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Abstract: Plant secondary succession is a very effective approach for the rejuvenation of degraded
ecosystems. In order to comprehend alterations and driving mechanisms of soil bacterial communities
under secondary succession of old-field and reveal their subsequent impacts on the decomposition
and accumulation of soil organic carbon (SOC) and nitrogen (SON), we investigated changes in
soil bacterial communities following ~160 years of old-field succession on the Loess Plateau of
China through analyses of quantitative polymerase chain reaction (qPCR) and Illumina MiSeq DNA
sequencing of 16S rRNA genes. Our results revealed that subsequent to secondary succession of
old-field, soil bacterial abundance progressively increased, while bacterial richness and diversity
significantly decreased. Principal component analysis and Bray–Curtis similarity index showed that
bacterial community composition gradually shifted following old-field succession. Specifically, the
relative abundances of Proteobacteria, Rokubacteria, and Verrucomicrobia progressively increased, while
Actinobacteria and Firmicutes slightly decreased following old-field succession. The most enriched of
Proteobacteria (e.g., Rhizobiales, Xanthobacteraceae, Gammaproteobacteria, Bradyrhizobium, Rhizobiaceae,
and Mesorhizobiur) were found in a climax forest, while Chloroflexi and Gemmatimonadetes had the
lowest relative abundances. Further, the most enriched members of Actinobacteria, including Geoder-
matophilaceae, Frankiales, Blastococcus, Micrococcales, Micrococcacea, Propionibacteriales, Nocardioidaceae,
Nocardioide, and Streptomycetaceae, were exhibited in the farmland stage. Our results suggested that
secondary succession of old-field greatly modified soil bacterial communities via the transformation
of soil nutrients levels, altering plant biomass and soil physiochemical properties. Soil bacterial
community composition was transformed from oligotrophic groups to copiotrophic Proteobacteria
following old-field succession, which may promote SOC and SON accumulation through increasing
the utilization of labile organic carbon (C) and nitrogen (N), while decreasing decomposition of
recalcitrant organic C and N from the early- to late-successional stages.

Keywords: 16S rRNA gene; Loess Plateau; bacterial community composition; bacterial diversity; soil
nutrient substrates; vegetation restoration

1. Introduction

The abandonment of farmlands is a global issue that has been influencing all parts
of the world for decades [1,2]. Campbell et al. (2008) reported that the total abandoned
farmlands (i.e., old-field) area ranges between 3.85 and 4.72 million km2 [1,3]. Old-fields
are important sites for plant secondary succession [4]. Secondary succession of old-field
without further anthropogenic interference is an effective strategy that has positive im-
pacts on the restoration of degraded ecosystems [5], through the enhancement of net
primary productivity and recuperation of soil nutrients [6], decreased soil erodibility [7],
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and reestablishment of associated ecosystem services [8]. During the process of secondary
succession, the composition of plant species, species richness, and plant coverage can be
profoundly modified [9,10]. Further, these changes drive alterations in soil physicochemical
properties, biogeochemical cycling (e.g., carbon (C), nitrogen (N)) [6,11], and soil microbial
characteristics [9,11]. Secondary succession of old-field essentially involves interactions
between aboveground vegetation communities and belowground soil microbes [12]. Soil
microbes are essential to maintain the stability of belowground ecosystem structure and
function [13]. Bacteria comprise over 90% of all soil microbial communities [14] and are
well-acknowledged as the most enriched and diverse groups in microbes [15]. Soil bacteria
are considered as important driving forces in the regulation of C and N biogeochemi-
cal cycling, and the decomposition of litter and soil organic matter (SOM) in terrestrial
ecosystems [15,16], as they secrete various extracellular enzymes to decompose litter and
organic matter (OM), as well as to convert organic debris into smaller soluble molecules for
microbial assimilation [17]. Additionally, soil bacteria actively participate in the formation
and transformation of humus [18], promoting edaphic conditions as well as plant establish-
ment after land-use changes [19,20]. Hence, a comprehensive assessment of the variations
in soil bacterial communities following old-field succession is helpful toward revealing the
mechanisms that drive belowground biogeochemical cycling during old-field succession.
Further, it is helpful for detecting the soil quality restoration status and providing useful
information for the sustainable restoration of degraded ecosystems.

The responses of soil bacterial communities to old-field succession have attracted
increased attention [9–11]. Previous studies reported that secondary succession of old-
field progressively enhanced the bacterial richness and diversity of soil over ~30 years of
spontaneous succession in abandoned farmland [21]. In contrast, several studies revealed
that secondary succession of old-field resulted in the decreased diversity of soil bacte-
ria [22,23]. For instance, Wang et al. (2021) revealed that bacterial diversity was greatest
in farmland, which continuously declined along with ~40 years of secondary succession
in a karst area [23]. Zhong et al. (2020) documented that although the diversity and even-
ness of vegetation communities were enhanced, soil bacterial diversity initially increased,
reaching a maximum at 30 years, which then decreased following ~50 years of secondary
succession [22]. These inconsistent results might be attributed to variations in the duration
of secondary succession, vegetation types, heterogeneity of ecosystems, previous land
use histories, and soil microclimates [24]. Thus, an identification of the alterations and
driving mechanisms of soil bacterial communities following long-term old-field succession
is urgently required.

Soil bacterial communities are dynamic integrations of various driving forces, in-
cluding biotic (e.g., vegetation type and diversity, plant litter, and root exudates) [25,26]
and abiotic factors, such as soil nutrient substrates [27,28], soil moisture [29,30], pH [31],
and climate [32]. Shifts in plant compositions, diversity, and canopy density can modify
abiotic soil properties (e.g., moisture, pH, nutrient substrates levels) through changing
quantity and quality of plant residues that enter soil, which eventually impact on abun-
dance, diversity, and community composition for soil bacterial communities [19,23,33].
Soil nutrient substrates have been confirmed to be the vital driving factor for soil bacterial
communities as they are dependent on the decomposition of nutrient substrates to obtain
energy [27,28]. However, responses of distinct taxa of bacterial communities to nutrient
availability are diverse [34]. For instance, Actinobacteria, Chloroflexi, Gemmatimonadetes, and
Cyanobacteria flourish in nutrient-deprived environments, preferring to use recalcitrant C
substrates [35,36]. Conversely, Proteobacteria thrive in nutrient-rich environments with suffi-
cient labile C substrates [37,38]. Additionally, soil moisture is a vital factor that mediates
bacterial abundance, structure through affecting physiological activities of bacteria, and
the availability and transport of oxygen and nutrients [29,39]. Soil pH is of paramount
importance for driving soil bacterial community [2,31,40], owing to different soil pH levels
that affect the adaptation and selection of particular bacterial community taxa. Identifying
the factors which drive changes in soil bacterial abundance, diversity, and community



Forests 2022, 13, 1628 3 of 22

composition following secondary succession in degraded ecosystems can be instrumen-
tal toward a comprehensive understanding of the influencing mechanisms of old-field
succession on soil bacterial communities.

The Loess Plateau of China (LPC) inhabits the middle and upper reaches of the
Yellow River with an area of 624,000 km2 and has been considered as one of the most
ecologically fragile areas in the world, due to severe soil erosion and frequent anthropogenic
disturbances [41]. In an attempt to recover these fragile ecosystems, a variety of restoration
strategies have been implemented since the 1950s. The most important endeavor was the
implementation of the largest ecological engineering “Grain for Green” program in China
in 1999 [41,42], which involved the conversion of croplands at inclines of more than 15◦ to
grassland, shrubland, or forest through secondary succession or afforestation [42]. Previous
studies revealed that secondary succession of old-field greatly decreased soil erosion [7],
modified the properties of plants and soil [43], as well as the accumulation and stabilization
of soil organic C and N on the LPC [43,44]. Further reports quantified the responses of soil
microbial or bacterial communities to afforestation [45], and/or secondary succession of
old-field in the short-term (less than 60 years) [21–23]. However, the impacts of long-term
old-field succession on soil bacterial abundance, diversity, and community composition
following a chronosequence have received little attention. In this study, we hypothesize that:
(i) long-term old-field succession significantly increases soil bacterial abundance which is
largely due to the increase in soil nutrient substrates levels and soil moisture; (ii) long-term
old-field succession decreases soil bacterial diversity during old-field succession; (iii) the
composition of soil bacterial communities is transformed from oligotrophic groups to
copiotrophic groups following old-field succession, which is primarily driven by variations
in soil nutrient substrates, plant and physicochemical properties, and light intensity. To test
these hypotheses, Illumina MiSeq sequencing of bacterial 16S rRNA genes and quantitative
polymerase chain reactions (qPCR) was performed. This was done to analyze variations in
the soil bacterial abundance, diversity, and community composition following long-term
old-field succession, which spanned a ~160 year period from farmland to climax forest on
the LPC. Twelve environmental variables were examined to identify the primary factors
that drove soil bacterial communities.

