contrasting pattern between the high latitude 
areas of North Hemisphere (> 60° N) and the rest part of 
global land (Fig. 5a–c). The mean SOC density was much 
higher over the high latitude areas than the other land, 
with  a large proportion of SOC  accumulated over the 
deep layers. The SOC density increased from top layers 

to layer 9 (~ 2.3 m deep) and then decreased to layer 10 
(~ 3.8  m  deep). Following the distribution of SOC, soil 
organic nitrogen (SON) presented a very similar vertical 
distribution pattern globally (Fig. 5d–f).

Regarding soil moisture and temperature scalars, 
both values were much lower for the high latitude areas 
(Fig. 6), probably due to the harsh environment, i.e., low 
soil temperature and moisture condition (Additional 
file  1: Fig. S4). The combination led to a much lower 
decomposition rate over those areas than the other land 
areas, and thus highly limited soil decomposition (Fig. 3). 
In return, τE was much longer over high latitude areas 
than the rest part of the global land (Fig. 2).

Traceability analysis and difference contributions
The contribution of SOC variation from different sources 
was quantified in each pairwise comparison of ensemble 
members (Fig.  7). In the Layer_BGC and Layer_CEN 
comparisons (Fig. 7a and b), the SOC increases in the ML 
models were mainly from fτ ′E , fξD , and f

ξ−1
T

 , and were 
buffered by fCin and f

ξ−1
M

 . f
ξ−1
N

 represented a small fraction 
of differences in the Layer_BGC and Layer_CEN com-
parisons. Little f

ξ−1
N

 was from PC, indicating that the ML 
structure had a limited impact on the structural aspect of 
N cycling (Fig. 7a, b). Overall, PC-induced model differ-
ences dominated in the two comparisons, with contribu-
tions of 82.45% and 85.26% for the Layer_BGC and 
Layer_CEN comparisons, respectively (Fig. 7a, b).

The contribution from NFB became much more impor-
tant in explaining the model differences in the Model_SL 
and Model_ML comparisons (Fig.  7c, d). In comparing 
the two SL models, the relative change rate from every 
element was much higher than the SOC difference, due 
to the similar SOC predictions from the two models 
(Fig.  4a). Higher SOC prediction in BGC_SL compared 
to CEN_SL was mainly from f

ξ−1
N

 and was buffered by fCin 
and fτ ′E (Fig.  7c). f

ξ−1
N

 from NFB exceeds that from PC, 
suggesting that the different models influenced SOC 
through modifying vegetation C uptake rather than regu-
lating N cycling. Similar pattern was found in comparing 
the ML representations (Fig. 7d). However, f

ξ−1
N

 is smaller 
with increasing fτ ′E in this comparison, leading to a higher 
SOC prediction from CEN_ML (Figs. 4b and 7d). Taken 
together, the contribution of NFB to SOC difference was 
comparable to PC in these two comparisons. NFB contri-
butions were 53.02% and 46.64% for the Model_SL and 
Model_ML comparisons, respectively.

SOC outputs from TRENDY v7 and MEMIP members
Predicted SOC from TRENDY v7 (TRENDY) and more 
extensive outputs from MEMIP are shown in Fig.  8. 
TRENDY output presented a spread of SOC predictions 
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with a range of 540–3355 Pg C. Among the models, the 
result from CLM5.0, one includes an explicit ML struc-
ture, predicts a much higher SOC than the other models. 
The ML models from MEMIP, using a similar ML model 
in CLM5.0, also exhibits obvious higher SOC prediction 
than the corresponding the SL models. However, the 

soil depth considered in CLM5.0 is much deeper than 
the one in CIESM-LAND (8.6 m versus 3.8 m). With the 
consideration of N limitation, SOC predictions from CN 
mode are lower than C-only mode in MEMIP outputs. 
Correspondingly, the C-only models (1340–3011 Pg  C) 
showed much larger range of spread than the CN models 

Fig. 5 Vertical distribution of soil organic carbon (SOC) for a global, b high latitude land (latitude > 60°) and c the rest land, and soil organic 
nitrogen (SON) for for d global, e high latitude land (latitude > 60°) and f the rest part of global land, from CEN-ML and BGC-ML. Each horizontal line 
represents a soil layer
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Fig. 6 Vertical distribution of soil temperature scalar for a global, b high latitude land (latitude > 60°) and c the rest part of global land, and soil 
temperature scalar for d global, e high latitude land (latitude > 60°) and f the rest part of global land, from CEN-ML and BGC-ML. Each horizontal line 
represents a soil layer

(See figure on next page.)
Fig. 7 Relative contributions of different elements to the final SOC differences in pairwise comparisons. Pink and light blue bars represent the 
feedback and process contribution, respectively. Purple bars represent the combined effect from feedback and process from a single element. 
Model names with bold font and an asterisk indicate the model with higher SOC prediction. Positive values of the x-axis indicate that the direction 
of the element is the same with models of higher SOC prediction and vice versa. Cin: C input rate, τ ′

E
 : baseline residence time, ξT: soil temperature 

scalar, ξW: soil water scalar, ξD: depth scalar, ξN: N scalar
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Fig. 7 (See legend on previous page.)
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(666–1481 Pg  C), with only changes on the SOM mod-
els. The situation is much more complex in real ensemble 
output. Contrary to the MEMIP output, the CN models 
showed larger spread than the C-only models (802–1601 
Pg C for C-only models, 540–3355 Pg C for CN models 
with CLM5.0 and 540–1885 Pg  C for CN models with-
out CLM5.0, respectively). With various SOM models 
used in different biosphere models, it is difficult to tell 
the sources of uncertainty without looking into specific 
model structures.

