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A B S T R A C T   

Lignin decomposition is critically linked to terrestrial carbon (C) cycle due to the enormous C mass of lignin and 
its importance in controlling overall rates of litter decomposition. Interactions between lignin and iron (Fe) 
minerals have been increasingly recognized as key mediators of lignin decomposition in experimental studies. 
However, we still lack a quantitative understanding of how Fe minerals interact with microbes to control lignin 
decomposition. Here, we leveraged experimental results from an incubation of Fe-rich soil, in which lignin 
decomposition rates were measured at aerobic conditions after four levels of pre-treated O2 availability, to 
examine microbe-Fe (MiFe) interactions in lignin decomposition with a MiFe model. We quantified how Fe redox 
cycling interacted with microbial activities to control lignin decomposition via data-model integration. Our 
results showed that the MiFe model with time-dependent growth and mortality functions better represented CO2 
release from lignin decomposition (R2 ranging from 0.96 to 0.97) than models assuming either first-order or 
Michaelis-Menten kinetics. Reduction of Fe(III) to Fe(II) after pre-treatments with lower O2 availability stimu-
lated the Fenton reaction to break down macro-molecular lignin into small molecules available to microbes. The 
small molecules of lignin and necromass bounded with oxidized Fe and were protected from decomposition. 
After 1-year incubation, the model implied that most of C stabilized with Fe minerals was derived from small 
molecular lignin C. Our quantitative analysis of microbe-Fe interactions sheds new light on lignin decomposition 
and preservation and helps improve model prediction of soil C persistence under global change.   

1. Introduction 

Lignin is one of the most abundant plant-derived organic substances 
in the terrestrial ecosystems (Boerjan et al., 2003), and its decomposi-
tion is critically linked to soil carbon (C) input and persistence. Lignin 
has long been recognized to limit overall decomposition rate of plant 
litter due to its perceived biochemical recalcitrance relative to other 
organic constituents (Talbot and Treseder, 2012). Accordingly, lignin 

plays a critical role in litter and soil organic C (SOC) decomposition 
(Parton et al., 1987; Izaurralde et al., 2006). However, a new paradigm 
of SOC research has challenged the notion and posits that lignin can 
decompose faster than SOC as a whole (Amelung et al., 2008; Thevenot 
et al., 2010). Most of the previous studies suggested that lignin 
decomposition is primarily controlled by fungi and largely regulated by 
litter chemical properties. Recent work has pointed to the importance of 
interactions between soil minerals and lignin decomposition to partially 
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reconcile these old and new paradigms (Huang et al., 2019). Yet, 
fundamental processes that control lignin decomposition are to be un-
derstood for evaluating these competing conceptual models. Therefore, 
it is imperative to develop a generalizable framework to quantify the 
role of mineral-microbe interactions in lignin decomposition and SOC 
persistence. 

Interactions of lignin and geochemical context, such as iron (Fe) 
minerals, have been increasingly recognized as key controllers for lignin 
decomposition (Hall et al., 2015, 2016). Reactive Fe minerals critically 
influence soil C dynamics through both biotic and abiotic processes 
(Weber et al., 2006; Kleber et al., 2015). Iron oxides can preferentially 
associate with aromatic lignin constituents via sorption and coprecipi-
tation to protect lignin C from microbial attack, relative to other organic 
compounds (Kramer et al., 2012; Riedel et al., 2013). Besides the 
extracellular oxidative enzymes that are generally considered to break 
down lignin, reactive oxygen species such as hydroxyl radical generated 
via Fe redox cycling, known as the Fenton reaction (Hall and Silver, 
2013; Hall et al., 2015), can cleave the relatively stable ether bonds of 
lignin (Wood, 1994; Hammel et al., 2002). Once lignin is depolymerized 
by these abiotic mechanisms, the lower molecular weight lignin frag-
ments in principle could be readily metabolized by many bacteria in 
addition to fungi (Cotrufo et al., 2013). Together, Fe minerals exert dual 
impacts on lignin decomposition: protection of lignin-derived C by Fe 
oxides (Riedel et al., 2013; Hall et al., 2016; Coward et al., 2018) versus 
stimulation of lignin decomposition by reactive oxygen species pro-
duced via Fe redox cycling in fluctuating redox environments (Hall 
et al., 2015; Calabrese and Porporato, 2019; Huang et al., 2019). 

Although mineral-microbe interactions have been widely understood 
to control lignin decomposition (Ginn et al., 2017; Calabrese and Por-
porato, 2019; Zheng et al., 2019; Huang et al., 2021), we still lack a 
generalizable framework to quantify these interactions that help esti-
mate fates of lignin C and quantify contribution of lignin to SOC 
persistence. To develop the framework, we need comprehensive data 
sets to test alternative models regarding the role of mineral-microbe 
interactions. The study by Huang et al. (2019) employed a C stable 
isotope approach to distinguish the source of respired CO2 and applied a 
single anaerobic event of varying duration to generate differences in Fe 
(II) at the beginning of the incubation. The data set includes high 
frequent measurements of lignin decomposition over ~1-yr incubation 
period (Huang et al., 2019). Interestingly, lignin decomposition rates 
reached different peaks several months after redox pre-treatments, 
which may indicate the strong interactions of Fe and lignin. The 
observed non-linear patterns clearly did not follow traditional first-order 

kinetics, which has been widely used to describe decomposition of litter 
and SOC (Parton et al., 1993; Bondeau et al., 2007; Adair et al., 2008; 
Clark et al., 2011; Koven et al., 2013). Sufficient incubation time and 
intensive observation data provide strong support for the construction 
and theoretical analysis of a new framework for lignin decomposition. 
Indeed, the pattern of lignin decomposition reported in Huang et al. 
(2019) was also observed in many other soils (Hall et al., 2020). Thus, a 
framework that is developed based on the data set in Huang et al. (2019) 
is likely to be applicable to other studies on lignin decomposition, 
especially in Fe-rich soils. 