2. Materials and Methods
2.1. Study Site

This study was conducted on the northwest side of the Ziwuling Mountains, in the
central region of the LPC (36◦00′14”–36◦01′09” N and 109◦00′56”–109◦01′52” E), Fu County,
Shaanxi Province, China (Figure 1a,b). This area has a mean annual temperature and rainfall
of 9 ◦C and 576.7 mm, respectively, and is home to typical hilly and gullied landscapes
with elevations that span from 1157−1369 m [5]. This region of the LPC was subjected to
suffering the most serious soil erosion. Secondary succession of old-field in conjunction
with continued deforestation in Ziwuling Forest caused the emergence of secondary forest
that spanned approximately 23,000 km2. Secondary succession has naturally regenerated
on old-field (Zea mays Linnaeus was the main original rotation crop prior to secondary
succession), according to previous research in the study area. Since 1860, the abandonment
of this land occurred a number of times when the local population was displaced due
to war, food scarcity, and other calamities. Consequently, various stages of secondary
succession, from pioneer weeds and herbage, to shrubland, and to early and climax forests
(Quercus mongolica Fischer ex Ledebour), have been observed in this area over the last
~160 years [46]. Chen et al. (1954) revealed that Populus davidiana Dode was the dominant
species in this region following ~100 years of secondary succession [47]. The prolonged
existence of pioneer weeds, herbage, and shrub was determined through discussions with
local elders, and by investigating land agreements between farmers and the government.
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Figure 1. (a) The geographical location of the Loess Plateau, China, (b) the study site in Fu County,
Shaanxi Province, China, (c) and the photographs of the study site at each successional stage.

The investigation of old-field succession for this study was implemented in October
2019. Six typical secondary successional stages (R1–R6) were selected as samples for this
study: (1) farmland stage (the control, 0 year, R1), in which Zea mays Linnaeus was the
main rotation crop prior to succession; (2) pioneer weeds stage (~15 years, R2), which was
dominated by Artemisia lavandulifolia Candolle and Stipa bungeana Trinius communities;
(3) herbage stage (~30 years, R3), in which Miscanthus sacchariflorus(Maximowicz) Hackel
communities were the main dominant herbaceous species; (4) shrub stage (~50 years, R4),
which was dominated by Hippophae rhamnoides Linnaeus communities; (5) early forest stage
(~110 years, R5), which was dominated by P. davidiana communities; and (6) climax forest
stage (~160 years, R6), which was dominated by Q. mongolica communities (Figure 1c).
These secondary successional stages did not suffer from natural (e.g., wildfire) or human
disturbance, except for the farmland stage during the process of old-field succession
through field investigation and consultations with local elders and administrators of
forestry stations.

2.2. Soil and Plant Sampling

Soil and plant samples were collected in October 2019, and four replicate plots were
randomly established in each successional stage. The sampling plot dimensions were
2 m × 2 m in the farmland, pioneer weeds, and herbage communities, 5 m × 5 m in the
shrub community, and 20 m × 20 m in the early and climax forests, respectively. The
distances between adjacent plots in each successional stage were 200 m at minimum, but
not greater than 2 km at elevations lower than 120 m. All plots for each successional
stage had similar slope gradients and slope aspects to ensure consistent environmental
conditions. Before soil sampling, geographical features and vegetation information of
each successional stage were investigated and are shown in Table S1. Three 1 m × 1 m
quadrats were randomly established in each plot for the early and climax forests, and shrub
communities, respectively, to record the name, number, density, coverage, and frequency of
each species. All the name, number, density, coverage, and frequency of each species were
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recorded in each of sampling plot (2 m× 2 m) for the farmland, pioneer weeds, and herbage
communities, respectively. Plant species richness is the total number of species in each
plot [48]. Plant species diversity and evenness were calculated using the Shannon-Wiener
Diversity Index and Pielou Evenness Index, respectively [48]. After recording, all litter in
each quadrat were gathered, and three root sampling blocks (10 cm diameter) from each
plot were collected to obtain belowground roots at the 0–20 cm soil layer. A total of 72 litter
and 72 root samples were obtained. The S-shaped sampling technique was employed
to randomly extract nine soil samples (Ø5 cm × 20 cm deep) from each plot. The soil
samples of every plot were completely mixed to produce a single composite for a total
of 24 soil samples (six successional stages × four replicates). All soil samples were sifted
through a 2 mm sieve to eliminate visible roots and debris and then mixed thoroughly. A
portion of each soil sample was collected in a 50 mL centrifuge tube and frozen, which
was then placed in a dry-ice box and transferred to the laboratory with all of the soil and
plant samples.

2.3. Analysis of Soil and Plant Properties

In the laboratory, soil samples in the tubes were immediately stored at −80 ◦C for
DNA extraction. The remaining soil samples were segregated as four subsamples after
thorough mixing. To quantify the soil moisture, the first subsample was dried at 105 ◦C
to a constant weight. To assess the soil pH, soil organic carbon (SOC), and soil organic
nitrogen (SON), the second subsample was dried in ambient air and passed through a
1 mm sieve. The third soil subsample was air-dried and passed through a 0.15 mm sieve to
determine total nitrogen (TN), ammonium nitrogen (NH4

+-N), nitrate nitrogen (NO3
−-N),

total phosphorus (TP), and available phosphorus (AP). The fourth fresh soil subsample
was stored at 4 ◦C to determine water-soluble organic C (WSOC). Each root sample block
was continuously rinsed with water using a 0.15 mm sieve, after which the remaining
roots were collected. All of the litter and root samples were cleaned and dried at 65 ◦C
to a constant weight to measure litter and root biomass, respectively. Soil pH value was
measured using a pH meter at a soil/water ratio of 1:2.5. SOC and SON concentrations
were quantified using a Vario PYRO cube elemental analyzer (Elementar Analysensysteme
GmbH, Hanau, Germany). Prior to the measurements, the air-dried soil samples were
treated with 1 M HCl for 24 h at room temperature in to eliminate all carbonates. WSOC
concentration was determined using a Liqui TOCII analyzer (Elementar Analysensysteme
GmbH, Hanau, Germany) using the technique described by Yang et al. (2016) [49]. TN
concentration was measured using an AA3 continuous flow analyzer (SEAL Analytical
GmbH, Norderstedt, Germany) subsequent to digestion with H2SO4 and extraction with
1M KCl. TP and AP concentrations were determined using the molybdophosphate method,
which digested the soil with a mixture of HClO4 and H2SO4 before measuring with an AA3
continuous flow analyzer. NH4

+-N and NO3
−-N concentrations were measured using an

AA3 continuous flow analyzer after the samples were extracted with 1 M KCl.

2.4. Soil DNA Extraction and q-PCR

A Power Soil DNA kit (MoBio Laboratories, Carlsbad, CA, USA) was employed, in
accordance with manufacturer’s protocol, to extract soil microbial DNA from frozen soil
samples (equivalent to 0.5 g dry weight). Extracted soil microbial DNA was divided into
two parts. The first microbial DNA subsample was utilized for qPCR analysis, whereas
the second microbial DNA subsample was employed for Illumina MiSeq sequencing. Soil
bacterial abundance was quantified via qPCR analysis of the V3–V4 regions of bacterial 16S
rRNA gene with the 338F primer (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R primer
(5′-GGACTACHVGGGTWTCTAAT-3′) [40]. The reaction volume was 25 µL, and was
comprised of SYBR Green qPCR Master Mix (2×) (Applied Biosystems, Foster City, CA,
USA) (12.5 µL), template DNA (diluted five times) (2 µL), forward and reverse primers
(0.5 µL of 10 µM), and ddH2O (9.5 µL). The 16S rRNA gene was amplified using an ABI 7500
real-time PCR system (Applied Biosystems, Foster City, CA, USA). The cycling conditions
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were as follows: 10 min at 95 ◦C, 40 cycles of 15 s at 95 ◦C, and 1 min at 60 ◦C. All real-time
PCR reactions on the DNA extracted from each soil sample were run in triplicate. The 16S
rRNA copy number was calculated using the formula described by Sun et al. (2015) [50].

