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Abstract

Soil microbial community's responses to climate warming alter the global carbon cycle. In temperate ecosystems, soil mi-
crobial communities function along seasonal cycles. However, little is known about how the responses of soil microbial
communities to warming vary when the season changes. In this study, we investigated the seasonal dynamics of soil bacterial
community under experimental warming in a temperate tall‐grass prairie ecosystem. Our results showed that warming sig-
nificantly (p = 0.001) shifted community structure, such that the differences of microbial communities between warming and
control plots increased nonlinearly (R2 = 0.578, p = 0.021) from spring to winter. Also, warming significantly (p < 0.050) in-
creased microbial network complexity and robustness, especially during the colder seasons, despite large variations in network
size and complexity in different seasons. In addition, the relative importance of stochastic processes in shaping the microbial
community decreased by warming in fall and winter but not in spring and summer. Our study indicates that climate warming
restructures the seasonal dynamics of soil microbial community in a temperate ecosystem. Such seasonality of microbial
responses to warming may enlarge over time and could have significant impacts on the terrestrial carbon cycle.
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Impact statement
The feedback response of soil microbial communities to climate warming is one of the major uncertainties in projecting
future climate scenarios. Despite intensive studies for two decades, such feedback and associated mechanisms are still
poorly understood with regard to seasonal variation. In this study, we revealed that warming treatments restructured
seasonal dynamics of the microbial community, resulting in larger differences in the community structure and network
patterns in colder months than in warmer months. This study suggests that future climate changes in seasonality might shift
soil microbial community phenology and associated functioning. Such information about the seasonal dynamics of soil
microbial communities is valuable for predicting the long‐term global carbon cycle.

INTRODUCTION
The acceleration of climate warming has become a scientific,
political, and economic concern1. Climate warming disturbs
carbon (C) and nitrogen cycling between Earth's atmosphere

and terrestrial ecosystems, but it is not clear whether the
emission of greenhouse gases (i.e., CO2, CH4, and N2O) from
soils will further increase via warming‐induced positive
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feedback2,3. The shifts of soil greenhouse gas emission
under climate warming substantially depend on microbial
communities, since they are critical mediators of the terres-
trial C cycle by playing a major role in C mineralization and
stabilization4,5, and affecting soil health and nutrient avail-
ability to plants6. Therefore, how soil microbial communities
and their ecosystem functions are influenced by climate
warming is critical for projecting future climatic regimes.

Most studies on ecosystem responses to climate warming
only discussed warming effects with yearly based ob-
servations7–9, despite strong seasonal variations in eco-
logical community diversity and structure10,11. Seasonal
dynamics of ecological communities is critical for evaluating
ecosystem functions and services, and their responses to
environmental changes in the long term12,13. For example,
shifts in plant and animal phenology, such as flowering time
and migration pattern, are among the most sensitive signs of
climate change14,15. A wide range of environmental factors
that affect soil microbial responses to climate warming un-
dergo seasonal cycles in temperate ecosystems12,16,17, such
as precipitation18, moisture19, resource availability20, and the
intensity of disturbances like clipping or grazing21. Thus,
microbial responses to climate warming should be consid-
ered with regard to seasonal variations10,11,13,22,23. With the
decrease in sequencing cost and increase in our capacity to
analyze environmental microbial samples, the temporal dy-
namics of soil microbial communities and their functions can
be captured in a higher resolution for a better prediction of
the terrestrial C cycle.

Relationships among taxa embody a dimension of in-
formation beyond species diversity and composition in
community assemblage24 and are reflected in covariation of
species abundances25. How microbes assemble and covary
in soil may signify their responses to edaphic factors, niche
sharing and partition, interspecies interactions, and various
stochastic processes. The mechanisms by which soil mi-
crobes assemble and the pattern by which they covary are
strongly influenced by plant growth26 and resource avail-
ability27, which show strong seasonal changes. However, few
reports are available on how soil microbial communities as-
semble and covary in different seasons. In our yearly based
long‐term observations, deterministic processes became
stronger in shaping soil microbial communities under
warming, possibly due to environmental filtering by warming‐
related changes in soil abiotic conditions8. Microbial net-
works became more complex and resistant over a few years
with prolonged warming9. It is unclear whether such com-
munity organizational shifts also happen with shorter‐term
but stronger seasonal temperature variation, and with dif-
ferent growth stages and composition of plants, especially in
conjunction with climate warming.

To understand whether and how the effects of climate
warming on soil microbial communities differ along with the
season, we examined month‐to‐month changes in soil micro-
bial communities under experimental warming in a temperate
tall‐grass prairie ecosystem of the US Great Plains in Central
Oklahoma (34̊°59ʹN, 97̊°31ʹW). We aimed to determine: (i)

whether and how experimental warming alters the soil microbial
community structure during different seasons; (ii) how ex-
perimental warming impacts seasonal dynamics of soil micro-
bial network patterns; (iii) whether and how warming‐induced
changes in microbial community structure and network pat-
terns shape ecosystem functioning (i.e., ecosystem C fluxes
and soil respirations). Our results revealed that climate warming
strongly affected the seasonal succession of microbial com-
munity structure and network patterns, which significantly
contribute to ecosystem functioning.