This study reveals likely mechanisms underlying lignin decomposi-
tion via microbe-Fe interactions based on a data-model synthesis of re-
sults from an experiment published by Huang et al. (2019). We first 
evaluated alternative mechanisms as expressed in process-based models, 
such as first-order kinetics in a multi-pool model, microbially mediated 
reaction in a Michaelis-Menten model, and microbe-Fe-mediated lignin 
decomposition as in a microbe-Fe interaction (MiFe) Model. The MiFe 
model incorporates Fe-mediated breakdown of macromolecular to small 
molecular lignin C via the Fenton reaction, microbial decomposition of 
small molecular lignin C, and protection of lignin C via Fe association 
(Fig. 1). Our evaluations indicated that neither the classical three-pool, 
first-order kinetics model nor the Michaelis-Menten model well repre-
sents the observed patterns of lignin decomposition in Huang et al. 
(2019) (Fig. 2). In contrast, our new MiFe model better reproduced the 
observed data (Fig. 2), and was the primary focus of this study. We 
interpreted modeling results to examine possible key controlling 
mechanisms and fates of lignin C in soil. 

2. Materials and methods 

2.1. Incubation data 

The data used in this study were from an incubation study by Huang 
et al. (2019). In that incubation study, soil was sampled from an upland 
valley in a perhumid tropical forest near the El Verde field station of the 
Luquillo Experimental Forest (18◦17′N, 65◦47′W), Puerto Rico. This soil 
is an Oxisol developed from basaltic to andesitic volcaniclastic sedi-
ments (pH = 5.03). Soil organic carbon at 0–10 cm measured 44.8 mg 
g− 1, and soil nitrogen was 4.1 mg g− 1. The soil at 0–10 cm had 10% sand, 
53% silt and 37% of clay. Information about soil sampling, the experi-
mental design of applying C isotope-labeled lignin and high-frequency 
isotope measurements of lignin decomposition to CO2 were described 
in detail in Huang et al. (2019). In general, Huang et al. (2019) amended 

Fig. 1. Conceptual diagram of the microbe-Fe 
interaction (MiFe) model of lignin decomposi-
tion. X1, X2, X3 and X4 represent macromolecular, 
small molecular, microbial, and protected carbon 
pools, respectively. F1, F2 and F3 represent reduced, 
oxidized, and complexed iron pools, respectively. The 
solid black line represents carbon fluxes while the 
solid blue line represents the iron transfer pathway. 
Detailed descriptions of transfer coefficients can be 
found in Supplementary Table S2. The blue dashed 
lines indicate iron-carbon interaction processes. Sign 
“+” indicates a positive effect. The blue dot means 
iron-driven transfer. (For interpretation of the refer-
ences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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a tropical forest (C3 vegetation) soil rich in reactive Fe minerals, with 
leaf litter from a C4 grass and either synthetic 13Cβ-labeled or unlabeled 
lignin. Thus, lignin-C could be discriminated from other C sources (i.e., 
litter-C and soil-C). Specifically, Huang et al. (2019) incubated soil 
samples with three types of substrates, including (1) soils alone, (2) soils 
amended with litter and synthetic lignin (soil + litter + unlabeled 
lignin), and (3) soils amended with litter and synthetic lignin labeled 
with 99 atom % 13C at the Cβ position of each lignin C substructure (soil 
+ litter + labeled lignin). Samples were pretreated with either 12, 8, 4, 
or 0 days of anaerobiosis at staggered intervals over the first 12 days of 
the incubation to generate a gradient of reduced Fe, with more reduced 
Fe under longer anaerobic pre-treatments. Subsequently, samples after 
pre-treatments were exposed to an aerobic headspace for 317 days. All 
soil samples were incubated in glass jars at 23 ◦C in the dark for total 329 
days. 

Huang et al. (2019) measured CO2 production rates and their C 
isotope ratios (δ13C) from the soil samples every 2 or 4 days in the 
beginning, weekly after 47 days, and every other week after 189 days. 
The production of CO2 derived from 13Cβ-labeled lignin was calculated 
by mixing models described in Huang et al. (2019). Overall, there were 
50 sampling times over the whole 329-day incubation period. They 
found that lignin decomposition increased rapidly after 77 days and 
peaked at ~4 months. We inferred that microbial community that 
degraded lignin was built during 77 days at the beginning of incubation, 
which was difficult to be represented as empirical equations so that the 
records before 77 days were not included in our models. The lignin 
decomposition then diverged markedly among the four anaerobic 
pre-treatments, resulting in significantly more CO2 production from 
lignin decomposition in the 12-day anaerobic pre-treatment, followed 
by the 8-day anaerobic treatment, control, and 4-day anaerobic 
pre-treatment at the end of the incubation (Huang et al., 2019). To 
explain the mechanism underlying lignin decomposition, a total of 25 
sampling records (from 77 days to 329 days) of the 12-day, 8-day, 4-day 
anaerobic pre-treatments, and control were used in this study to 
construct models as described below. In addition, the other experi-
mental information was also applied in this study, such as 13C labeled C 

mass of the added synthetic lignin at 313.06 μg and total Fe extracted by 
sodium dithionite at 64 mg in each sample soil. 

2.2. Model description 

2.2.1. Microbe-Fe interaction (MiFe) model 
To mechanistically simulate the observed dynamics of lignin 

decomposition in the four pre-treatments with different O2 availability, 
we developed microbe-Fe interaction (MiFe) models by incorporating 
the microbe-Fe interactions in lignin decomposition (Fig. 1). 

Specifically, the model consists of two main processes: lignin-derived 
C transformation among different pools and Fe conversion. The 
conceptualized lignin-C pools include macromolecular lignin C (X1), 
small molecular lignin C (X2), microbial carbon (X3), and Fe-protected 
lignin C (X4). Meanwhile, Fe minerals in soil are divided into reduced 
Fe(II) (F1), oxidized Fe(III) that is not associated with lignin C (F2) and 
Fe associated with lignin C (F3). Please note that our modelling analysis 
was focused only on lignin C decomposition, and we did not include 
litter decomposition in our model. Also, it is true that lignin is not the 
only microbial substrate in the process of litter and soil organic C 
decomposition. However, as this model only considered the process of 
lignin decomposition, the microbes in the model here were referred to 
the lignin-degrading organisms, such as white-rot fungi, brown-rot fungi 
and some bacteria (actinomycetes). 