2.5. PCR Amplification and Illumina MiSeq Sequencing

The 338F primer (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R primer (5′-
GGACTACHVGGGTWTCTAAT-3′) were designed to amplify the V3–V4 regions of the
bacterial 16S rRNA gene. The bacterial amplification PCR reaction mixture was used in
triplicate, with each containing 4 µL of 5 × FastPfu buffer, 2 µL of 2.5 mM deoxynucleotide
triphosphates (dNTPs), 0.8 µL forward primer (5 µM), 0.8 µL reverse primer (5 µM), 0.4 µL
of FastPfu Polymerase, 0.2 µL of BSA, 10 ng of Template DNA, and ddH2O added to a final
volume of 20 µL. The PCR reaction was performed with an initial denaturation step at 95
◦C for 3 min, followed by 27 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 45 s, 72 ◦C
for 10 min, and 10 ◦C until halted by the user. The PCR reactions were conducted with an
ABI GeneAmp® 9700 PCR System (Applied Biosystems, Foster City, CA, USA). Successful
PCR amplifications were extracted from 2% agarose gels, purified using the AxyPrep DNA
Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA), and quantified with the
QuantiFluor-ST blue fluorescence quantitative system (Promega, Madison, WI, USA). The
purified amplicons were pooled in equimolar ratios and subjected to paired-end sequencing
(2 × 300) on an Illumina MiSeq PE300 platform (Illumina Corporation, San Diego, CA,
USA) from Majorbio Biopharm Technology Co., Ltd, Shanghai, China.

2.6. Sequencing Data Processing

The software package, Quantitative Insights into Microbial Ecology (QIIME; v. 1.9.1,
http://qiime.org/install/index.html, accessed on 10 May 2020) [51], was employed to
process the sequences derived from the Illumina MiSeq platform. Subsequently, employ-
ing the standards articulated below, the unprocessed FASTQ files were demultiplexed,
quality-filtered using Trimmomatic v. 0.32 [52], and then merged using FLASH (v. 1.2.11,
https://ccb.jhu.edu/software/FLASH/index.shtml, accessed on 13 May 2020): (a) Low
quality sequence read segments, with typical quality values of <20 over a 50 bp slid-
ing window, as well as those sequences that included >6 bp homopolymeric segments,
were deleted from paired-end sequence read files [52]. (b) The closely matched primers
allowed for only two nucleotide sequence mismatches, whereas those reads that had
equivocal bases were rejected. (c) Sequences containing >10 bp overlaps were joined con-
tingently on their overlap sequence. Using Illumina MiSeq sequencing, 1,278,288 reads
overall were extracted from the 24 soil samples. A similar level of sequencing penetration
for later analyses was acquired by randomly selecting the minimum number of reads
(i.e., 40,838) in all of the subsets from each sample with the Mothur program (v. 1.30.2,
https://www.mothur.org/wiki/Download_mothur, accessed on 15 May 2020), which
finally generated 980,112 reads from 24 soil samples. Next, subsampled sequences were
categorized according to their operational taxonomic units (OTUs), at similarity levels of
97% utilizing the UPARSE method (v. 7.0.1090, http://www.drive5.com/uparse/, accessed
on 15 May 2020) [53]. To compare bacterial richness and diversity subsequent to the acqui-
sition of 69,659 OTUs (in total) from the 24 soil samples, the Mothur program (v. 1.30.2) [54]
was employed to calculate the OTU richness (total population of quantified OTUs), Chao’s
species richness estimation (Chao1), abundance-based coverage estimation (ACE), Shan-
non diversity indices, OTUs rarefaction curves, and Shannon-Wiener curves. Taxonomic
phylum, class, order, family, and genus categorizations were designated using a Ribosomal
Database Project (RDP) Bayesian classifier (v. 11.5, http://rdp.cme.msu.edu/, accessed on
25 May 2020). Next, tags were contrasted against the bacterial 16S rRNA Silva reference
database (v. 138, https://www.arb-silva.de/, accessed on 25 May 2020) to identify chimeric
sequences [55]. To identify any possible statistically meaningful taxa from the soil bacterial
communities between the various treatments, linear discriminant analysis (LDA) effect
size (LEfSe) was engaged. A cladogram was developed with LEfSe (R software v. 3.2.2.),

http://qiime.org/install/index.html
https://ccb.jhu.edu/software/FLASH/index.shtml
https://www.mothur.org/wiki/Download_mothur
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https://www.arb-silva.de/


Forests 2022, 13, 1628 7 of 22

which elucidated phylogenetic distribution of microbial lineages that were correlated with
six defined successional stages, having LDA values of 3.5 or higher. Finally, the complete
dataset was deposited into the Sequence Read Archive (SRA) database of the National
Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/, accessed
on 16 August 2022) under the accession number of SRP392368.

2.7. Statistical Analysis

One-way ANOVA was used to assess the impacts of old-field succession on plant and
soil properties and soil bacterial communities. Significant variations between the means of
the groups were evaluated with Duncan’s test at p < 0.05. Principal component analysis
(PCA) of the OTUs data was completed using R software v. 3.2.2, whereas the Bray–Curtis
similarity index was determined via the OTU reads. A beta-diversity distance matrix was
employed to determine the hierarchical clustering with QIIME software package v. 1.9.1.
Redundancy analysis (RDA) was employed to investigate the relationships between soil
bacterial community composition at the phylum- and class-level with properties of plant
(i.e., LB and RB) and soil properties (i.e., soil moisture, TP, NO3

−-N, WSOC, SON, pH,
NH4

+-N, AP, TN, and SOC) using CANOCO 4.5 software. The statistical significance of
the RDA was tested using Monte Carlo permutation tests (499 permutations; p < 0.05)
in the CANOCO 4.5 software. Pearson’s correlation analysis was employed to evaluate
the relationships of soil bacterial abundance (i.e., gene of 16S rRNA copies), bacterial
richness (i.e., ACE and Chao1), diversity (i.e., Shannon), and the relative abundances of the
dominant bacterial phyla and classes, with plant and soil properties, respectively.

3. Results
3.1. Variations in Plant and Soil Characteristics Following Old-Field Succession

Plant species richness was highest in the early forest, followed by climax forest, pioneer
weeds, herbage, and shrub stages, and was lowest in the farmland (Table S1). Plant species
diversity and evenness were highest in the early forest and the shrub stage, respectively
(Table S1). Litter and root biomass, soil pH, moisture, SOC, WSOC, TN, SON, NO3

−-
N, and AP were significantly affected by old-field succession (Table S2). Litter biomass
increased substantially from 25 to 956 g m−2 following old-field succession (Table S2).
The climax forest, early forest, and farmland stages exhibited greater root biomass in
contrast to pioneer weeds, herbage, and shrub stages (Table S2). Soil pH was highest in
the farmland, pioneer weeds, and herbage stages between successional stages (Table S2).
Soil moisture, SOC, WSOC, TN, and SON concentrations continuously increased following
old-field succession (Table S2). Soil NH4

+-N concentration was lowest in the farmland
(Table S2). Soil NO3

−-N concentration in the farmland and shrub stages were considerably
higher than that in the pioneer weeds, herbage, early, and climax forest stages (Table S2).
Soil TP concentration was virtually unchanged following old-field succession (Table S2),
whereas soil AP concentration was greatest in the farmland stage between successional
stages (Table S2).

