
Abstract Global terrestrial vegetation dynamics have been rapidly altered by climate change. A widespread 
vegetation greenness over a large part of the planet from the 1980s to early this century has been reported, 
whereas weakening of CO2 fertilization effects and increasing climate extremes and the adverse impact of 
increasing rate of warming and severity of drought on vegetation growth were also reported. Earth system 
models project that the land carbon sink will decrease in size in response to an increase in warming during 
this century. How global vegetation is changing during this century in response to global warming and water 
availability across spatial and temporal scales remains uncertain. Our understanding of the widespread 
vegetation greening or browning processes and identifying the biogeochemical mechanisms remain incomplete. 
Here we use multiple long-term satellite leaf area index (LAI) records to investigate vegetation growth trends 
from 1982 to 2018. We find that the widespread increase of growing-season integrated LAI (greening) since 
1980s was reversed (p-value < 0.05) around the year 2000 over 90% of the global vegetated area, and continued 
in only 10% of the global vegetated area. The reversal of greening trend was largely explained by the inhibitive 
effects of excessive optimal temperature on photosynthesis in most of the tropics and low latitudes, and by 
increasing water limitation (increasing in atmospheric vapor pressure deficit and decreasing in soil water 
availability) in the northern high latitudes (>45°N). Overall, the reversal of greening trend since 2000 weakened 
the negative feedback of carbon sequestration on the climatic system and should be considered in the strategies 
for climate warming mitigation and adaptation. Our findings of the diversity of processes that drive browning 
across bioclimatic-zones and ecosystems and of how those driving processes are changing would enhance our 
ability to project global future vegetation change and its climatic and abiotic consequences.

Plain Language Summary A widespread vegetation greenness over a large part of the planet 
from the 1980s to early this century has been reported, whereas weakening of CO2 fertilization effects and 
increasing climate extremes and the adverse impact of increasing rate of warming and severity of drought on 
vegetation growth were also reported. We find that the widespread increase of growing-season integrated LAI 
(greening) since 1980s was reversed (p-value < 0.05) around year 2000 over 90% of the global vegetated area, 
and continued in only 10% of the global vegetated area. The reversal of greening trend was largely explained 
by the negative influence of excessive air temperature on photosynthesis of vegetation growth in most of the 
tropics and low latitudes, and by increasing in atmospheric vapor pressure deficit and decreasing in soil water 
availability in the northern high latitudes (>45°N). Our findings of the diversity of browning mechanisms 
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Key Points:
•  The widespread increase of vegetation 

greening trend since 1980s was 
reversed around the year 2000 over 
90% of the global vegetated area

•  The leveling off of global greenness 
arisen from recent exceeding optimal 
temperature and increasing water 
limitation for photosynthesis

•  Our findings of the diversity of 
browning mechanisms are useful for 
projecting global future vegetation 
change and its climatic consequences
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1. Introduction
Terrestrial vegetation plays a key role in the exchange of carbon, water, momentum and energy between the 
land and the atmosphere (Baldocchi et al., 2001; Bonan et al., 1992; Haberl et al., 2007; Law et al., 2002; Piao 
et al., 2020; Zhu et al., 2016), and has accounted for more than half of the global carbon sink since the 1960s, which 
substantially mitigated climate warming (Forzieri et al., 2017; Jung et al., 2017; Wang et al., 2020). Long-term 
temporal changes in leaf area index (LAI; leaf area per unit ground area), as a key indicator of vegetation growth 
that largely controls land-climate interactions and feedbacks (Forzieri et  al.,  2017), has elicited considerable 
interest from scientists and policymakers (Piao et  al.,  2020). Long-term changes in vegetation are driven by 
multiple interacting drivers including the atmospheric CO2 fertilization effects, nitrogen deposition and regional 
climate change (temperature, precipitation, radiation, and humidity) (Cox et al., 2000; Forzieri et al., 2017; Piao 
et  al.,  2020; Zhu et  al.,  2016). A persistent and widespread increase of growing season integrated LAI over 
25%–50% of the global vegetated area during the period 1982–2009 has been reported (Zhu et al., 2016), whereas 
other studies have reported a stalling or even a reversal of the greening trend since 2000 (Chen et al., 2014; de 
Jong et al., 2012; Feng et al., 2021; Piao et al., 2011; Tian et al., 2015). Tropical temperatures are reported to be 
close to the optimal photosynthetic temperature of trees (Corlett, 2011; Huang et al., 2019), and consequently 
rising tropical temperatures could limit vegetation growth. Meanwhile, warming has been found to facilitate 
increasing vegetation growth over the high latitudes instead of being a climatic constraint on growth (Lucht 
et  al.,  2002; Xu et  al.,  2013). In the northern hemisphere the response of vegetation growth to temperature 
exposure enhanced convergently with increasing temperature before plant functional type-dependent temperature 
thresholds were reached (Feng et al., 2021). CO2 fertilization was thought to be a major factor driving vegetation 
greening at the global scale (Piao et al., 2020; Zhu et al., 2016), while CO2 fertilization effects on vegetation 
photosynthesis has recently been reported to have declined across most terrestrial regions of the globe since 2001 
(Wang et al., 2020). More recently atmospheric vapor pressure deficit (VPD) was reported to have worldwide 
impacts on the interannual variability of terrestrial carbon uptake (Corlett, 2011). A full understanding of the 
long-term vegetation growth changes and their drivers over the last four decades across spatial scales and biomes 
is therefore still lacking (Jung et al., 2017; Piao et al., 2020).