The detailed balance equations for each pool can be found in 
Table S1 of supplementary materials. The dynamics of lignin C pools and 
Fe pools can be described by the following two matrix equations: 

dX
dt

=A1KX(t) + A2TX(t) (1)  

dF
dt

=RF(t) (2)  

where the C decomposition 
( dX

dt
)

is controlled by both the microbe- 
dominated process (A1KX(t)) and iron-coupled transformation (A2KX 
(t)). In the beginning, the pool size of each pool is given by a proportion 

Fig. 2. Observed and simulated CO2 production 
rates from lignin decomposition in the Oxisol with 
four anaerobic pre-treatments. (a) 0-day anaerobic 
pre-treatment (Control), (b) 4-day anaerobic pre- 
treatment (4-day), (c) 8-day anaerobic pre-treatment 
(8-day), (d) 12-day anaerobic pre-treatment (12- 
day). Three models, i.e., three-pool first-order kinetics 
model (3P model, blue line), Michaelis Menten model 
(MM model, green line), and MiFe model with logistic 
functions (red line), were used to fit observations 
(black line). Insets are comparison of observations vs. 
predictions from the MiFe model. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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(X1,0, X2,0, X3,0 and X4,0) of total lignin 13C-labeled C amount. For 
example, the initial proportion of macromolecular lignin C (X1) is X1,0. 
In Eq. (1), K is a matrix that expresses the C decomposition rates of 
different C pools driven by microbial activity. Matrix A1 represents the 
transfer coefficients at which decomposed C is transferred from one pool 
to another. Similarly, while matrix T shows the transfer rates of Fe pools, 
A2 indicates the transfer fractions among different Fe pools. 

Specifically, A1, A2, K, and T were written as: 

A1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 − 1 a2,3 1
0 a3,2 − 1 0
0 0 0 − 1

⎞

⎟
⎟
⎠ (3)  

K=

⎛

⎜
⎜
⎝

0 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

⎞

⎟
⎟
⎠ (4)  

A2 =

⎛

⎜
⎜
⎝

− 1 0 0 0
1 − 1 0 0
0 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ (5)  

T=

⎛

⎜
⎜
⎝

t2,1∗R2,1∗F1 0 0 0
0 t4,2∗R3,2∗F2 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ (6)  

where ki represents the decay rate of ith C pool, but with k4 referring to 
the destabilized rate of X4. Each item ai,j is the C transfer coefficient, 
representing the fraction of C being transferred from the donor pool j to 
the recipient pool i. Among these transfer coefficients, a3,2 indicates the 
fraction of the depolymerized small molecular lignin C (i.e., X2) used in 
microbial metabolism to build microbial biomass (i.e., X3). Therefore, 
a3,2 is the conversion efficiency for lignin C, regarded as the microbial 
carbon use efficiency (CUE) of lignin. In matrix T, the transfer rates of 
lignin C pools (from C pool i to j) can be expressed as tj,i*Rj,i*Fi, where tj,i 

represents the coupled coefficients between C transfer and Fe conver-
sion. Rj,i indicates the conversion rate of Fe from the pool i to j and Fi is 
different Fe pools. 

R in Eq. (2) indicates the transfer rates between Fe pools, which can 
be described as follows: 

R=

⎛

⎝
− R2,1 R1,2 0
R2,1 −

(
R1,2 + R3,2

)
R2,3

0 R3,2 − R2,3

⎞

⎠ (7) 

Each item Ri,j in matrix R in Eq. (7) indicates the transfer rate of Fe 
from the pool j to i. According to the empirical studies, we assumed that 
the breakdown of macromolecular C into small molecular C is deter-
mined by Fe(II) concentration and the transfer rate from Fe(II) to Fe(III) 
(R2,1) by t2,1 (Eq. (6)). The concentration of Fe(III) controls the transfer 
of small molecular C to protected C by t4,2 (Eq. (6)). 

Different from traditional first-order kinetic scheme in biogeo-
chemical models, we adopted the following Logistic Equations (Eqs. (8) 
and (9)) to simulate the nonlinear growth of microorganisms (McKen-
drick and Pai, 1911). Logistic Equation is an optimal mathematical 
model to describe the law of population growth under the condition of 
limited resources. The initial stage of growth is approximately expo-
nential. Then, as saturation begins, the growth slows to linear and at 
maturity, growth stops. Eq. (8) described the uptake rate of small mo-
lecular lignin C in microbial synthesis, Eq. (9) expressed the mortality 
rate of microbes. 

k2 =
θ1

1 + e− θ2(t− θ3)
(8)  

k3 =
θ4

1 + e− θ5(t− θ6)
(9)  

where k2 and k3 refers to the time-dependent (t) microbial uptake 
function and microbial decay function, respectively. θ1, θ2 and θ3 indi-
cate the maximum rate, growth rate and lag phase in uptake function, 
respectively, whereas θ4, θ5 and θ6 constitute the maximum rate, decay 
rate and lag phase, respectively, in the decay function. 

There are a total of 20 parameters in the MiFe model. We used 
Bayesian Markov Chain Monte Carlo (MCMC) technique (as described 
below) with the experimental data of lignin-derived CO2 production 
after 77-day incubation published in Huang et al. (2019) to estimate all 
the model parameters. 