3.2. Variations in the Abundance and Alpha-Diversity of Soil Bacterial Communities Following
Old-Field Succession

The total bacterial abundance was 2.33× 109 copies/g in the farmland stage, 3.05 × 109

copies/g in the pioneer weeds stage, 3.51 × 109 copies/g in the herbage stage, 4.01 × 109

copies/g in the shrub stage, 4.63 × 109 copies/g in the early forest stage, and 5.67 × 109

copies/g in the climax forest stage (Figure 2). Total bacterial abundance gradually increased
following old-field succession, achieving its maximum in the climax forest (Figure 2).

https://www.ncbi.nlm.nih.gov/
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Figure 2. Total bacterial abundance was indicated by the 16S rRNA copies per gram of soil
(mean ± SE, n = 4) (0–20 cm depth) of different successional stages on the Loess Plateau of China.
Different lower-case letters indicate statistically significant differences at the α = 0.05 level between
successional stages. R1: Farmland control; R2: Pioneer weeds; R3: Herbage (M. sacchariflorus); R4:
Shrub (H. rhamnoides); R5: Early forest (P. davidiana); and R6: Climax forest (Q. mongolica).

The bacterial OTU richness was greatest in the farmland stage (Table 1). Species
richness indices (i.e., Chao1 and ACE) for soil bacterial communities in the climax forest
were markedly lower than those for other successional stages (Table 1). Similarly, climax
forest exhibited a flatter rarefaction curve with the lowest taxon richness relative to other
successional stages (Figure S1a). The Shannon diversity index for soil bacterial communities
in farmland, pioneer weeds, herbage, and shrubs was considerably higher than that in
climax forest (Table 1). Shannon curve flattened out at reads below 5000 for each soil sample
and showed that the climax forest soil had the lowest bacterial diversity (Figure S1b).
The coverage of soil samples ranged from 97.60% to 98.00% between successional stages
(Table 1).

Table 1. Number of sequences analyzed and observed soil bacterial community richness and diversity
indices (mean ± SE, n = 4) at different successional stages on the Loess Plateau of China, obtained for
clustering at 97% identity.

Characteristics

Successional Stages
Source of
VariationFarmland

(R1)
Pioneer Weeds

(R2)
Herbage

(R3)
Shrub
(R4) Early Forest (R5) Climax Forest

(R6)

Reads 40,838 40,838 40,838 40,838 40,838 40,838 -
OTU richness 3113 ± 77 a 2946 ± 42 ab 2977 ± 130 ab 2881 ± 89 abc 2901 ± 68 abc 2597 ± 41 c *

Richness (Chao1) 4038 ± 79 a 4047 ± 73 a 3993 ± 142 a 3979 ± 91 a 3983 ± 85 a 3495 ± 70 b **
Richness (ACE) 4033 ± 100 a 4046 ± 57 a 4004 ± 141 a 4015 ± 98 a 3994 ± 82 a 3477 ± 55 b **

Diversity (Shannon) 6.63 ± 0.04 a 6.59 ± 0.02 a 6.60 ± 0.08 a 6.65 ± 0.05 a 6.55 ± 0.05 ab 6.41 ± 0.04 b *
Coverage (%) 0.9770 ± 0.0005 b 0.9760 ± 0.0004 b 0.9766 ± 0.0008 b 0.9768 ± 0.0006 b 0.9762 ± 0.0004 b 0.9800 ± 0.0004 a ***

* p < 0.05; ** p < 0.01; *** p < 0.001. Different superscript lower case letters indicate statistically significant
differences at the α = 0.05 level between successional stages. Reads are the high-quality sequences following
filtering and normalization. The richness estimators, diversity indices, and coverage were calculated using the
Mothur program. OTU richness: the total number of measured operational taxonomic units (OTUs).
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3.3. Variations in the Composition of Soil Bacterial Communities Following Old-Field Succession

The dominant phyla of the soil bacterial communities across all successional stages
were Actinobacteria (30.77%–39.42%), Proteobacteria (22.28%–30.83%), followed by Acidobac-
teria (11.90%–18.13%), and Chloroflexi (9.36%–13.68%) (Figure 3). The minor phyla included
Gemmatimonadetes (2.03%–3.96%), Rokubacteria (1.65%–2.61%), Bacteroidetes (1.13%–1.72%),
Firmicutes (0.74%–1.50%), Planctomycetes (0.82%–1.58%), Verrucomicrobia (0.39%–1.67%), and
Cyanobacteria (0.03%–0.61%) (Figure 3). Actinobacteria was the most dominant bacterial
phylum across all successional stages (Figure 3), where the relative abundances of Acti-
nobacteria and Cyanobacteria were most enriched in the farmland stage (Figure 3). The
relative abundance of Proteobacteria in the late successional stages (i.e., climax forest and
early forest) was considerably higher than that in the early successional stages (Figure 3).
Climax forest exhibited the lowest relative abundances of Chloroflexi and Gemmatimonadetes
between successional stages (Figure 3). The relative abundance of Firmicutes was most
enriched in the farmland and pioneer weeds stages (Figure 3). The relative abundance of
Verrucomicrobia in the climax forest was obviously higher than that in other successional
stages (Figure 3).
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Figure 3. Relative abundance (% of individual taxonomic groups) of the dominant bacterial phyla
(mean ± SE, n = 4) present in the microbial communities of different successional stages on the
Loess Plateau of China. Different lower-case letters indicate statistically significant differences at the
α = 0.05 level between successional stages. See Figure 2 for abbreviations.
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At the class level, high levels of bacteria belong to Actinobacteria, Alphaproteobacteria,
Gammaproteobacteria, Deltaproteobacteria, Chloroflexia, and Gemmatimonadetes across all soil
samples (Table 2). The relative abundances of Actinobacteria, Chloroflexia, and Oxyphotobacte-
ria were most abundant in the farmland stage. The relative abundance of Alphaproteobacteria
in the early and climax forests was markedly higher than that in other successional stages.
The relative abundance of Gammaproteobacteria steadily increased following old-field suc-
cession. The relative abundance of Gemmatimonadetes in the climax forest was markedly
lower than that in other successional stages. The relative abundances of Verrucomicrobiae
and Acidobacteriia were considerably higher than that in other successional stages. The
relative abundances of Deltaproteobacteria, Bacteroidia, and Anaerolineae showed no obvious
changes following old-field succession (Table 2).

Table 2. Relative abundance (% of individual taxonomic groups) of the dominant bacterial classes
(mean ± SE, n = 4) present in the soil (0–20 cm depth) microbial communities of different successional
stages on the Loess Plateau of China.

Class

Successional Stages
Source of
VariationFarmland

(R1)
Pioneer

Weeds (R2)
Herbage

(R3)
Shrub
(R4)

Early Forest
(R5)

Climax Forest
(R6)

Actinobacteria 39.42 ± 1.94 a 36.46 ± 1.33 ab 30.77 ± 2.58 b 35.45 ± 1.48 ab 33.92 ± 1.58 ab 33.65 ± 2.34 ab n.s.
Alphaproteobacteria 14.30 ± 1.19 b 14.66 ± 0.82 b 14.13 ± 0.82 b 15.13 ± 1.02 b 20.06 ± 2.03 a 19.58 ± 1.23 a **
Gammaproteobacteria 4.77 ± 0.39 d 5.49 ± 0.43 cd 5.81 ± 0.43 bcd 7.12 ± 0.50 ab 6.83 ± 0.59 abc 7.89 ± 0.52 a **
Deltaproteobacteria 3.20 ± 0.21 a 3.82 ± 0.33 a 3.79 ± 0.18 a 3.19 ± 0.27 a 3.08 ± 0.37 a 3.36 ± 0.33 a n.s.

Chloroflexia 4.74 ± 0.12 a 3.56 ± 0.16 bc 3.99 ± 0.26 b 3.89 ± 0.46 b 2.97 ± 0.12 c 1.78 ± 0.06 d n.s.
Gemmatimonadetes 3.74 ± 0.21 a 3.55 ± 0.21 a 3.91 ± 0.44 a 3.96 ± 0.27 a 3.07 ± 0.39 a 2.03 ± 0.21 b **

Bacteroidia 1.48 ± 0.19 a 1.10 ± 0.12 a 1.17 ± 0.21 a 1.65 ± 0.19 a 1.42 ± 0.15 a 1.69 ± 0.20 a n.s.
Dehalococcoidia 1.03 ± 0.05 cd 1.33 ± 0.04 bc 1.47 ± 0.09 ab 1.74 ± 0.19 a 1.00 ± 0.09 d 1.17 ± 0.06 bcd **

Bacilli 1.40 ± 0.25 a 1.48 ± 0.17 a 1.24 ± 0.20 ab 0.73 ± 0.13 b 1.06 ± 0.23 ab 1.24 ± 0.13 ab n.s.
Anaerolineae 1.33 ± 0.16 a 1.01 ± 0.05 a 1.19 ± 0.25 a 1.25 ± 0.11 a 1.05 ± 0.17 a 0.95 ± 0.10 a n.s.