Here, we investigate trends of LAI and their drivers for the longest, continuous data series of 1982–2018 based on 
an assemble of remotely sensed data sets (AVHRR, GIMMS LAI3g, and GLASS) using a commonly used best-fit 
trend breaks approach including three statistical analysis models (Chen et al., 2014) (a simple linear regression 
model, a breakpoint [BP] model and a turn-point [TP] model, see Section 2) to identify a reversal point (RP). We 
first analyze vegetation growing trends at both global and pixel scales using growing season integrated LAI. We 
use three statistical analysis models to detect the mechanism of vegetation dynamics from 1982 to 2018 and then 
apply the Akaike information criterion (AIC) method to choose the best fit model at each pixel across the globe 
(Chen et al., 2014). Only pixels with no or slight land-cover changes during the study period were included in our 
analyses (Figure S1 in Supporting Information S1).

2. Data and Methods
2.1. Leaf Area Index Data

The latest gridded daily LAI data used in this study were obtain from the NOAA Climate Data Record (CDR) 
of AVHRR LAI and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 5 (https://
data.noaa.gov/dataset/dataset/noaa-climate-data-record-cdr-of-avhrr-leaf-area-index-lai-and-fraction-of-ab-
sorbed-photosynthet), which was derived and maintained by the CDR program of NOAA Advanced Very 
High-Resolution Radiometer (AVHRR) Surface Reflectance onboard the NOAA 7, 9, 11, 14, 16, and 18 plat-
forms. These global LAI data were used to detect interannual variations of vegetation growth during 1982–2018. 
The Artificial Neuron Network (ANN) model was trained with nadir-adjusted surface reflectance to retrieve 
LAI, then using the BEnchmark Land Multisite ANalysis and Intercomparison of Products (BELMANIP-2) and 
DIRECT network sites to validate the quality of this product. The AVHRR LAI product has a spatial resolution 
of 0.05° and a daily temporal resolution spanned from 1981 to present. According to the attached QC data, we 

across bioclimatic-zones and ecosystems are useful for projecting global future vegetation change and its 
climatic and abiotic consequences.
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first excluded snow, water, cloud cover and other invalid pixels from our analysis and averaged daily LAI to 
monthly intervals. Then, neighboring pixels in spatial-temporal scales could linearly interpolate gaps to ensure 
enough gridded values in each year. Pixels with averaged LAI values during 1982–2018 less than 0.1 are treated 
as non-vegetated land and would not be included in further calculation following Fang et al. (2019). To reduce the 
uncertainties that may stem from one remote sensing data set, the other LAI products, the Global Land Surface 
Satellite (GLASS) and the Global Inventory Modeling and Mapping Studies (GIMMS), were also analyzed 
simultaneously. The GLASS LAI data set, with spatial resolutions of 0.05° and temporal resolutions of 8 days 
(http://www.glass.umd.edu/Download.html) was produced using MODIS and AVHRR land surface reflectance 
via Generalized Regression Neural Network (GRNNs) model, and the accuracy was evaluated by comparing with 
other LAI products such as MODIS and CYCLOPES, as well as field measurements. The GIMMS LAI data set, 
named LAI3g, was generated based on AVHRR GIMMS NDVI3g, MODIS LAI datasets using a Feed Forward 
Neural Network (FFNN) model with a composited temporal resolution of 15  days and a bi-cubic resampled 
spatial resolution of 1/12° (http://sites.bu.edu/cliveg/datacodes/). Evaluation of this product also utilized LAI 
products for other satellites and field measurements. Using the same way of processing AVHRR LAI, the two 
products can be composited to multi-year global LAI means (1982–2018 of GLASS, 1982–2016 of LAI3g). Due 
to the uncertainties in different LAI products, especially interannual trend fitting, the averaged value of the three 
products at a pixel level was calculated for overall analysis. The means for 2017 and 2018 were only produced by 
AVHRR and GLASS datasets because of the insufficient time series in LAI3g.

2.2. Climate and Soil Moisture Data Set

In order to explore drivers of global LAI trend changes, the global gridded daily maximum air temperature (𝐴𝐴 𝐴𝐴
max

air
 ), 

VPD and root zone soil wetness (RSW) were selected in this study. Specifically, 𝐴𝐴 𝐴𝐴
max

air
 , daily mean air temperature 

(𝐴𝐴 𝐴𝐴
mean

air
 ) and actual vapor pressure (VAP) at a spatial resolution of 0.5° from 1982 to 2018, were obtained from the 

Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month 
variation in climate (https://crudata.uea.ac.uk/cru/data/hrg/). The last two variables were utilized to calculate 
monthly VPD.

2.2.1. Air Temperature Data

The 𝐴𝐴 𝐴𝐴
max

air
 is calculated arithmetically by the gridded absolute values of 𝐴𝐴 𝐴𝐴

mean

air
 and diurnal 2-m temperature range 

(DTR) with the formula as 𝐴𝐴 𝐴𝐴
mean

air
  + 0.5* DTR, then averaging daily maximum air temperature rather than extract-

ing the maximum temperature in each month. For discussing the dominant influence of growing-season 𝐴𝐴 𝐴𝐴
max,gs

air
 on 

interannual trends of LAI referenced by ref (Huang et al., 2019), the monthly 𝐴𝐴 𝐴𝐴
max

air
 data set in each year, through 

temporally linear interpolation, were filled into 8-day intervals in the determined averaged 37-year growing 
season range at pixel scales to obtain ecosystem optimum temperature by combining with LAI data at 8-day 
intervals (Zhu et al., 2016).