2.2.2. Microbe-Fe interaction model with Michaelis-Menten kinetics (MM 
model) 

Moreover, in a separate model, we also applied Michaelis-Menten 
kinetics (microbe-Fe interaction models with Michaelis-Menten ki-
netics, MM model) instead of using logistic equations to explore the most 
suitable microbial growth patterns. The Michaelis-Menten kinetics in 
the microbe-dominated processes is assumed to be the function of sub-
strate availability and enzymatic activity (Schimel and Weintraub, 
2003; Wieder et al., 2013). The Michaelis–Menten equation has the 
same form as the Monod equation (Monod, 1949), but the difference 
between them is that the Monod equation is based on empirical while 
the Michaelis–Menten equation is based on theoretical considerations. It 
can also be used to describe a relationship between microbial specific 
growth rate and the presence of a single limiting substrate.: 

k2 =Vmax1

(
X2

X2 + Ks1

)

(10)  

k3 =Vmax2

(
X3

X3 + Ks2

)

(11) 

In this formulation, the decomposition rate will be limited by sub-
strate availability (small molecular C, X2 or microbial C, X3). Each of the 
Michaelis-Menten equation is based on two key parameters: Vmaxi, the 
maximum growth rate of this microorganism and Ksi, the substrate half- 
saturation constant. They will differ between microorganism species and 
will also depend on the ambient environmental conditions, e.g., tem-
perature, pH of the solution, and the composition of the culture medium 
(Monod, 1949). Except for equations (10) and (11), the structure and 
equations of MM model are consistent with those of MiFe model. A total 
of 18 parameters in the MM model were estimated by MCMC technique 
as well. 

2.2.3. Non-Fe model 
To examine the relative importance of the Fe-mediated stabilization 

in the dynamics of lignin CO2 production, we established a non-Fe model 
based on the MiFe model. The only difference between the non-Fe model 
and the MiFe model is that the transfer coefficients represented by T do 
not couple with Fe pools (Eq. (12)) in the non-Fe model to remove 
microbe-Fe interactions on lignin decomposition. 

T=

⎛

⎜
⎜
⎝

t2,1 0 0 0
0 t4,2 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ (12) 

A total of 20 parameters in the non-Fe model were estimated by 
MCMC technique. We only tested the 12-day anaerobic pre-treatment 
for the non-Fe model to illustrate the role of Fe in SOC stabilization. 

2.2.4. 3-Pool transfer model 
In most of the terrestrial C cycle models, the soil organic matter 

(SOM) decomposition module is represented by multiple C pools and 
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uses a first-order kinetic scheme (Parton et al., 1993; Bondeau et al., 
2007; Adair et al., 2008; Clark et al., 2011; Koven et al., 2013). In this 
study, we firstly applied a first-order 3-pool (3P) transfer model, which 
is the traditional structure derived from the CENTURY and TECO models 
(Parton et al., 1993; Luo et al., 2003), to simulate the lignin C transfer 
(Supplementary Fig. S1). The 3P model consists of three C pools, theo-
retically separating the lignin C into active, slow and passive compo-
nents with their respective decay rate. The dynamics of lignin C is 
realized through transfers among these three pools, which can be 
formulated to a matrix equation as follows: 

dP
dt

=AKP(t) (13)  

where P(t) is a 3 × 1 vector indicating lignin C pool sizes. Matrix A 
represents the C transfer coefficient and K is a 3 × 3 matrix with each 
diagonal element representing the turnover rate of each C pool as: 

A=

⎛

⎝
− 1 f1,2 f3,1
f2,1 − 1 0
f3,1 f3,2 − 1

⎞

⎠ (14)  

K=

⎛

⎝
k1 0 0
0 k2 0
0 0 k3

⎞

⎠ (15)  

where each item fi,j in Eq. (14) is C transfer coefficient, representing the 
fraction of C from the pool j to i. ki in Eq. (15) refers to decay rate of ith C 
pool. The above structure and the matrix equations have been widely 
used and verified in biogeochemical research (Xu et al., 2006, 2016; 
Liang et al., 2015). We applied the 3P model accompanied by data 
assimilation with the incubation data to examine the first-order decay 
hypothesis. 

2.3. Data assimilation 

Probabilistic inversion approach (Eq. (16)) based on Bayes’ theorem 
was used to estimate parameters in this study (Xu et al., 2006; Tao et al., 
2020): 

P(θ|Z)∝P(Z|θ)P(θ) (16)  

where P(θ|Z) is the posterior probability density function of model pa-
rameters θ, which can be obtained from the likelihood function P(Z|θ) 
and prior probability density function P(θ). P(θ) represents the 
assumption range of parameters θ based on empirical knowledge. P(Z|θ) 
is the conditional probability density of parameter θ under observation 
Z, which is defined as the likelihood function. For a given observation Z 
and a specific model, P(Z|θ) can be calculated with the following 
equation with the assumption that model prediction errors are inde-
pendent and follow a multivariate Gaussian distribution with a zero 
mean (Liang et al., 2015): 

P(Z|θ)∝exp

{

−
∑k

i=1

[zi(t) − xi(t)]
2σ2

i (t)

}

(17)  

where zi and xi indicate modeled and observed values, respectively. σi is 
the standard deviation of the observations and k is the number of ob-
servations. In this study, observations refer to the incubation data from 
Huang et al. (2019). 

To generate the posterior distributions of parameters, Metropolis- 
Hastings (M-H) algorithm was used to do the probabilistic inversion 
(Haario et al., 2001), which is a Markov Chain Monte Carlo (MCMC) 
technique (Metropolis et al., 1953; Hastings, 1970). The new parameter 
values were proposed uniformly within their proposed prior range 
(Hararuk et al., 2014): 

θnew = θold +
d(θmax − θmin)

D
(18)  

where θnew is the new proposed parameter value and θold is the accepted 
parameter value in the last step. θmin and θmax represent the upper and 
lower limits of proposed prior range, respectively. d is a uniformly 
distributed random variable between − 0.5 and 0.5 to help find an 
appropriate new parameter value randomly in the moving step. D is a 
coefficient to control the proposing step size, which could vary with 
models. 

Uniform Metropolis criterion was used to determine whether the new 
parameter values would be accepted (Xu et al., 2006). The M-H algo-
rithm was formally run with 5 replicates and 200,000 times for each 
replicate for statistical analysis of the parameters. Due to the random-
ness of each replicate, only the last half of the accepted parameter values 
were used to generate posterior distribution. And we took the averages 
of the last hundred accepted parameter values as the optimal parameter 
values. Overall, the targeted parameters in the MiFe model were effec-
tively constrained by data assimilation (Supplementary Fig. S5), espe-
cially for the initial proportion of lignin C pools and Fe(II) and Fe(III), 
transformation coefficient and coefficients of microbial uptake and 
decay functions. However, the parameters for transfer rates were not 
well constrained, which might be due to the weak signals from incu-
bation data. In fact, only a very small proportion (less than 1%) of the 
measured CO2 was produced from the Fe-protected lignin C so that the 
current observation could not provide enough information to constrain 
those parameters. 