Verrucomicrobiae 0.39 ± 0.10 b 0.64 ± 0.10 b 0.85 ± 0.37 b 0.52 ± 0.15 b 0.72 ± 0.16 b 1.67 ± 0.42 a n.s.
Planctomycetacia 0.38 ± 0.08 b 0.74 ± 0.12 ab 1.01 ± 0.26 a 0.40 ± 0.08 b 0.50 ± 0.13 b 0.71 ± 0.13 ab n.s.

Acidobacteriia 0.60 ± 0.02 b 0.42 ± 0.03 b 0.54 ± 0.05 b 0.43 ± 0.06 b 0.42 ± 0.03 b 1.19 ± 0.17 a **
Oxyphotobacteria 0.54 ± 0.38 a 0.03 ± 0.01 b 0.11 ± 0.03 ab 0.04 ± 0.03 b 0.00 ± 0.00 b 0.00 ± 0.00 b **

** p < 0.01; n.s.: not significant. Different superscript lower case letters indicate statistically significant differences
at the α = 0.05 level between successional stages.

At the order level, the relative abundance of Rhizobiales in the early and climax forests
was considerably higher than that in other successional stages (Table S3). The relative
abundance of Betaproteobacteriales was greatest in the climax forest and shrub stages, fol-
lowed by the early forest, herbage, and pioneer weeds, and was the lowest in the farmland
stage. The relative abundance of Gemmatimonadales in the climax forest was significantly
lower than that in other successional stages. The relative abundances of Thermomicrobiales,
Myxococcales, and Rubrobacterales gradually declined following old-field succession. The
relative abundances of Micrococcales and Frankiales were greatest in the farmland stage,
followed by the shrub, early forest, herbage, and pioneer weeds stages, and was lowest in
the climax forest. The relative abundances of Myxococcales and Rubrobacterales continually
decreased following old-field succession. The relative abundances of Xanthomonadales,
Chthoniobacterales, and Steroidobacterales in the climax forest stage were significantly higher
than those in the shrub, herbage, pioneer weeds, and farmland stages (Table S3).

At the family level, the relative abundances of Xanthobacteraceae and Rhizobiaceae
progressively increased following old-field succession (Table S4). The relative abundances
of Solirubrobacteraceae and Sphingomonadaceae were most enriched in the early forest stage.
The relative abundance of Beijerinckiaceae in the climax forest stage was significantly lower
than that in other successional stages, whereas the relative abundance of Geodermatophilaceae
was highest and lowest in the farmland and climax forest stages, respectively. The relative
abundances of Rubrobacteriaceae and Roseiflexaceae gradually declined following old-field
succession, whereas the relative abundances of Mycobacteriaceae and Steroidobacteraceae in
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the early and climax forest stages were significantly higher than those in other successional
stages (Table S4).

At the genus level, the relative abundances of norank_f__Xanthobacteraceae, Mycobac-
terium, Bradyrhizobium, Dongia, and Candidatus_Xiphinematobacter were most enriched in the
climax forest soil (Table 3). The relative abundances of Microvirga and Rubrobacte steadily
decreased following old-field succession. The relative abundances of Blastococcus and
Arthrobacter were highest in the farmland stage, and lowest in the climax forest stage. The
relative abundances of Gaiella and Bacillus were highest in the pioneer weeds stage. The
relative abundances of Pedomicrobium and Phyllobacterium in the early and climax forest
stages were considerably higher than those in other successional stages (Table 3).

Table 3. Relative abundance (% of individual taxonomic groups) of the dominant bacterial genera
(mean ± SE, n = 4) present in the soil (0–20 cm depth) microbial communities of different successional
stages on the Loess Plateau of China.

Genus
Successional Stages

Source of
VariationFarmland (R1) Pioneer

Weeds (R2) Herbage (R3) Shrub
(R4)

Early Forest
(R5)

Climax Forest
(R6)

Gaiella 3.17 ± 0.21 b 4.67 ± 0.21 a 3.84 ± 0.60 ab 3.68 ± 0.43 ab 3.36 ± 0.55 ab 4.24 ± 0.39 ab n.s.
Solirubrobacter 2.32 ± 0.39 a 2.88 ± 0.51 a 2.19 ± 0.32 a 1.99 ± 0.26 a 2.73 ± 0.21 a 1.94 ± 0.31 a n.s.

norank_f__
Xanthobacteraceae 0.86 ± 0.07 c 1.14 ± 0.02 c 0.99 ± 0.07 c 1.62 ± 0.14 b 1.94 ± 0.10 b 2.53 ± 0.26 a **

Microvirga 2.04 ± 0.16 a 1.95 ± 0.16 ab 1.71 ± 0.09 ab 1.48 ± 0.23 b 1.48 ± 0.16 b 0.48 ± 0.07 c ***
Blastococcus 3.11 ± 0.34 a 1.17 ± 0.11 c 1.35 ± 0.22 bc 1.86 ± 0.23 b 1.34 ± 0.13 bc 0.32 ± 0.02 d **
Arthrobacter 3.08 ± 0.41 a 1.06 ± 0.05 c 1.58 ± 0.41 bc 2.41 ± 0.51 ab 1.26 ± 0.56 bc 0.60 ± 0.09 c *
Rubrobacter 2.07 ± 0.24 a 2.36 ± 0.19 a 2.00 ± 0.33 a 1.32 ± 0.18 b 0.69 ± 0.12 c 0.26 ± 0.02 c ***
Streptomyces 1.55 ± 0.19 a 1.12 ± 0.04 ab 0.88 ± 0.10 b 1.36 ± 0.22 ab 1.18 ± 0.03 ab 1.41 ± 0.23 a *

Mycobacterium 0.98 ± 0.10 bc 0.99 ± 0.06 b 0.77 ± 0.07 c 0.85 ± 0.09 c 1.19 ± 0.12 b 2.47 ± 0.13 a *
Nocardioides 1.81 ± 0.56 a 0.79 ± 0.05 ab 0.62 ± 0.07 b 1.00 ± 0.21 ab 1.35 ± 0.22 ab 1.58 ± 0.43 ab *

Bradyrhizobium 0.36 ± 0.04 c 0.52 ± 0.03 c 0.50 ± 0.08 c 0.65 ± 0.05 c 1.38 ± 0.25 b 3.20 ± 0.32 a **
Nordella 0.62 ± 0.04 c 0.87 ± 0.05 ab 1.02 ± 0.08 a 0.75 ± 0.10 bc 0.90 ± 0.06 ab 0.61 ± 0.06 c **
Bacillus 0.82 ± 0.16 ab 0.97 ± 0.16 a 0.75 ± 0.16 ab 0.39 ± 0.10 b 0.57 ± 0.12 ab 0.51 ± 0.06 b n.s.
Dongia 0.49 ± 0.06 b 0.58 ± 0.07 b 0.70 ± 0.08 b 0.45 ± 0.05 b 0.71 ± 0.14 b 0.97 ± 0.05 a **

Pseudonocardia 0.45 ± 0.05 bcd 0.40 ± 0.03 cd 0.30 ± 0.05 d 0.49 ± 0.06 bc 0.78 ± 0.06 a 0.60 ± 0.08 b ***
Pedomicrobium 0.24 ± 0.01 c 0.32 ± 0.03 c 0.30 ± 0.03 c 0.55 ± 0.04 b 0.87 ± 0.09 a 0.74 ± 0.11 a ***
Phyllobacterium 0.21 ± 0.02 c 0.38 ± 0.04 b 0.30 ± 0.02 bc 0.36 ± 0.02 b 0.77 ± 0.03 a 0.82 ± 0.09 a **

Candidatus_
Xiphinematobacter 0.09 ± 0.02 b 0.24 ± 0.04 b 0.32 ± 0.17 b 0.15 ± 0.05 b 0.41 ± 0.09 b 1.16 ± 0.28 a *

* p < 0.05; ** p < 0.01; *** p < 0.001; n.s.: not significant. Different superscript lower case letters indicate statistically
significant differences at the α = 0.05 level between successional stages.