Vapor Pressure Deficit Data Set

The monthly VPD data set was calculated using saturated vapor pressure (SVP) and VAP through the following 
model (Yuan et al., 2019): 

VPD = SVP − VAP (1)

SVP = 6.112 ×
(

1.0007 + 3.46 × 10
−6
𝑃𝑃mst

)

𝑒𝑒

17.67𝑇𝑇mean

𝑇𝑇mean+243.5 (2)

𝑃𝑃mst = 𝑃𝑃msl

(

𝑇𝑇mean + 273.16

𝑇𝑇mean + 273.16 + 0.0065 ×𝑍𝑍

)5.625

 (3)

where Z represents the altitude of each grid-point (m) (https://cds.climate.copernicus.eu/). Pmsl and Pmst are the 
standard air pressure (set as 1013.25 hPa) and air pressure, respectively. The VAP product is generated from 
station anomalies of 𝐴𝐴 𝐴𝐴

mean

air
 and DTR. All variables were obtained from CRU website.

2.2.2. Root Zone Soil Wetness Data Set

The monthly RSW data were obtained from Modern-Era Retrospective analysis for Research and Applications 
Version 2 (MERRA-2) with a spatial resolution of 0.5° × 0.625° from 1982 to 2018 (https://climatedataguide.
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ucar.edu/variables/land/soil-moisture) (Gelaro et al., 2017). Compared with surface soil moisture, the RSW is 
more closely related to water availability to plants. This data set represents the soil water content proportion 
below the land surface at a depth of 0.1–1.0 m, and was aggregated to a spatial resolution of 0.5° using a nearest 
neighbor method. Same as for 𝐴𝐴 𝐴𝐴

max

air
 , VPD and RSW were restricted to the growing season range, as well as inter-

polating to 8-day intervals by a linear method pixel by pixel.

2.3. Extraction of Unchanged Plant Areas

The GLASS-GLC product is used in this study to mask unchanged land cover (LC) to minimize the impact 
of LC change on LAI changing trends (https://doi.pangaea.de/10.1594/PANGAEA.913496). This product was 
generated by GLASS CDRs using the random forest classifier on the Google Earth Engine (GEE) platform with a 
spatial resolution of 5-km (Liang et al., 2013; Liu et al., 2020). The overall accuracy with global forest, cropland, 
grassland, shrubland, tundra, barren land and snow/ice is about 82.81%. Based on this data set, we selected pixels 
as unchanged land when the frequency of land cover change is lower than 3 years from 1982 to 2018 after elim-
inating snow/ice and water pixels. Due to the GLASS-GLC product lacking detailed sub-classification of forest, 
the synGLC product (Xu et al., 2014) with a spatial resolution of 8-km (https://synglc.xuguang.info/#Intro), inte-
grated information from five land cover products such as MCD12Q1 and GLC2000, was employed to fit the five 
forest types, including evergreen broad-leaf forest (EBF), deciduous broadleaved forest (DBF), evergreen needle 
leaved forest (ENF), deciduous needle leaved forest (DNF) and mixed forest (MF), into corresponding unchanged 
pixels of the GLASS-GLC product. We then produced the unchanged plant area data set with nine classes. If 
pixels did not match forest types for the two products, we chose GLASS-GLC classes data. Only pixels classified 
as forest in GLASS-GLC and any types of forest in synGLC can be transformed and replaced.

2.4. Extraction of Growing Season Phenology

The study focuses on the LAI in growing season and it was extracted following researches (Zhu et al., 2016). 
Considering the missing daily values of AVHRR LAI products, to reduce the uncertainty of plant growing season 
extraction, we first interpolated the 8-day GLASS LAI data linearly to daily intervals, then the Savitzky-Golay 
filter was utilized to do data smoothing. From the beginning of each year, the start date of growing season was 
determined when the value of LAI reaches the 15% of overall amplitude and exceeds 0.1 m 2 m −2. The end time 
of growing season was determined when LAI fulfills the conditions of 15% of overall amplitude and exceeds 
0.1 m 2 m −2, with this time should be after the date corresponding to the maximum (see Figure S18 in Support-
ing Information S1 as an example). Eventually, the growing season length for every year can be defined as the 
span between the start and end dates, while the 37-year average was regarded as overall growing season length. 
Because of the lag of the growing season in the southern hemisphere, the yearly calculation was based on 2-year 
LAI datasets and the range was restricted in 365 days, particularly the start and end dates for EBF were simply 
set as 1 and 365, respectively. Finally, the start and end dates of growing season during 1982–2018 were derived 
from the global gridded LAI data set (Figure S19 in Supporting Information S1).