The convergence of the simulated Markov Chains was further tested 
by the Gelman-Rubin (G-R) diagnostic method to ensure that the within- 
run variation was roughly equal to the between-run variation (Gelman 
and Rubin, 1992). If the number of parallel M-H runs is M and the 
number of accepted iterations is N, the between and within-run varia-
tions of ith parameter can be calculated using the following equation:  

Wi =
1
M

∑M

m=1
σ2

m (19)  

Bi =
N

M − 1
∑M

m=1
(p.,m − p.,.)

2 (20)  

where p.,m and σm represent the mean and standard deviation of the 
specific parameter in the mth replicate, and p.,. is the mean of the specific 
parameter over the M replicates. G-R statistic of specific parameter is 
defined as: 

GRi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Wi(N − 1)/N  +  Bi/N
Wi

√

(21) 

In this study, the GRs of all parameters of the four pre-treatments 
approached 1, which indicates the Markov chain reached convergence. 

2.4. Statistical analysis 

Common statistical analysis methods were used to evaluate the 
fitness of models, including the coefficient of determination R2 (com-
parison between the observed and simulated data), Root Mean Square 
Error (RMSE), Mean Absolute Percent Error (MAPE) and Akaike infor-
mation criterion (AIC). For total n data points, the formulas of R2, RMSE, 
MAPE and AIC (Akaike, 1974; Burnham and Anderson, 2004) are as 
follows: 

R2 =

[

1 −
∑n

i=0(Pi − Obsi)
2

∑n
i=0(Obsi − Obs)2

]

× 100% (22)  
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RMSE =
1
n
∑n

i=0
(Pi − Obsi)

2 (23)  

MAPE =
1
n
∑n

i=0

⃒
⃒
⃒
⃒
(Pi − Obsi)

Obsi

⃒
⃒
⃒
⃒ × 100% (24)  

AIC = n ln

[∑n
i=0(Pi − Obsi)

2

n

]

+ 2b (25)  

where Pi is the prediction of the fitted model and Obsi is the corre-
sponding observation and Obs is the mean of all observed respiration 
rates. b in Eq. (25) refers to the number of estimated model parameters. 
In this study, we used R2 as the main basis to evaluate model perfor-
mance. The R2 value quantifies how well the model fits observations. 
The closer the R2 value approaches 1, the better the model fits the 
observation. Both RMSE and MAPE were reported to provide additional 
evaluations comparing the differences between the model simulations 
and observations. The RMSE is a measure of accuracy that compares 
simulated errors of different models for a particular dataset (Hyndman 
and Koehler, 2006). The RMSE value, always a positive value, decreases 
as the error approaches zero. Different from RMSE, MAPE also considers 
the magnitude of observed data and thus offers intuitive interpretation 
in terms of relative error. Considering both of the fitting goodness and 
the model simplicity, we used AIC value to comprehensively evaluate 
the performance of each model. The model with a smaller AIC value is 
more parsimonious (Liang et al., 2015). 

We presented the optimal model results from the 5 replicated sim-
ulations for each pre-treatment. The average of the 5 optimal parameter 
values was accepted as the final estimated parameter value. We con-
ducted one-way analysis of variance (ANOVA), with Duncan tests to 
compare differences of parameters among pre-treatments at 95% con-
fidence level (P-value < 0.05). All of the above statistics were performed 
with R (version 3.6.2) software. 

3. Results 

3.1. Mechanisms underlying lignin C decomposition 

This study identified the microbe-Fe interactions as represented in 
the MiFe model as the most parsimonious mechanism that can 
adequately reproduce the dynamic changes of CO2 production from 
lignin decomposition in all four anaerobic pre-treatments (Fig. 2). In the 
incubation experiment, soil was pre-treated with 12, 8, 4, or 0 days of 
anaerobic conditions during the first 12 days and was in an aerobic in-
cubation for subsequent 317 days. These pre-treatments are hereafter 
termed 12-day, 8-day, 4-day, and control. The MiFe model fit the 
observed data well with coefficients of determination (R2) between 0.96 
and 0.97 (Table 1 and Fig. 2). The Root Mean Square Error (RMSE) 
values were very close to 0, and Mean Absolute Percent Error (MAPE) 
values were lower than 9% across all the pre-treatments (Table 1). In 
addition, the MiFe model had the lowest AIC value among the models 

that we evaluated. From the dynamic patterns of CO2 production, we 
inferred that there should be accumulation of relatively accessible lignin 
C for microbes to induce an exponential increase of lignin decomposi-
tion. We incorporated the plausible mechanism in the MiFe model by 
assuming that such accumulated lignin C was derived from the break-
down of macromolecular lignin linked to Fe oxidation that produced 
reactive oxygen species such as hydroxyl radical accumulated in the soil. 
Thus, this accumulation and delayed consumption of small molecular C 
by microorganisms led to insufficiency of the first-order kinetic 3-pool 
(3P) model in describing the observed dynamics of lignin C decompo-
sition, especially for different peak heights among the four pre- 
treatments (Fig. 2). The R2 values for fitting the observed data with 
the 3P model ranged from 0.36 to 0.60 for the four pre-treatments 
(Table 1). 

The MiFe model with time-dependent logistic functions was much 
better than Michaelis-Menten functions (i.e., the MM model) to repre-
sent the delay process before the exponential decomposition of small 
molecular lignin C occurred, which was followed by substrate limita-
tion. In comparison, the microbe-substrate reactions as represented in 
the MM model did not fit the observations well (Table 1). The MM model 
simulated relatively smooth curves and did not capture the observed 
patterns of rapid increases and decreases of CO2 production from lignin 
decomposition, especially for the 8-day and 12-day anaerobic pre- 
treatments (Fig. 2). 