3.4. Statistically Different Bacterial Groups

LEfSe analyses were combined with LDA values to analyze the statistical significance
of differentially abundant taxa for soil bacterial communities between the various suc-
cessional stages (Figure 4 and Figure S2). Ten groups of bacteria enriched in the climax
forest, namely, Proteobacteria, Rhizobiales (from order to family; within Alphaproteobacteria),
Xanthobacteraceae (from family to genus; within Alphaproteobacteria), Gammaproteobacte-
ria, Bradyrhizobium (a genus within Rhizobiaceae), Mycobacteriaceae (from family to genus;
within Actinobacteria), Corynebacteriales and Sterptosporangiales (orders within Actinobacte-
ria), Xiphinematobacteraceae (family to genus; within Verrucomicrobia), Rokubacteria (phylum,
order, family, and genus), Acidobacteriia (within Acidobacteria), and Mesorhizobiur (within
Rhizobiales) (Figure 4 and Figure S2). Soil bacterial communities in the early forest stage
were enriched with Alphaproteobacteria (e.g., Hyphomicrobiaceae and Pedomicrobium) and
Burkholderiaceae (within Betaproteobacteria). Soil bacterial taxa enriched in the shrub stage
included Gemmatimonadetes (phylum, class, and genus), Betaproteobacteriales (within Betapro-
teobacteria), Microtrichales, Roseiflexaceae (from family to genus; within Chloroflexi), Dehalo-
coccoidia (a class within Chloroflexi), and Nitrosomonadaceae (a family within Nitrosococcales)
(Figure 4 and Figure S2). Soil bacterial taxa Gemmatimonadales (from order to family) and
Rubrobacterales (from order to genus) were enriched in the herbage and pioneer weeds stages,
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respectively. Soil bacterial taxa enriching the farmland stage included Geodermatophilaceae
(e.g., Blastococcus; a family within Actinobacteria), Frankiales (an order within Actinobacteria),
Chloroflexia (from class to order), Thermomicrobiales (an order within Thermomicrobia), Micro-
coccales (from order to family), Arthrobacter (a genus within Micrococcaceae), Beijerinckiaceae
(a family within Alphaproteobacteria), Thermomicrobiales (an order within Thermomicrobia),
Propionibacteriales (an order within Actinobacteria), Nocardioidaceae (from family to genus;
within Actinobacterales), Microvirga (a genus within Alphaproteobacteria), Azospirillales, and
Streptomycetaceae (a family within Actinobacterales) (Figure 4 and Figure S2).
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Figure 4. Cladogram indicating the phylogenetic distribution of microbial lineages associated with six
different successional stages on the Loess Plateau of China; lineages with LDA values of 3.5 or higher
determined by LEfSe are displayed. Differences are represented by the color of the most abundant
microbial groups (In Figure 4, sky blue indicates farmland (R1), dark purple indicates pioneer weeds
(R2), light purple indicates herbage (R3), green indicates shrub (R4), dark blue indicates early forest
(R5), red indicates climax forest (R6), and yellow indicates non-significant). Each circle’s diameter is
proportional to the abundance of the taxon. Circles represent phylogenetic levels from phylum to
genus, from the inside out.

3.5. Beta-Diversity of Soil Bacterial Communities

PCA analysis and Bray–Curtis similarities were employed to analyze community
composition and differences in soil bacterial communities based on OTU levels, and to
identify differences in bacterial communities across different successional stages (Figure 5).
Both PCA analysis and Bray–Curtis similarities revealed that the climax forest soil was
closely clustered together; thus, it was distinct from the early forest, shrub, herbage, pioneer
weeds, and farmland stages (Figure 5a,b), indicating that climax forest soil possessed
unique bacterial communities in contrast to other successional stages (Figure 5a,b). The
different locations of the early forest and shrub soils tended to group together, which
implied that the compositions of their bacterial communities were similar (Figure 5a,b). The
herbage and pioneer weeds soils were clustered closely together, which implied that the
soil bacterial community compositions of these two grasslands were similar (Figure 5a,b).
Furthermore, soil bacterial community composition in the farmland stage was more similar
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to pioneer weeds as well as herbage stages than the early forest and climax forest stages
(Figure 5b).
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Figure 5. (a) Principal component analysis (PCA) and (b) clustering of samples. Bray–Curtis similarity
index was calculated using OTU reads, and hierarchical clustering was calculated using the β-
diversity distance matrix with QIIME. See Figure 2 for abbreviations.

3.6. Important Environmental Variables for Soil Bacterial Communities

Twelve environmental variables (i.e., LB, RB, soil moisture, TP, NO3
−-N, WSOC, SON,

pH, NH4
+-N, AP, TN, and SOC) explained 53.8% and 53.4% of the total changes in soil

bacterial community composition at the phylum and class levels, respectively (Figure 6).
The results of Monte Carlo permutation tests (p < 0.05) indicated that variations in soil
bacterial community composition were closely related to LB (F = 5.02, p = 0.0120) and RB
(F = 3.20, p = 0.0490) at the phylum level (Figure 6a) and were intimately associated with
the soil WSOC (F = 4.58, p = 0.0140) at the class level (Figure 6b). Pearson’s correlation
analysis indicated that bacterial community abundance (i.e., 16S rRNA gene copy number)
was positively correlated with LB, soil moisture, SOC, WSOC, TN, and SON, while they
were negatively correlated with the pH, TP, and AP (Figure 7). The OTU richness and the
species richness indices (i.e., Chao1 and ACE) of the bacterial communities were highly
negatively correlated with the LB, soil moisture, SOC, WSOC, TN, and SON, and positively
correlated with soil pH (Figure 7). Shannon diversity index was negatively correlated
with LB, RB, SOC, and WSOC (Figure 7). The relative abundances of Proteobacteria and
Alphaproteobacteria were positively correlated with LB, RB, soil moisture, SOC, WSOC, SON,
and NH4

+-N, while they were negatively correlated with the TP (Table S5; Figure 7). The
relative abundances of Chloroflexi, Chloroflexia, and Gemmatimonadetes were significantly
negatively correlated with the LB, RB, soil moisture, SOC, WSOC, SON, and NH4

+-N,
which were positively correlated with soil pH (Table S5; Figure 7). The relative abundances
of Verrucomicrobia and Verrucomicrobiae were highly related to LB, moisture, SOC, TN, and
SON (Table S5; Figure 7). The relative abundance of Gammaproteobacteria was positively
correlated with the LB, soil moisture, SOC, WSOC, TN, SON, and NH4

+-N, which was
negatively correlated with the pH, TP, and AP (Table S5).
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soil bacterial community composition by solid black arrows, and the variables of soil 
physiochemical properties by colored arrows: litter biomass (LB), root biomass (RB), pH, moisture, 
soil organic carbon (SOC), soil water-soluble organic carbon (WSOC), total nitrogen (TN), soil 
organic nitrogen (SON), ammonium nitrogen (NH4+−N), nitrate nitrogen (NO3–-N), total 
phosphorus (TP), and available phosphorus (AP). Red inverted triangles represent farmland (R1) 
soil, dark purple stars indicate pioneer weeds (R2) soil, yellow squares represent herbage (R3) soil, 
green diamonds represent shrub (R4) soil, dark blue triangles represent early forest (R5) soil, and 
red circles represent climax forest (R6) soil. 

 
Figure 7. Pearson correlations coefficients between bacterial abundance, diversity, and community 
composition, and the environmental variables (n = 4) between successional stages on the Loess 
Plateau of China. Red indicates positive correlations, while green indicates negative correlations. 
The darker color, the stronger the correlation. * p < 0.05, ** p < 0.01. 