Discussion
Additional processes characterizing deeper soil dynamics 
showed a significant impact on the global SOC storage, 
especially for the permafrost region. As presented from 
the MEMIP output, SOC outputs from the ML models 
were higher than those of the SL models. Similar patterns 
were also confirmed in the SOC output from TRENDY, 
in which CLM5.0 with the ML structure showed a much 
higher SOC prediction (Fig.  8). Consistent conclusions 
were found in previous studies through comparing the SL 
and ML models (Burke et al. 2017; Camino-Serrano et al. 
2018; Koven et  al. 2013). Although further analysis is 
needed to confirm the effect in the ensemble outputs, the 

current results suggest that the ML structure potentially 
enlarges the spread of current ensemble SOC prediction. 
Within the MEMIP, we further investigated why the final 
SOC was different by analyzing its elements.

SOC difference between the SL and ML models was 
mainly from τE, which can be further attributed to 
the differences from both ξ and τ ′E . The effect from ξ is 
straightforward due to its direct modifications to τ ′E . 
Extra consideration of ξD in the ML models imposed a 
strong effect on the C decomposition with its decreas-
ing tendency to the deeper soil layers (Additional file 1: 
Text S2). With SOC gradually diffused into the deeper 
layers, where decomposition rates were much lower than 
the top layers, ξD thus caused higher τE for the ML mod-
els (Fig. 2). Since the SL models used average condition 
of top 5 layers of soil water potential and temperature to 
quantify the corresponding scalars, ξT and ξW decreased 
and increased with the incorporation of the ML struc-
ture, respectively (Fig. 6). Because the same biogeophysi-
cal model and ξ functions are used for the BGC and CEN 
models, the contributions from the two scalars were rela-
tively small comparing to ξD. However, with more diverse 
equations incorporated from different models, extra 
uncertainties from both process and feedback would be 
generated to the outputs (Chen et al. 2015; Falloon et al. 
2011), and are likely a contribution to the differences in 
the MEMIP and TRENDY results.

More complicated interactions were generated in τ ′E , 
which includes the major model structural elements. In 
the SL members, τ ′E can be easily quantified and com-
pared with time-invariant inputs. As presented in Fig. 2, 
τ ′E is higher from the CEN model than that from the 
BGC model. With the incorporation of the vertical mix-
ture term, τ ′E was different for each layer (Additional 
file 1: Text S2). Due to the low decomposition rate over 
the deep layers, our results of τ ′E from the ML models 
clearly elongated and thus strongly contributed to the 
higher SOC predictions from the ML models than the 
SL models (Fig. 7). The exchange rates to the upper and 
lower layers depend on the depth and environmental fac-
tors and, therefore, create a more complex interaction 
between vertical (layer to layer) and horizontal (pool to 
pool) C exchanges. Further studies are needed to under-
stand the internal and external controls in this compo-
nent. A thorough parameter sensitivity analysis may be a 
good start point (Huang et al. 2018b).

The ML structure further modified the vegetation–soil 
interactions through N cycling. In the CIESM, stronger 
plant N competition between vegetation and soil happened 
in the ML models due to τE elongation. On one hand, the 
vegetation production was reduced because of the lower 
availability of soil mineral N that stems from relatively 
higher N demand for decomposition (Additional file  1: 

Fig. 8 Inter-model comparison of SOC results from TRENDY v7 
and MEMIP. The results are multiple year mean for the period of 
1950–2000
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Fig. S7). Lower vegetation production due to N limitation 
is a feedback that counteracts the SOC increase by reduc-
ing vegetative C input to the soil. On the other hand, the ξN 
to soil C transition and decomposition was also changed. 
With the increasing demand for N immobilization but a 
decrease of both total mineral N and plant demand, ξN 
exhibited different responses in different models, which 
promoted or buffered the SOC increase based on different 
model schemes (Fig. 7 and Additional file 1: Text S1). Nev-
ertheless, the magnitude of the effect of ξN on soil decom-
position is much smaller than the effect on vegetation C 
uptake (Fig.  5a, b). Taken together, the total NFB effect 
buffered the SOC increase in the BGC and CEN compari-
sons. It should be mentioned that here, SOC increment 
from the SL to ML models is mainly an effect of additional 
soil layers leading to deeper SOM. The warming effect on 
soil respiration would be amplified with this deeper SOM, 
especially for the permafrost regions (Schuur et al. 2015). It 
can then be inferred that a decrease in soil mineral N avail-
ability may reduce the  CO2 fertilization effect on plants; 
and deeper SOM associated with additional soil layers 
might increase respiration compared to the CN models 
with SL schemes (Sokolov et al. 2008; Thornton et al. 2009; 
Zaehle et al. 2015), both of which would lead to decreasing 
estimations of future land C uptake. Future studies based 
on MEMIP can be implemented to explicitly quantify the 
potential consequences using various model schemes.