Moreover, we represented the mechanism for lignin stabilization in 
the MiFe model by assuming that the small molecular lignin C from both 
breakdown of macromolecular lignin via the Fenton reaction and that 
necromass of dead microbes and small molecular lignin C were stabi-
lized through association with Fe minerals to form the Fe-protected C 
(Hall and Silver, 2013; Chen et al., 2020). We also developed a non-Fe 
model to examine the relative importance of the Fe-mediated stabili-
zation in the dynamics of CO2 production from lignin decomposition. 
The non-Fe model significantly overestimated the respiration rates 
during the late incubation period although it still captured the CO2 
production peak (Supplementary Fig. S2). The non-Fe model also 
simulated higher CO2 production from lignin decomposition than the 
MiFe model (Supplementary Fig. S2). The remaining lignin C during the 
later stage of simulation was more preserved in the form of macromo-
lecular C (44.0%) in the non-Fe model than in the MiFe model (41.1%) 
(Supplementary Fig. S3). The results further indicated that Fe played a 
crucial role in lignin decomposition and SOC persistence. 

3.2. Key processes determining lignin C decomposition 

Differences in CO2 production among the four pre-treatments could 
be primarily explained by variations in initial C and Fe pool sizes of the 
simulations, C transfer rates, and microbial uptake rates (Fig. 3 and 
Supplementary Table S2). Generally, the duration of the initial anaer-
obic pre-treatment controlled Fe reduction and thus affected the sub-
sequent lignin decomposition process through altering the abundance of 
reduced Fe and microbial activities. The initial value of Fe(II) (F1,0) 
increased with the anaerobic duration of the pre-treatments (Fig. 3a), 

Table 1 
Measures of data-model fittings. Determination coefficient (R2) values, Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE) were used to 
measure the goodness-of-fit of the microbe-Fe interaction (MiFe) model, 3-pool transfer (3P) model and Michaelis-Menten kinetics (MM) model in simulating lignin 
CO2 production rates under 0-day (Control), 4-day, 8-day, and 12-day anaerobic pre-treatments. Akaike information criterion (AIC) was used to evaluate the simplicity 
of models.  

Treatments MiFe model  3P model  MM model 

R2 RMSE (μg C g− 1 

d− 1) 
MAPE 
(%) 

AIC R2 RMSE (μg C g− 1 

d− 1) 
MAPE 
(%) 

AIC R2 RMSE (μg C g− 1 

d− 1) 
MAPE 
(%) 

AIC 

Control 0.958 0.003 4.30 − 248.6 0.393 0.012 19.0 − 202.0 0.804 0.007 10.5 − 214.2 
4-day 0.974 0.002 3.28 − 265.6 0.603 0.009 14.9 − 217.2 0.704 0.008 15.1 − 208.5 
8-day 0.962 0.005 7.57 − 225.2 0.363 0.020 31.0 − 174.7 0.730 0.013 18.7 − 180.2 
12-day 0.972 0.005 8.11 − 220.7 0.365 0.026 35.3 − 162.9 0.785 0.015 20.5 − 174.0  
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consistent with the experimental observations in Huang et al. (2019). 
The greater initial values of small molecular C (X2,0) in the longer 
anaerobic pre-treatments likely resulted from stronger lignin depoly-
merization induced by the Fenton reaction than the shorter anaerobic 
pre-treatments (Wood, 1994; Hammel et al., 2002). Consequently, the 
ability of microbes to use C when C was abundant, which was repre-
sented by logistic growth rate (θ2) in the MiFe model, increased from the 
4-day to 12-day anaerobic pre-treatments but not in the control (Fig. 3c). 
The delay effect of microbial uptake function as described by the 
half-life time (θ3) was higher in the 4-, 8- and 12-day anaerobic 
pre-treatments than in the control (Fig. 3c). On the other hand, the lag 
phase of microbial decay function (θ6) was longer in the 4-, 8- and 
12-day anaerobic pre-treatments (Fig. 3f). 

The non-Fe model simulation showed that when there was no Fe 
effect on lignin decomposition, similar peak height in the 12-day pre- 
treatment was simulated by a lower lag phase (θ3) in microbial uptake 
function (Supplementary Fig. S4b). Relative to the MiFe model, the 
maximum decay rate (θ4) in microbial decay function was higher in the 
non-Fe model, which was expected to decline lignin decomposition to a 
greater extent after the peak. However, such a decline in the non-Fe 
model was not enough to compensate for the lack of Fe stabilization 
effect (Supplementary Fig. S4b), which resulted in higher lignin 
decomposition after the peak and eventually failed to fit the observa-
tions (Supplementary Fig. S2). Our results further suggested that 

discounting the microbe-Fe interactions made it harder to explain the 
observed dynamic patterns of CO2 production from lignin 
decomposition. 

3.3. Fates of lignin carbon 

Our analysis with the MiFe model revealed dynamic patterns of four 
C pools, i.e., macromolecular lignin C, small molecular lignin C, mi-
crobial biomass C, and protected C via Fe association, as depicted in 
Fig. 1. During the period of incubation we analyzed (77–329 days), the 
amount of macromolecular C declined whereas the protected C 
increased. The small molecular C was initially high but depleted to 
almost zero toward the end of the incubation. In contrast, the microbial 
biomass C of lignin-degrading organisms was initially low, peaked at 
40–70 days after the pseudo-equilibrium of microbial dynamics, and 
finally declined to almost zero at the end of the incubation. 

The four pre-treatments did not significantly change the overall 
patterns of the four C pools but resulted in different rates of trans-
formation. The 8- and 12-day anaerobic pre-treatments stimulated the 
transformation rate of the macromolecular lignin to small molecular 
lignin C to a greater extent than the 0- and 4-day pre-treatments 
(Fig. 4a). Correspondingly, the small molecular lignin C initially was 
much higher and microbial processes were more active in the 8- and 12- 
day than 0- and 4-day pre-treatments (Fig. 4b, d). Given the higher rates 

Fig. 3. Comparison of parameter values of the MiFe model among the four pre-treatments. Parameters are (a) the proportions of initial C and Fe values, (b) 
transfer rates among C pools, (c) microbial uptake function, (d) lignin C destabilized rates, (e) transfer rates among Fe pools, and (f) microbial decay function. Labels 
in bold on x-axis and different size letters indicate significant differences between the pre-treatments at P-value < 0.05. Detailed descriptions of parameters can be 
found in Supplementary Table S2. 
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of transformation, the protected C was higher (Fig. 4c) but the total C 
remaining was lower (Fig. 4e) in the 8- and 12-day than 0- and 4-day 
pre-treatments. 