Figure 6. Redundancy analysis (RDA) diagram illustrating the relationships between the composi-
tions of soil bacterial communities at the phylum-level (a) and class-level (b) from different sampling
sites under variable environments. Explanatory variables are shown by different arrows, soil bacterial
community composition by solid black arrows, and the variables of soil physiochemical properties by
colored arrows: litter biomass (LB), root biomass (RB), pH, moisture, soil organic carbon (SOC), soil
water-soluble organic carbon (WSOC), total nitrogen (TN), soil organic nitrogen (SON), ammonium
nitrogen (NH4

+-N), nitrate nitrogen (NO3
−-N), total phosphorus (TP), and available phosphorus

(AP). Red inverted triangles represent farmland (R1) soil, dark purple stars indicate pioneer weeds
(R2) soil, yellow squares represent herbage (R3) soil, green diamonds represent shrub (R4) soil, dark
blue triangles represent early forest (R5) soil, and red circles represent climax forest (R6) soil.
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Figure 7. Pearson correlations coefficients between bacterial abundance, diversity, and community
composition, and the environmental variables (n = 4) between successional stages on the Loess
Plateau of China. Red indicates positive correlations, while green indicates negative correlations. The
darker color, the stronger the correlation. * p < 0.05, ** p < 0.01.
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4. Discussion

Our results demonstrated that secondary succession of old-field remarkably restored
soil bacterial communities in degraded ecosystems, as soil bacterial abundance progres-
sively increased following old-field succession, and reached a maximum in climax forest
(Figure 2). Soil nutrient substrates (e.g., SOC, WSOC, TN, SON, and NH4

+-N) are recog-
nized as the overwhelming driving factors for soil bacterial abundance, owing to bacteria
favoring copiotrophic environments [27,28]. In the present study, SOC, WSOC, TN, and
SON concentrations gradually increased following old-field succession (Table S2). Pear-
son’s correlation analysis indicated that soil bacterial abundance was strongly associated
with litter biomass, SOC, WSOC, TN, and SON (Figure 7). Thus, the flourishing of soil
bacterial abundance following old-field succession was primarily driven by the increase
in soil nutrient substrates levels, which provided sufficient C, N, and energy sources for
bacterial growth [56]. Additionally, soil moisture was reported to impact the growth,
dormancy, and mortality of soil microbes by controlling the availability, transport, and
diffusion of nutrients [39]. Generally, higher soil moisture was conducive to bacterial
growth [40]. In the present study, significantly increased soil moisture was exhibited in
late successional stages (Table S2), which promoted soil bacterial abundance following
old-field succession (Figure 2). The secondary succession of old-field not only enhanced
soil bacterial abundance, but also altered bacterial diversity on the LPC (Table 1).

It was unanticipated that the bacterial OTU richness gradually declined following
old-field succession, with the lowest bacterial OTU richness, species richness, and Shannon
diversity index being observed in the climax forest (Table 1). Although our findings were
inconsistent with previous studies [22], they were supported by Wang et al. (2021) who
revealed that soil bacterial diversity decreased during ~40 years of secondary succession
in karst areas [23]. Furthermore, several studies documented that soil microbial richness
increased following the conversion of native vegetation to farmland [57,58]. In the present
study, soil bacterial richness and diversity were negatively correlated with litter biomass,
SOC, WSOC, TN, and SON (Figure 7), which aligned with previous studies [19,23]. Soil
nutrient substrates can strongly drive bacterial communities by influencing species com-
petition and promoting the growth of functionally adapted species [59]. Soil bacterial
richness and diversity declined in the late successional stages (Table 1), which was likely
attributed to differences in the adaptability of distinct bacterial groups to variations in soil
nutrient levels, and physiochemical properties during old-field succession (Table S2). For
instance, the high level of SOM in the late successional stages possibly reduced the quantity
of antagonistic bacteria in soil and decreased the soil bacterial diversity (Table S2) [23,60].
Additionally, earlier studies documented that intensity and frequency of disturbances can
enhance soil microbial diversity [61,62]. Lammel et al. (2021) revealed that soil bacterial
richness and diversity were considerably enhanced from pristine rainforest and Savannah
to crop fields in southern Amazonia, owing to the continual disturbances that occurred
in crop fields [62]. We deduced that the highest soil bacterial OTU richness was in the
farmland stage (Table 1), which likely resulted from frequent anthropogenic disturbances
that stimulated the bacterial OTU richness [61,62].

Secondary succession of old-field was observed to significantly modify the composi-
tion of soil bacterial communities (Figure 5a,b). The PCA index and Bray–Curtis similarity
index showed that soil bacterial community composition was gradually altered from the
early, medium term, and late successional stages, to ultimately where climax forest was
significantly distinct from other successional stages (Figure 5a,b). RDA analyses displayed
that variations in soil bacterial community composition at the phylum and class levels
were strongly correlated with LB, RB, and WSOC (Figure 6a,b). This further confirmed that
litter, root biomass, and WSOC were overarching driving factors for variation in soil bacte-
rial community composition [40,59]. Plant-specific traits (e.g., litter and root) contributed
significantly to soil nutrient availability by supplying plentiful C-rich compounds to the
soil [63,64]. WSOC is a key fraction of the soil labile organic C pool, which is considered
to be a direct reservoir of easily assimilable C for microbial growth and metabolism [49].
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Francioli et al. (2016) showed that different bacterial community taxa exhibited distinct
responses to the availability of nutrients in soils [34]. It was presumed that changes in
soil nutrient availability and plant traits following old-field succession likely triggered
variations in soil bacterial community composition (Table 2) [34].

Actinobacteria and Proteobacteria were the most predominant phyla across all succes-
sional stages (Figure 3). This aligned with previous studies, which showed that these
two ubiquitous bacterial taxa generally dominated the majority of soils [2,65]. Following
old-field succession, the relative abundance of Proteobacteria steadily increased, while that
of Actinobacteria decreased slightly (Figure 3). Although most Actinobacteria are sapro-
phytes [66], they prefer and thrive in oligotrophic environments by providing a series of
extracellular hydrolytic enzymes [67,68]. These enzymes have the capacity to degrade plant
and animal residues [62], as well as highly recalcitrant organic materials [69], which enables
Actinobacteria to flourish in resource-limited conditions [68]. LEfSe analyses and LDA
values indicted that the most abundant members of Actinobacteria, including Geodermatophi-
laceae, Frankiales, Blastococcus, Micrococcales, Micrococcacea, Propionibacteriales, Nocardioidaceae,
Nocardioide, and Streptomycetacea, were present in the farmland stage (Figure 4 and Figure
S2), which likely resulted from the lower levels of available nutrient substrates in the farm-
land stage relative to other successional stages (Table S2). Furthermore, most Actinomycetes
prefer aerobic environments [70]. Thus, abundant litter biomass and soil moisture following
old-field succession may lead to poor soil aeration and lower oxygen content (Table S2),
which inhibits Actinomycete proliferation (Figure 3).

It was shown that the progressively increased relative abundance of Proteobacteria fol-
lowing old-field succession was primarily due to the enrichment of Alphaproteobacteria and
Gammaproteobacteria, rather than Deltaproteobacteria (Table 2). Proteobacteria (e.g., Alphapro-
teobacteria and Gammaproteobacteria) are known to be fast-growing copiotrophic groups,
abundant in soil with sufficient labile substrates [37,45,71,72]. This was supported by our
findings that Proteobacteria, Alphaproteobacteria, and Gammaproteobacteria were strongly asso-
ciated with LB, SOC, WSOC, SON, and NH4

+-N (Table S5; Figure 7). LEfSe analyses and
LDA values indicated that the most abundant members of Proteobacteria (e.g., Rhizobiales,
Xanthobacteraceae, Gammaproteobacteria, Bradyrhizobium, Rhizobiaceae, and Mesorhizobiur)
were observed in climax forest (Figure 4 and Figure S2). We extrapolated that gradually
increased members of Proteobacteria following old-field succession were largely driven by
the considerably enhanced availability of resources [37].