2.5. LAI Trend Detection

To better detect whether the plant growing trend has changed, three statistical analysis models (Chen et al., 2014), 
including a simple linear regression model, a BP model and a turning-point model, were used in this study to 
depict changing characteristics of vegetation growth from 1982 to 2018 following ref. Chen et al. (2014). The 
AIC (Akaike, 1974) was used to measure the goodness of the three statistical fitting models. Decided by resid-
ual sum of squares, number of data and parameters of the model, a smaller AIC means a better fitting, and the 
detailed description of the use of AIC can be found in ref. Chen et al. (2014).

The fitting parameters obtained from the three models, after selecting using significance and R 2, could calculate 
the respective AIC values. The AIC value is used to determine which of these three models preferentially fit the 
time series of LAI data whether either the BP or TP is significant.
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2.6. Estimation of Ecosystem Optimum Temperature for Photosynthesis (  )

Air temperature, by affecting the enzyme activity and leaf surface stoma, directly controls plant photosynthesis. 
It has been reported that photosynthetic capacity increases with temperature up to an optimum temperature with 
a typical range of 30°C–40°C, and the optimum temperature for leaf-scale photosynthesis (𝐴𝐴 𝐴𝐴

leaf

opt
 ) varies with plant 

species, climates, soil nutrients (Kattge & Knorr, 2007). The optimum air temperature for ecosystem-level gross 
primary productivity (𝐴𝐴 𝐴𝐴

eco

opt
 ) differs from 𝐴𝐴 𝐴𝐴

leaf

opt
 and is important for improving the representation of ecosystem-scale 

photosynthesis (Field et al., 1995; Huang et al., 2019; Liu, 2020). To analyze the relationship between air temper-
ature and global long-term changes in LAI, we first estimated local 𝐴𝐴 𝐴𝐴

eco

opt
 by examining the temperature response 

curve of AVHRR LAI. We chose the higher LAI with the corresponding 𝐴𝐴 𝐴𝐴
max

air
 in a narrow growing season instead 

of the whole length of the growing season range to analyze if the air temperature with the best plant growth 
exceeds the optimum temperature, also minimizing the uncertainties generated by the extraction process through 
eliminating the values of the first and the last months regarded as extracted boundaries. The values of LAI 
out of the shortened growing season and 𝐴𝐴 𝐴𝐴

max

air
  < °C were deleted based on plant physiology. Following Huang 

et al.  (2019), growing season LAI time series throughout the entire monitoring period and the corresponding 
temperature data were grouped into 0.5°C temperature bins for each vegetated pixel. In each pixel, we created 
different 𝐴𝐴 𝐴𝐴

max

air
 bins and put relevant LAI values into them according to the step size of 0.5°C confined by maxi-

mum and minimum, with gradually increasing of 𝐴𝐴 𝐴𝐴
max

air
 . The 85th percentile LAI was chosen as representative in 

each temperature bin to minimize the uncertainty of the impact of environmental factors. We then calculated the 
running means of every three temperature bins to develop the temperature response curve of LAI. Eventually, the 

𝐴𝐴 𝐴𝐴
eco

opt
 was determined from the response curve at which LAI was maximized for a specific vegetation pixel (Figure 

S20 in Supporting Information S1). Note that 𝐴𝐴 𝐴𝐴
eco

opt
 may not be detected for some pixels where the maximum LAI 

was only attained at either end of the response curve, accounting for 2.3% of the vegetated areas. The failed pixel 
number using 85th percentile as a threshold is lower than using 90th percentile by Huang et al. (2019) (2.3% 
vs. 3.5% of the vegetated areas globally). Following Huang et al. (2019), we also applied nonlinear regression 
analysis of daily LAI against daily maximum air temperature 𝐴𝐴 (𝑇𝑇

max

air
 ) to estimate 𝐴𝐴 𝐴𝐴

eco

opt
 for each PFTs pixel by pixel, 

which produced similar results.

2.7. The Main Environmental Factors Controlling LAI Trend Changes

To interpretate the existence RPs of LAI at high latitudes where plant growth has not been suppressed by 
𝐴𝐴 temperature, we estimated the contributions of the environmental factors, 𝐴𝐴 𝐴𝐴

max,gs

air
 , VPD and root-zone soil wetness 

(RSW), to LAI trend changes using a multiple linear regression modeling approach (Figure 4, Figures S12–S16 
in Supporting Information S1). This approach was used to partition the contributions of 𝐴𝐴 𝐴𝐴

max

air
 , VPD and RSW to 

LAI trend changes during 1982–2018 as in the following equations (He et al., 2019):

LAI = 𝑎𝑎1𝑇𝑇
max,gs

air
+ 𝑎𝑎2VPD + 𝑎𝑎3RSW + 𝜀𝜀 (4)

𝑘𝑘𝑥𝑥 =
𝑑𝑑 (𝑎𝑎𝑖𝑖 × 𝑥𝑥)

d𝑡𝑡
𝑥𝑥 ∈

{

𝑇𝑇
max,gs

air
, VPD, RSW

}

; 𝑖𝑖 ∈ {1, 2, 3} (5)

where a1, a2, and a3 represent the sensitivity of LAI change to 𝐴𝐴 𝐴𝐴
max,gs

air
 , VPD and RSW. The product, 𝐴𝐴 𝐴𝐴𝑖𝑖 × 𝑥𝑥 , can 

be considered to be the contribution of variable x to LAI, so 𝐴𝐴 𝐴𝐴𝑥𝑥 in Equation 5, expressed as the change of this 
product with time, represents the contribution of variable x to LAI trend change. Air temperature, atmospheric 
VPD and soil water availability usually co-vary in time and space, so partial regression coefficient in multiple 
linear regression model (Equation 4) could be mis-interpreted. We calculated the variance inflation factor (VIF),