During the period of incubation, lignin C was depolymerized, partly 
being respired as CO2 and partly being stabilized through Fe–C associ-
ation. The 8- and 12-day anaerobic pre-treatments had more respiration 
than the 0- and 4-day pre-treatments (Fig. 5). At the end of the incu-
bation, the remaining lignin C was mainly in the form of macromolec-
ular C and protected C whereas the small molecular C and microbial C 
were almost exhausted. Macromolecular C was significantly less depo-
lymerized and this led to higher portions remaining in the 0- (46.2%) 
and 4-day (46.5%) than the 8-day (44.3%) and 12-day pre-treatments 
(41.1%). A greater portion of the lignin C was protected by Fe as the 
duration of anaerobic pre-treatments increased (Fig. 5). The 12-day 
anaerobic pre-treatment had 52.3% protected C while the control only 
accrued 48.7% (Fig. 5). 

Overall, the protected C in the 12-day anaerobic pre-treatment 
increased by about 100 μg C g− 1 soil relative to the initial value 
(Fig. 4d). We further investigated the contributions of fragmented lignin 
C versus microbial-derived C to the mineral-associated lignin C pool. 
Conceptually, the Fe-protected lignin C was derived from small molec-
ular C and microbial products or necromass, as also described in the 
MiFe model. During the period of incubation we analyzed, microbial- 

derived C was less than 3 μg C g− 1 soil, accounting for a small propor-
tion of the Fe-protected C (<3%). Most of the Fe-protected C was derived 
from the small molecular lignin C rather than microbial-derived C. 

4. Discussion 

Building upon the representative dataset from Huang et al. (2019), 
our data-model integration proposed a new lignin decomposition 
framework, which revealed the underlying mechanisms controlling the 
temporal dynamics of lignin decomposition and lignin fate in soils. Such 
dynamics are not easily measurable in laboratory studies. Different from 
the study by Huang et al. (2019), our modeling results clearly demon-
strated the progressive patterns of how lignin C was metabolized by 
microbes and stabilized by minerals. We also revealed the critical 
processes/parameters that controlled lignin decomposition, and mech-
anistically explained the observed lignin decomposition as a function of 
redox-sensitive biogeochemical reactions. Finally, this study further 
analyzed lignin fate in soil by estimating microbial lignin-C use effi-
ciency and quantifying dynamic microbe-Fe interactions, neither of 
which are easily measured in laboratory experiments. In general, our 
study offers not only a new modeling framework to study lignin 
decomposition via microbe-Fe interactions but also quantitative evi-
dence on the importance of lignin contribution to SOC persistence. 

4.1. Role of microbe-iron interactions in lignin decomposition 

Our results indicated that microbe-Fe interactions significantly 
regulated lignin C decomposition and stabilization. Based on experi-
mental data from Huang et al. (2019) and the mechanistic model 
developed in this study, we inferred that the reduced Fe in the anaerobic 
pre-treatments activated the Fenton reaction to break down macromo-
lecular lignin C into small molecular C. The small molecular lignin C was 
consumed by microorganisms, including both bacteria and 
lignin-degrading fungi (Kirk and Farrell, 1987), to produce CO2 (Fig. 1). 
Accumulation of the small molecular C stimulated colonization of mi-
croorganisms, which appeared to last about 10 weeks (observed from 
data) before microbes exponentially grew in accompany with a burst of 
respiratory C release. This might be due to the fact that the small mo-
lecular lignin C was very likely metabolized by a large group of micro-
bial community (not only limited to fungi) after macromolecular lignin 
C was depolymerized by Fenton reaction. In addition, microbial-derived 
C accounted for a very minor fraction of the increased protected C 
(<3%) during the period of this analysis. The stabilized C, mainly 
through sorption and/or co-precipitation to Fe oxides, was mainly 
derived from small molecular lignin C. 

Fig. 4. Lignin C dynamics in different pools under four anaerobic pre-treatments.  

Fig. 5. Fates of lignin C at the end of this analysis in the four anaerobic 
pre-treatments. The amount of both small molecular C and microbial C is too 
small in the later stage of incubation to be displayed in the figure. 
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4.2. Contributions of plant-derived vs. microbial-derived C to mineral 
associated organic matter (MAOM) 

Mineral (e.g., Fe) protective effects have been widely recognized as 
an important mechanism of SOC persistence (Lalonde et al., 2012; Zhao 
et al., 2016; Coward et al., 2017; Fang et al., 2019). However, the 
contributions of plant-derived vs. microbial-derived C to mineral asso-
ciated organic matter (MAOM) remain controversial (Cotrufo et al., 
2013; Huang et al., 2019). The Microbial Efficiency-Matrix Stabilization 
(MEMS) hypothesis proposes that microbial-derived C preferentially 
accumulates in MAOM by promoting aggregation and through strong 
chemical bonding to the minerals (Cotrufo et al., 2013, 2015). Here, our 
data-model integration provides an alternative mechanism whereby 
plant-derived materials can provide a significant C source to MAOM 
while it is acknowledged that microbial products are also an important 
constituent of MAOM (Miltner et al., 2011; Kallenbach et al., 2016). 
Although we did not investigate the total necromass contributions from 
other litter C components, our modeling results showed that 
microbial-derived lignin C (<3 μg C g− 1 soil) contributed only a small 
fraction to the large amount (~100 μg C g− 1 soil) of Fe-associated C, at 
least during the period of our analysis. The small contribution of 
microbial-derived lignin C to MAOM, as a result of the low microbial 
C-use efficiency of lignin C (Martin et al., 1980; Bahri et al., 2008), was 
consistent with the MEMS hypothesis (Cotrufo et al., 2013). However, 
small molecular lignin C produced by Fenton reaction or other abiotic 
processes may contribute more than microbial bioproducts or necromass 
to the mineral-protected C. The direct interaction between small mo-
lecular lignin derivatives and Fe appeared to dominate. Therefore, 
contributions of plant-derived C to MAOM may be underestimated in 
some soils, especially those with large inputs of lignin C and high con-
centrations of Fe minerals. 