In this study, the Rhizobiales order was the largest subgroup within Alphaproteobacteria
across all successional stages (Table S3 and Table 2). The proportion of Rhizobiales in the
Alphaproteobacteria gradually increased following old-field succession, which accounted
for 53.29%, 58.32%, 55.70%, 64.31%, 64.06%, and 69.92% in the farmland, pioneer weeds,
herbage, shrub, early forest, and climax forest stages, respectively (Table S3 and Table 2).
LEfSe analyses and LDA values confirmed that significant enrichment of Rhizobiales, Rhi-
zobiaceae, and Bradyrhizobium was observed in the climax forest (Figure 4 and Figure S2).
Previous studies reported that the members of Rhizobiales (from order to genus) were greatly
affected by soil pH [73]. Rhizobiales was affiliated within Alphaproteobacteria, showing an op-
posite trend with increasing soil pH [74]. Moreover, Rhizobiales was shown to be positively
correlated with SOC fractions [75]. It was deduced that the most enriched members of
Rhizobiales found in climax forest may have been intimately associated with the lowest soil
pH, and the highest SOC and WSOC (Figure 4 and Figure S2). The members of Rhizobiales
contain many N-fixing endophytes [63,76], have the ability to supply N for its symbiotic
plant by fixing atmospheric N [77], and play key roles in the promotion of plant growth [76].
Further, Rhizobiales members are extensively involved in N fixation [77] and the decomposi-
tion of OM [26]. It may be surmised that greatly increased members of Rhizobiales in the
late successional stages provide ample N nutrition to symbiotic plants through the fixation
of atmospheric N to promote their primary productivity (Table 3, Tables S3 and S4) [76,77].
Ultimately, they indirectly facilitate the accumulation of SOC and SON owing to additional
plant residues returning to the soil (Table S2). Similarly, the Xanthomonadales order within
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Gammaproteobacteria has been documented to favor soil environments with low pH [26]. The
highest relative abundance of Xanthomonadales in climax forest may be partially attributed
to the lower soil pH between successional stages (Tables S2 and S3). Furthermore, with the
relative abundance of Acidobacteria, little changed following old-field succession, revealing
that alterations of soil nutrient substrates and physicochemical properties had no significant
impact on Acidobacteria in this study (Figure 3).

In general, Chloroflexi, Gemmatimonadetes, Firmicutes, and Cyanobacteria are widely
regarded as slow-growing oligotrophic groups that flourish in nutrient-deprived and
disturbed environments [4,35,36,78]. Chloroflexi belong to photoautotrophic bacteria [40]
and can fix C through photosynthesis [79]. Trivedi et al. (2016) documented that Chloroflexi
was more enriched in agricultural systems relative to natural systems [80]. In this study, the
lower Chloroflexi abundance (from phylum to class) in climax forest was primarily caused
by the highest soil nutrient substrates levels, which restricted the oligotrophic Chloroflexi
(Table 2 and Table S2; Figure 3). Moreover, the increased canopy density in climax forest
reduced the light intensity that might be negatively affected photosynthesis for Chloroflexi
and the growth of Chloroflexi (Table S1) [9]. Members of Firmicutes, particularly Bacilli
(from class to genus), have been documented to survive in harsh environments that were
instrumental in Endospore-forming Firmicutes, which carried out various survival strategies
to resist disadvantaged circumstances [81]. It was deduced that the low level of SOM and
harsh environments in the farmland and pioneer weeds stages might have stimulated the
growth of Firmicutes, which resulted in higher relative abundances of Firmicutes and Bacilli
(from class to genus) compared with other successional stages (Table 2, Table 3 and Tables S2–
S4; Figure 3). Additionally, Cyanobacteria and Oxyphotobacteria (a class within Cyanobacteria)
are well-known photoautotrophs with desiccation-resistant features [82], which have been
shown to flourish under greater solar radiation and lower soil moisture [82]. In the present
study, Cyanobacteria and Oxyphotobacteria were most abundant in the farmland stage, while
they significantly declined following old-field succession (Table 2; Figure 3). It was reasoned
that substantially decreased Cyanobacteria and Oxyphotobacteria abundance following old-
field succession may have partly resulted from a gradually decrease in the availability of
sunlight owing to greater shading caused by the canopies of shrubs and trees and increased
litter coverage (Table 2 and Table S2; Figure 3) [83]. Cyanobacteria and some members
of Firmicutes (e.g., members of Bacillales) have been documented to be N fixing species;
thus, it may be surmised that the most enriched Cyanobacteria and Firmicutes abundance
would facilitate supply and absorption of soil nutrients in the farmland stage (Table S2;
Figure 3) [84,85].

Shifts in soil bacterial community composition can affect decomposition and seques-
tration of SOM [40]. In the present study, LEfSe and ANOVA analyses displayed that the
soil bacterial community composition was transformed from oligotrophic groups (e.g.,
Actinobacteria, Firmicutes, and Cyanobacteria) to copiotrophic groups (e.g., Proteobacteria)
following old-field succession (Figure 3, Figure 4 and Figure S2). Oligotrophic bacteria have
been shown to favor the decay of recalcitrant organic materials [36,69,86]. For instance,
Barka et al. (2016) reported that Actinobacteria have the capacity to degrade highly recal-
citrant organic compounds through the penetration of their hypha into plant tissues [69].
Chloroflexi plays a central role in degradation of recalcitrant matter (e.g., aromatics, N-
containing, and phenolic compounds) [86]. Lladó et al. (2017) revealed that Firmicutes have
the ability to utilize recalcitrant C [36]. The highest abundance of oligotrophic bacteria
(e.g., Actinobacteria and Firmicutes) in the farmland stage likely accelerated the decompo-
sition of recalcitrant OM which had a prolonged residence time [36,69]. This facilitates
the decomposition of SOM, which may be detrimental SOC and SON sequestration in the
long-term [87,88]. Conversely, copiotrophic bacteria, particularly Proteobacteria, thrive in
nutrient-rich environments with a high availability of C [37,71], and have a preference
for the decomposition of labile OM owing to only sufficient labile C substrates ensuring
their rapid growth rate [72]. It may be postulated that the climax forest possessed the most
abundant copiotrophic Proteobacteria, and less oligotrophic Chloroflexi, Gemmatimonadetes,
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and Actinobacteria relative to farmland stage (Figure 3). This might promote the SOC
and SON accumulation by increasing utilization of labile organic C and N, while decel-
erating the decomposition of recalcitrant organic C and N following old-field succession
(Table S2) [69,72,86].

5. Conclusions

The study revealed that soil bacterial abundance progressively increased, while bac-
terial richness and diversity significantly decreased following ~160 years of old-field
succession. The composition of soil bacterial communities was transformed from olig-
otrophic groups to copiotrophic groups following old-field succession. This transformation
was primarily driven by variations in litter and root biomass, soil nutrient substrates,
physicochemical properties, and light intensity. Climax forest exhibited the most abundant
copiotrophic Proteobacteria, and less oligotrophic Actinobacteria, Chloroflexi, and Gemmati-
monadetes relative to farmland stage. This likely promoted SOC and SON sequestration
over the long-term through raising utilization of labile organic C and N and decreasing
recalcitrant organic C and N decomposition along with old-field succession. This study
provides evidence toward better elucidating variations and driving mechanisms behind
changes in soil bacterial communities following old-field succession, which will provide
policymakers with a scientific basis for evaluating the effectiveness of ecological restora-
tion strategy from the perspective of soil microbial recovery to promote restoration and
sustainable management of degraded ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13101628/s1, Table S1: Geographical features and vegetation at
different successional stages on the Loess Plateau of China, Table S2: Plant and soil (0–20 cm depth)
properties (mean ± SE, n = 4) at different successional stages on the Loess Plateau of China, Table S3:
Relative abundance (% of individual taxonomic groups) of the dominant bacterial orders (mean ± SE,
n = 4) present in the soil (0–20 cm depth) microbial communities at different successional stages
on the Loess Plateau of China, Table S4: Relative abundance (% of individual taxonomic groups)
of the dominant bacterial families (mean ± SE, n = 4) present in the soil (0–20 cm depth) microbial
communities at different successional stages on the Loess Plateau of China, Table S5: Pearson
correlations coefficients between soil bacterial communities at the class-level and the environmental
variables (n = 4) between successional stages on the Loess Plateau of China, Figure S1: α-Diversity
comparison. (a) Rarefaction curves for OTU and (b) Shannon-Wiener curves were calculated using
Mothur (v.1.30.1) with reads normalized to 40,838 for each sample using 0.03 distance OTU. See
Figure 2 for abbreviations, Figure S2: Indicator microbial groups within six different successional
stages with LDA values higher than 3.5. See Figure 2 for abbreviations.
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