VIF𝑖𝑖 = 1 −
(

1 −𝑅𝑅
2

𝑖𝑖

)

 (6)

where 𝐴𝐴 𝐴𝐴 is one of these three variables (𝐴𝐴 𝐴𝐴
max,gs

air
 , VPD, and RSW), and 𝐴𝐴 VIF𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖 are VIF and correlation coef-

ficient of 𝐴𝐴 𝐴𝐴 against other two variables. As shown in Figure S21 in Supporting Information S1, we observed the 
pixels with the VIF values of the three variables less than the threshold of 5 over the global for the period before 
and after the RPs account for 81% and 71%, respectively. Generally, five is used as the threshold: if VIF <5 
indicates that there is no collinearity problem (Akinwande et al., 2015). Our analysis suggests multicollinearity 
of three factors is relatively low.
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3. Results
3.1. Recent Global Break-Off and Decline of Greenness

Widespread break-off and decline of vegetation greenness were consistently revealed by a trend breaks analy-
sis approach from the three long-term satellite LAI data sets (Figures 1a–1d). The ensemble mean of the three 
data sets shows that for more than 91.60% of global vegetated area there exists a RP (either BP: 56.5 ± 1.45%, 
or TP: 34.1 ± 2.09%) during the past four decades (Figure 1e), which mainly occurred during 1998–2005 with 
an ensemble mean occurrence year of BP of 2001 and TP of 2000 (Figures S2b, S3b, and S4b in Support-
ing Information  S1). The LAI3g LAI data show the most extensive statistically significant existing RP data 
(Mann–Kendall test, p < 0.01 [0.05]) covering over 65.5% (51.0%) of vegetated lands, followed by AVHRR LAI 
(58.7% [45.0%]) and GLASS LAI (53.6% [40.3%]) (Figure 1e). All three LAI data sets also consistently show 
a gradually increasing LAI trend (best fit linear model, greening) over less than 9.4% of global vegetated land 
(Figure 1e). Overall, the BP model detected RPs predominantly across the globe, while the TP model detected 
RPs mainly in the northern Eurasia, central Africa and southern north America (Figures S2–S4 in Supporting 
Information S1). The global ensemble median trends in the growing season LAI before BP and TP were 0.0942 
(95% CI (confident interval): 0.0936–0.0947) and 0.1007 (95% CI: 0.1000–0.10134) m 2 m −2 decadel −1, while 
after the RPs of the BP and TP models were −0.0053 (95% CI: −0.0044 to −0.0061) and −0.0559 (95% CI: 
−0.0576 to −0.0542) m 2 m −2 decadel −1, respectively (t-test, trends before and after BP are significant different, 
p < 0.1, Figures 1f and 1g, Figures 2a and 2b, Figures S5a and S5b, and Figures S6a and S6b In Supporting 
Information S1).

We next calculated the time series of trends in the growing season LAI with 15-year moving windows during 
1982–2018 (Figure 1h). We found that the global mean trends significantly increased from 1982 to 2003 and 
then decreased to 2011 and then stalled to date based on the AVHRR and GLASS data sets; and the GIMMS 
LAI3g shows that the trends kept on decreasing from 1982 to 2010 at a rate of −0.016 m 2 m −2 decadel −2, and 
then stalling to 2018.

As shown in Figure 2 and a Figures S5–S6 in Supporting Information S1, the three data sets consistently show 
positive and negative values over a large proportion of the global vegetated land during the periods before 
and after the RPs, respectively. Before the RPs, the pronounced growth spread over most of six continents, 
especially over the mid-low latitudes such as south Asia and north Africa primarily controlled by the BP 
model. Whereas vegetation browning (i.e., LAI decreasing) remarkably occupied western North America and 
Amazon regions. It was reported that the inferior data quality caused by cloudy over Amazon may cause a 
great deal of trend uncertainty and affect the fitting results between different LAI products (Chen et al., 2019; 
Forzieri et al., 2017). The global ensemble median trends in the growing season LAI before the RPs estimated 
from the three data sets are 5.91 ± 3.34% decadel −1 (0.090 ± 0.241 m 2 m −2 decadel −1), with 6.16 ± 3.85% 
(0.094 ± 0.235) and 6.58 ± 4.18% (0.100 ± 0.275) of BP and TP, respectively. After the RPs, however, LAI 
decreased over most of vegetation land in the world with global ensemble mean trends values estimated from 
the three data sets of 0.051 ± 0.915% decadel −1 (0.008 ± 0.371 m 2 m −2 decadel −1), with 0.344 ± 0.357% 
decadel −1 (0.005  ±  0.042  m 2  m −2 decadel −1) and −3.655  ±  0.484% decadel −1 (−0.056  ±  0.025  m 2  m −2 
decadel −1) of BP and TP, respectively. The LAI changing speed appeared to slow down slightly compared to 
the first segment (before RPs). Whereas, vegetation greening occurred in China, west of Europe, southeast of 
North and part of south America (Figure 2 and Figures S5 and S6 in Supporting Information S1). A strikingly 
greening pattern prominent in China and India was attributed mainly to national programs to conserve and 
expand forests of China and multiple cropping facilitated by fertilizer use for both of China and India (Chen 
et al., 2019). The exceptional greenness was mainly driven by Human land use and browning was dominated 
by climate change.