Difference between the SOM schemes was significantly 
amplified due to the ML structure for both spatial pattern 
and global mean, suggesting that the ML structure brings 
more complex interactions than simply adding deeper 
soils. For example, the ML structure caused different dis-
tributions of SOC to different depths, generating a con-
trasting response in permafrost areas and the rest of the 
land (Figs. 5 and 6). NFB showed a similar contribution as 
PC to the SOC difference in the SL and ML comparisons, 
indicating that the holistic response from the system may 
play an equal role as PC in the inter-model comparison. 
Meanwhile, the effect of NFB may buffer or expand the 
inter-model differences depending on the model struc-
ture and the corresponding parameterization (Fig. 7 and 
Additional file  1: Text S1), acting as a potential unpre-
dictable part in the inter-model comparisons. Without 
explicit comparison and quantification, its contribution 
can hardly be elucidated. With increasing feedbacks rep-
resented in land models, it also implies that comparisons 
only showing the relative change from one specific pro-
cess would miss more important systematic variations in 
real ensemble simulations and comparisons.

The CN coupling scheme, i.e., CLM-CN, used in this 
study offers insights into how CN coupling influences 
C storage, while further improvements in this process 
representation are necessary (Wieder et  al. 2019). The 

potential biases in N representation seem not change 
the importance of NFB found from this study, as simi-
lar global response patterns to increasing N and atmos-
pheric  CO2 were found in the CN coupling comparisons 
(Davies-Barnard et  al. 2020). However, the importance 
of N varies among models (Davies-Barnard et  al. 2020). 
Meanwhile, the CN coupling is one major nutrient feed-
back that has recently been incorporated in the land 
component of many ESMs. With further incorpora-
tions of other nutrient feedbacks, e.g., phosphorus, the 
actual ecosystem feedback to the ML structure should be 
stronger than the current prediction (Wieder et al. 2015).

Conclusions
Great efforts and resources have been invested to pre-
dict global C cycling using multiple models, but there is 
still wide variation in terrestrial C uptake across models. 
Compared to the ensemble outputs from CMIP5 and 
CMIP6, similar spreads were found in both land C uptake 
and feedback against climate change (Arora et al. 2020). 
Does this mean that incorporating new processes in 
ESMs does not improve the performance? To answer the 
question, we first suggest grouping and analyzing mod-
els based on major model advances. The bottom line is 
that the C centric land models include similar overarch-
ing biogeochemical processes, although representation 
of the processes can vary widely. In real applications, an 
improvement on a single process would fundamentally 
change the model projections (Wieder et al. 2013, 2015). 
Different models fit to the same observations, which then 
creates relatively good agreements on historical condi-
tions but greater divergence in future predictions (Luo 
et al. 2015b). Once grouping models together, it then cre-
ates a situation that is difficult to analyze and understand. 
As illustrated in this study, switching one single process 
can only explain the magnitude of model change from 
that, but the situation in the real ensemble is much more 
complex (Fig. 6). One possible solution is to learn, cluster, 
and analyze models at the process level. As shown by Luo 
et  al. (2016), the common baseline structural elements 
of land C cycling can be extracted from different mod-
els. Following the traceability framework, it is possible to 
explicitly separate and compare the common structural 
components and the unique elements in each model. The 
model differences can be traced back to its origin step by 
step as shown in this study.  Moreover, with new obser-
vations and tools emerge, models can then be compared 
and benchmarked more properly and efficiently (Basile 
et al. 2020; Han et al. 2019; Minasny et al. 2017; Shi et al. 
2020; Thum et al. 2020). Stemming from the model fun-
damental structure and properties, more meaningful and 
usable information can be obtained from the ensemble 
outputs.
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Our findings further suggest the important role of 
feedbacks, i.e., the interactions between different com-
ponents of an ecosystem, to contribute to the inter-
model differences. With increasing feedbacks being 
represented in land models, it would reflect more com-
plex trade-offs between biochemical and biophysical 
processes in nature, and potentially place extra empha-
sis on ensemble outputs. Given the current inclinations 
on process-based uncertainty analysis, the contribution 
of feedbacks is not yet well understood. Comprehensive 
analyses with full consideration of both feedback and 
process responses will pave the way to the holistic dis-
entangling of ensemble uncertainty in land C cycling.
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