The traditional concepts consider lignin as a main component of SOC 
due to its inherent chemical recalcitrance (Lützow et al., 2006; Adani 
et al., 2007; Kleber, 2010). Recent experimental research demonstrated 
that instead of molecular structures of litter and lignin, environmental 
and biological factors predominated SOC stability (Schmidt et al., 2011; 
Woolf and Lehmann, 2019), implying less contributions by lignin to SOC 
persistence (Schmidt et al., 2011). However, both the data from the soil 
incubation (Huang et al., 2019) and our analysis suggested that nearly 
half of lignin C would be preserved as Fe-associated C partly because of 
direct interactions of lignin C with minerals even though microbial C-use 
efficiency of lignin was low (about 15% in this study). Although we did 
not further detect whether lignin was physically protected or chemically 
bound within Fe-associated C, it is certain that the small molecular 
lignin directly combined with Fe to form protected C (Riedel et al., 2013; 
Hall et al., 2016; Angst et al., 2017; Córdova et al., 2018). Incorporation 
of Fe effects on lignin stabilization would be helpful to mechanistically 
understand the persistence of lignin and SOC. 

4.3. Decomposition models 

In this study, we used the data-driven approach to discover that lo-
gistic equations can best describe a nonlinear pattern of respired CO2 
from lignin decomposition in soil as observed by Huang et al. (2019). 
Traditionally, models with the first-order kinetics and/or 
Michaelis-Menten equations have been used to describe decomposition 
of litter and SOM. The first-order kinetics models usually describe 
exponential delay patterns, which have been observed from almost all 
litter and SOM decomposition studies (Zhang et al., 2008; Schadel et al., 
2014; Xu et al., 2016; Cai et al., 2018; Luo and Smith, 2022). 
Michaelis-Menten equations, however, have been recently incorporated 
into dozens of new microbial models (Aneesh Chandel et al. In prep.) to 
express the notion that microbial catalysis is presumably a rate-limiting 
step in litter and SOM decomposition (Allison et al., 2010). The models 
with Michaelis-Menten equations usually generate nonlinear patterns of 
CO2 release from organic matter decomposition (Wang et al., 2014). The 

pattern observed by Huang et al. (2019) was the only nonlinear one we 
have found so far and, thus, could offer direct empirical evidence to 
support Michaelis-Menten kinetics of organic matter decomposition. We 
did first use a Michaelis-Menten model to fit the data. As shown in Fig. 2, 
the Michaelis-Menten model cannot describe the observed pattern well. 
That forced us to search for other models. After a few tries, we found that 
the MiFe model with logistic equations fit data best (Fig. 2). A possible 
explanation for the logistic equations to fit the observed pattern well is 
related to the time course of establishment and growth of microbial 
populations and community. 

While lignin is a large part of litter, Huang et al. (2019) found that 
CO2 production from lignin accounts for only a small fraction (about 
0.1%) of the total respired CO2 by litter due to its low degradation rate. 
The time courses of CO2 production from litter decomposition were 
slightly modified by lignin degradation but still could be approximated 
by a classical 2- or 3-pool model (data not shown here). Nevertheless, 
our MiFe model could capture the dynamics of lignin decomposition, 
one key component of litter, with the underlying mechanisms well 
explained. Our study represents one crucial step towards understanding 
mechanisms beyond classical multi-pool models. Decomposition pro-
cesses of different components of litter and soil organic C, such as labile 
litter C (e.g., starch and semi-cellulose), other structural litter C (e.g., 
cellulose vs. lignin), particulate organic matter (POM), and MAOM, 
were regulated by various environmental factors. For example, this 
study especially illustrates lignin is particularly susceptible to regulation 
of microbe-Fe interactions while the total litter may be less so. Lignin 
decomposition that was regulated by Fe redox cycling may have little 
influence on the overall litter decomposition, while lignin-derived C 
associated with Fe may persist in soil over a long timescale. The lack of 
mechanistic understanding of decomposition processes of the individual 
components of litter and soil will bring great uncertainty about the 
whole prediction of land C persistence in the future. 

4.4. Implications for decomposition and persistence of SOC 

Our results may shed light on lignin decomposition through the 
microbe-Fe interactions in field. Frequent O2 fluctuations can poten-
tially alter soil Fe composition by promoting Fe reduction and increasing 
or decreasing Fe crystallinity (Winkler et al., 2018), which could 
conceivably lead to decomposition or stabilization of lignin C (Chen 
et al., 2018; Huang et al., 2021). It is very common that temporary O2 
limitation exists in soil microsites to induce Fe redox cycling (Hall et al., 
2015; Keiluweit et al., 2017) and consequently to influence lignin 
decomposition and the persistence of SOC. However, the mineral phase 
changes induced by temporary redox fluctuations have not been 
accounted in modeling to determine lignin fate. The explicit MiFe model 
is a plausible and testable model to simulate the persistence of lignin in 
soils under redox fluctuations as validated by the experimental data. In 
addition, our model can be applied to quantify the critical roles of mi-
crobes and Fe in lignin decomposition and SOC persistence, as well as 
the relative contributions of microbial-derived vs. plant-derived lignin C 
to MAOM. 

In the future, we need more coordinated empirical-modeling studies 
(Luo et al., 2011) to examine how different microbial communities 
affect lignin C stabilization beyond the substrate availability. Indeed, 
observation of respired CO2 is limited for modeling. These models 
require a more comprehensive model evaluation to validate the 
decomposition processes, in which both fluxes and state variables are 
compared to observations. In addition, more empirical evidence from 
different ecosystems and at different timescales is needed, in tandem 
with modeling analysis, to quantify the relative contributions of mi-
croorganisms and minerals, including Fe, to the persistence of SOC in 
redox-dynamic soils. 
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