Comparatively, the trends kept relatively stable after the RPs obtained using the TP model with all slopes less 
than or near 0, and the trends after the RPs obtained using the BP model dramatically varied across different 
latitudes, indicating conspicuous regional heterogeneity of vegetation growth dynamics. There were abrupt tran-
sitions over the lower latitudes, in the northern hemisphere and the equatorial regions.

The three data sets also consistently show that the global averaged vegetation trends before RPs for all plant 
functional types (PFTs) were significantly higher than those after RPs and most of PFTs showed negative median 
values of linear trends after RPs (Figure 2c, Figures S5c and S6c; Tables S1 and S2 in Supporting Informa-
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tion S1). We further simply compared the 5-year interval's averages of growing season LAI at pixel levels with the 
reference period's value of LAI for 1998–2005 when RPs mainly occurred. The three data sets also consistently 
show that LAI increased before RPs while decreased after RPs for most of the global vegetated area (Figures 
S7–S9 in Supporting Information S1).

Figure 1. Break-off and decline of global greenness from around 2001. (a–d) Interannual changes and trends in global mean 
growing season integrated leaf area index (LAI) of the three remote sensing data sets (a, AVHRR, b, GIMMS3g, c, GLASS, 
and d, the ensemble averages of these three data sets) for the period 1982–2018. In a, the green shaded area shows the 
intensity of the EI Niño–Southern Oscillation (ENSO) as defined by the multivariate ENSO index. The gray lines label the 
sensor changing time of the AVHRR satellite series. Two volcanic eruptions (El Chichón eruption and Pinatubo eruption) are 
indicated by pink lines. (e) The histograms show the percentage of pixels with the best fitting model among the three models 
(linear, breakpoint and turn-point models) over the global vegetation pixels (left) and pixels only with statistically significant 
levels at p < 0.1 (right); the horizontal black lines in each of the columns on the right indicate significant levels at p < 0.05. A 
standard Akaike information criterion (AIC) was used to choose the optimal fitting model (see Section 2). S1 and S2 indicate 
the statistical results for the periods before and after the reversal points (RPs), respectively. (f) (left) Probability density 
function of growing season LAI trends (slopes) before (solid line) and after (dashed line) the RPs derived from the three LAI 
data sets. (right) Boxes represent the interquartile ranges of the trend values (solid lines represent medians), and whiskers 
extend to one time the interquartile range. Median trend values for the two periods before (green) and after (yellow) the RPs 
and their s.d. are shown in Tables S1 and S2 in Supporting Information S1. The asterisk indicates a significantly different 
trend between the two periods, on the basis of a two-sample Kolmogorov-Smirnov test at p < 0.01. (g) Same as (f) but for the 
ensemble average of these three data sets. (h) Temporal dynamics of trends for the three LAI data sets with 15-year moving 
windows during 1982–2018. The gray area indicates 1 SD on either side on the mean (n = 485,673).
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4. Discussion
Photosynthetic capacity increases with temperature up to an optimum temperature (𝐴𝐴 𝐴𝐴opt ) at both leaf (Kattge & 
Knorr, 2007; Lloyd & Farquhar, 2008) and ecosystem (Huang et al., 2019; Liu, 2020) scales. Above 𝐴𝐴 𝐴𝐴opt , photo-
synthetic capacity sharply declines as electron-transport and Rubisco enzymatic capacities become impaired 
(Huang et al., 2019), stomatal closure in leaves increases (Williams et al., 2013) and partial hydraulic failure 
occurs owing to warming-induced water stress (Tyree & Dixon, 1986). The ecosystem-level optimum tempera-
ture of photosynthesis (𝐴𝐴 𝐴𝐴

eco

opt
 ) is latitude- and PFTs-dependent, with higher values at lower latitudes than in colder 

Figure 2. Trends in observed growing season integrated leaf area index (LAI) before (a) and after (b) the reversal points 
derived from the AVHRR LAI data set. The right panels in (a) and (b) show the latitude's averages of trends calculated by 
the breakpoint (BP) and turn-point (TP) models. The Mann-Kendall test was used to estimate the trends at pixel levels, and 
the regions with black dots indicate significant trends (p < 0.1) with pixel size of 0.05°. (c), Boxes represent the interquartile 
ranges of the global averaged vegetation trends for particular plant functional types (solid lines represent medians), and 
whiskers extend to one times the interquartile range. The left and the right panels are for the BP and TP models, respectively. 
The green and yellow boxes are the trends (slopes) before and after reversal points, respectively. ENF: Evergreen needle-leaf 
forest; EBF: evergreen broad-leaf forest; DNF: deciduous needle leaf forest; DBF: deciduous broad-leaved forest; MF: mixed 
forest; Grass-TP: grass land in Tibetan Plateau.
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regions, and air temperature of the growing season has recently been approaching to 𝐴𝐴 𝐴𝐴
eco

opt
 (Huang et al., 2019). 

Experimental evidence of the saturation of CO2 fertilization effect on vegetation photosynthesis, together with 
a global decline of CO2 fertilization effects on vegetation photosynthesis from this century (Wang et al., 2020), 
suggest a limited buffering capacity of the Earth greening under climatic warming (Feng et al., 2021; Huang 
et al., 2019). Viewed at the global scale (Figure 3, Figure S10 in Supporting Information S1), our study demon-
strates the daily maximum air temperature in growing season 𝐴𝐴 (𝑇𝑇

max

air
 ) sustained the increase from global average 

of 23.06°C in 1982 to 24.09°C in 2018, which has not yet exceeded global average 𝐴𝐴 𝐴𝐴
eco

opt
 of 24.67°C, but in 

warmer regions (𝐴𝐴 𝐴𝐴
max,gs

air
> 25

◦
C ), 𝐴𝐴 𝐴𝐴

max,gs

air
 has been very approaching to or higher than 𝐴𝐴 𝐴𝐴

eco

opt
 since the start of 

this century (Figure S10 in Supporting Information S1). We found that the pixels with 𝐴𝐴 𝐴𝐴
max,gs

air
 exceeding 𝐴𝐴 𝐴𝐴

eco

opt
 

are mostly located at lower latitudes (45°N ∼ 30°S), such as central Africa, south North America, north South 
America, and south Asia, accounting for 41.1% of the global vegetated area (=26.9 million km 2), where the 
air temperature restricted LAI growth after the RPs (Figure 3, Figure S10, Tables S1 and S2 in Supporting 
Information S1).

The restriction of vegetation growth due to increasing growing season air temperature is PFTs dependent as well. 
As shown in Figure S11 and Table S3 in Supporting Information S1, the reversals of vegetation greening by air 
temperature restriction were found in evergreen EBF in NH1 (20°S–0°S) and NH2 (20°N–50°N), crop land in 
NH1 and NH2, grass land in NH1 and SH1 (20°S–0°S), Shrub land in SH1 and SH2 (50°S–20°S) and matched 
the occurrence years of RPs.

Our study demonstrates that global warming caused 𝐴𝐴 𝐴𝐴
max,gs

air
 to exceed 𝐴𝐴 𝐴𝐴

eco

opt
 at lower latitudes (45°N ∼ 30°S) and 

the reversal of global greening to browning can be explained by the sustained global warming: growth would 
be reduced when 𝐴𝐴 𝐴𝐴

max,gs

air
 surpasses 𝐴𝐴 𝐴𝐴

eco

opt
 at the RPs. Note that increased air temperature may stimulate the growth 

of PFTs with higher leaf-level optimum temperature (Huang et al., 2019), leading to expansion of those PFTs. 
Consequently, the grid level optimum temperature could also become higher. Significant PFT fraction changes 
were observed during the study period and ecosystem optimum temperature is defined on a coarse grid (0.05°) 
level, therefor, the PFT fraction change would bring uncertainty into our results.

Whereas in colder regions, that is, near the poles and at higher latitudes of the northern hemisphere 
(>50°N), 𝐴𝐴 𝐴𝐴

max,gs

air
 is still lower than 𝐴𝐴 𝐴𝐴

eco

opt
 , suggesting that air temperature still exerts a positive influence on 

photosynthesis. To explain the existence of the reversal of greening-to-browning trends in these regions, we 
further analyzed contributions of the three key environmental variables (i.e., air temperature, VPD and root 
zone soil water content [RSW]) (see Section 2) to trend changes in growing season LAI during the period 
1982–2018.

We further found that 𝐴𝐴 𝐴𝐴
max,gs

air
 significantly increased globally, VPD increased with weak changes at higher 

 latitudes (>45°N), and RSW changed variably with obvious decreases at lower latitudes (10° N–30°S) (Figure 

Figure 3. Comparison of growing season mean daily maximum air temperature (𝐴𝐴 𝐴𝐴
max,gs

air
 ) and ecosystem optimum 

temperature for photosynthesis (𝐴𝐴 𝐴𝐴
eco

opt
 ). (a) Global spatial distribution of the difference between multi-year average of 

𝐴𝐴 𝐴𝐴
max,gs

air
 for the years after occurrence of reversal points (RPs) and 𝐴𝐴 𝐴𝐴

eco

opt
 . b, Latitudinal averages of annual 𝐴𝐴 𝐴𝐴

max,gs

air
 from 1982 

to 2018 (gradient ramp), of multi-year average of 𝐴𝐴 𝐴𝐴
max,gs

air
 after RPs (𝐴𝐴 𝐴𝐴

af terRP

air
 , gray line), of 𝐴𝐴 𝐴𝐴

eco

opt
 (black line). The latitudinal 

differences 𝐴𝐴 (𝑇𝑇
dif f

air
) between the multi-year average of 𝐴𝐴 𝐴𝐴

max,gs

air
 for the years after RPs (𝐴𝐴 𝐴𝐴

af terRP

air
 ) and 𝐴𝐴 𝐴𝐴

eco

opt
 are shown in blue 

hollow bars, where 𝐴𝐴 𝐴𝐴
dif f

air
= 𝐴𝐴

af terRP

air
− 𝐴𝐴

eco

opt
 . The global distributions of 𝐴𝐴 𝐴𝐴

eco

opt
 and 𝐴𝐴 𝐴𝐴

af terRP

air
 are shown in Figure S10 in Supporting 

Information S1.
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S12–S14 in Supporting Information S1). LAI is sensitive to all the three environmental factors, on a global scale, 
and the sensitivity order of the three factors is 𝐴𝐴 𝐴𝐴

max,gs

air
  > RSW > VPD (before/after RPs: 0.483/0.469, 0.201/0.144, 

−0.270/−0.078 LAI m 2 m −2 year −1, respectively, Figure S15 in Supporting Information S1). Air temperature 
maintains a positive effect on increasing LAI at high latitudes of the northern hemisphere because 𝐴𝐴 𝐴𝐴

max,gs

air
  < 𝐴𝐴 𝐴𝐴

eco

opt
 . 

LAI shows a negative correlation with VPD worldwide, with a stronger correlation in grass land in central Asia, 
northern Africa, and southern North America. Positive correlations between LAI and RSW were detected world-
wide and negative correlations only in Saharan grassland region.

The trend fitting results show that the three environmental factors (𝐴𝐴 𝐴𝐴
max,gs

air
 , VPD and RSW) themselves also have 

significant RPs worldwide with global averaged occurrences of 1999, 2000, and 2000, respectively (Figures 
S12–S14 in Supporting Information  S1). It is interesting that RP occurrence years of environmental factors 
match that of LAI well (Figure 4). The pixels with matched RPs between RSW and LAI account for 38% of the 
global vegetated land, the highest proportion among the three factors, mainly located at high latitudes of Eurasia 
(>45°N) (Figures 4a and 4b).

Figure 4. Comparison of the occurrence years of the reversal points (RPs) and trends of leaf area index (LAI) with 
that of environmental variables. The environmental variables include mean daily maximum air temperature in growing 
season (𝐴𝐴 𝐴𝐴

max,gs

air
 ), vapor pressure deficit (VPD) and root zone water content (RSW). (a) Matching levels of the occurrence 

years of RPs. The selection criteria for matching level at each pixel is the occurrence years of RPs within 5 years, as 
𝐴𝐴

[

RP
year

LAI
− 5, RP

year

LAI
+ 5

]

 . Different color bars show matching levels for a single environmental variable or combination of 
variables, for example, the gray pixels with the label of (T + VPD + RSW) represent that the RPs of all the three variables 
matching LAI RPs. (b) The percentages of seven categories (classified in a) in six latitude regions. The best contributors (c, 
e positive; d, f negative) to LAI fitting trends before (c, d) and after (e), (f) RPs among the three environmental factors. The 
calculation methods for contributions of the three factors to LAI can be found in Section 2. The black dots in (c–f) indicate 
the Mann–Kendall test with p < 0.1.
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LAI in the arid areas of central and western Kazakhstan and southern Mongolia, and in southeastern China grad-
ually decreased after the RPs, mainly caused by RSW decreasing and VPD increasing (Figures 4c–4d, Figures 
S15 and S16 in Supporting Information S1). Considering the decreasing trend of rainfall in southern China, the 
continuing increase of LAI may be due to human management and accompanied by continually increasing air 
temperature (Chen et al., 2019; Feng et al., 2021). The greening in southern India is mainly caused by the increase 
of rainfall and RSW; whereas LAI has continued to increase in northern India although both rainfall and RSW 
are decreasing, which may be attributed to agricultural management (Chen et al., 2019). A large-scale reduction 
in rainfall in North America around the occurrences of the LAI RPs, directly led to an increase in VPD and 
a decrease in RSW (Figures S17e–S17h in Supporting Information S1), offsetting enhancement of increasing 
temperature on LAI, as a result, the RP occurred, and vegetation is browning after RP (Figure 2a). In most parts 
of South America and Africa, VPD has gradually increased and RSW gradually decreased, leading to a decrease 
in LAI after the RPs (Figure 2a, Figures S17g–S17h in Supporting Information S1).

In summary, the reversal of vegetation greening to browning from this century at lower latitudes (45°N ∼ 30°S) 
can be explained by increasing 𝐴𝐴 𝐴𝐴

max,gs

air
 exceeding 𝐴𝐴 𝐴𝐴

eco

opt
 (Figure 3), while for most of rest of the world, it is caused 

by the combination of increasing VPD and decreasing RSW (Figure 4).
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GIMMS LAI3g LAI data set, and the GLASS LAI data set, and are respectively available at https://data.noaa.gov/
dataset/dataset/noaa-climate-data-record-cdr-of-avhrr-leaf-area-index-lai-and-fraction-of-absorbed-photosyn-
thet, http://sites.bu.edu/cliveg/datacodes/, and http://www.glass.umd.edu/Download.html. The climate data set 
(maximum and mean daily air temperature, vapor pressure deficit, actual vapor pressure) were acquired from the 
Climatic Research Unit (CRU), which are available at https://crudata.uea.ac.uk/cru/data/hrg/. The monthly RSW 
data were obtained from Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) 
with a spatial resolution of 0.5° × 0.625° from 1982 to 2018, which are available at https://climatedataguide.ucar.
edu/variables/land/soil-moisture. The land cover data set of GLASS-GLC product was obtained from the GLASS 
Climate Data Records (CDRs), which are available at https://doi.pangaea.de/10.1594/PANGAEA.913496. All 
the data and results developed in this study can be requested from corresponding author (baozhang.chen@igsnrr.
ac.cn). The primary code is available at https://github.com/EFPaper2022EF002788code/LAIcode.git.
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