RESULTS
Seasonality of soil variables, soil respirations,
and ecosystem C fluxes
Soil variables and ecosystem C fluxes exhibited strong
seasonal fluctuations and were impacted by the warming
treatment (Figures 1A−F and S1A−M and Table S1). Soil
temperature, moisture, soil organic carbon (SOC), nitrate
(NO3

−), ammonia (NH4
+), pH, soil total respiration (Rt), het-

erotrophic respiration (Rh), autotrophic/root respiration (Ra),
and ecosystem C fluxes, including ecosystem respiration
(Reco), gross primary productivity (GPP), and net ecosystem
exchange (NEE) varied over time (p < 0.02). Warming in-
creased (p < 0.001) soil temperature by 4.3°C and decreased
(p < 0.001) soil moisture by 20.7% averaged for the year
(Figure 1A,B). The impacts of warming on soil temperature
and moisture were consistent over time (p > 0.05 for the
warming ×month interaction; Table S1). Soil nitrate contents
were higher (p = 0.001) in warmed plots than in control plots,
with an increase of 71.2% across the entire year (Figure 1C).
Warming increased Rh by 54.4% (p < 0.001), but decreased
Ra by 33.4% (p < 0.001). Consequently, Rt was not affected
by warming across the entire year (Figure 1E). In addition,
significant variations in the warming effect on Rh were ob-
served over time (p = 0.033 for the warming ×month inter-
action; Table S1). Although no significant warming effects
were observed on Reco, GPP, and NEE over the year
(Figure 1F), warming decreased both Reco and GPP during
the months of plant biomass peak (March and September)
more than in the other months (Figure S1 and Table S1).

Seasonal changes in microbial community
structure
The microbial communities under warming tended to deviate
from those of the control, as indicated by principal coordinate
analysis (PCoA) based on the Bray−Curtis distance metrics
(Figure 2A). The main effects of sampling month and warming
significantly (F , 1.856−3.792; p< 0.001) affected soil microbial
community structure, explaining 18.1% and 3.4% of the total
variation, respectively (Table 1), and warming differentially af-
fected taxa over time (Figure S2). Within each month, warming
significantly (p< 0.05) increased the relative abundances of
Firmicutes in January, Actinobacteria in April, and Gemmati-
monadetes in May (Figure S2). Decreased relative abundances
under warming were observed for Deltaproteobacteria in Feb-
ruary, Betaproteobacteria in April, Deltaproteobacteria in
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October, and Planctomycetes in November (Figure S2). Across
all months, warming significantly (p< 0.05) increased the rela-
tive abundances of Actinobacteria, Firmicutes, and Thau-
marchaeota, but decreased the relative abundances of
Deltaproteobacteria and Planctomycetes (Figure S2).

The difference in microbial community structure between
warming and control treatments increased nonlinearly
(R2 = 0.578, p= 0.021) from spring to winter (Figure 2B). Fur-
thermore, the communities under warming exhibited larger
dispersion than those under control (F= 4.600, p= 0.034;
Figure 2C), consistent with the less closely clustered samples
under warming in PCoA. Such larger community dispersion
under warming was likely due to the increase in both temporal
variation across sampling months and spatial heterogeneity
among experimental plots (p< 0.074; Figure 2C).

Seasonal dynamics of microbial networks
Eight seasonal networks and two global networks (see the
“Materials and Methods” section) were constructed to ex-
plore the associations of microorganisms under warming and
with seasons (Figure 3A). The seasonal networks were con-
structed with the correlation threshold St = 0.890. The net-
work sizes (n) ranged from 394 to 569 nodes with 311−1096
links (Figure 3A). The global networks for warmed and control
communities were constructed with a correlation threshold
St = 0.680, such that networks had 453 and 349 nodes with
1678 and 693 links, respectively (Figure 3A and Table S2).
Overall, species tended to co‐occur (83.1%−93.2% links
from positive correlations) rather than co‐exclude (6.8%
−16.9% links from negative correlations). All networks were

scale‐free, as indicated by a good fit of the node degree
distributions to power‐law functions (R2, 0.850−0.977). They
were also modular as shown by high modularity (M > 0.522)
and exhibited small world behavior with geodesic distances
(the average shortest path between paired nodes of
3.572−9.531; Table S2). These networks are differently
structured from the random networks, indicating that the
empirical networks are unlikely formed as such by random
chance. All empirical networks have higher average clus-
tering coefficient (avgCC) and modularity compared to their
corresponding random networks, indicating that members in
the empirical networks were driven to form clusters and nest
in modules (Table S2).

Despite that the operational taxonomic units (OTUs) in
warmed communities were on average 10.7% fewer than
control communities, the seasonal and global networks
under warming had 6.9% and 29.8% more nodes than the
corresponding controls, respectively (Figure 3B and
Table S2). This indicated that more species covaried in
abundance under warming. Under warming, the seasonal
networks had 46.6% more links on average (F = 13.945,
p = 0.034), and the global network had 142.1% more links
compared with the control, leading to a 36.9% increase
(F = 28.955, p = 0.013) of average connectivity (avgK)
(Figure 3B). Networks for warmed communities also had
higher connectance, clustering coefficient (avgCC) and rela-
tive modularity28 than the control (F = 11.171−15.656,
p < 0.044; Figure 3B).

The size, complexity, and taxonomic composition of
nodes in major modules of soil microbial networks changed

Figure 1. Warming effects on soil variables, soil respirations, and ecosystem carbon fluxes. (A−D) Soil surface (0−15 cm) temperature,
moisture, NO3

−, NH4
+, TN, SOC, and pH, averaged from four replicated plots across the entire year. (E) In situ soil respirations measured in the

field plots. (F) Gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE). Positive values indicate
carbon sink, and negative values represent carbon source. Blue and red colors denote control and warming treatments, respectively. Error bars
represent standard errors. The differences between warming and control conditions were tested by linear mixed‐effects models, indicated by
*** when p < 0.001, ** when p < 0.01, # when p < 0.10. More information is shown in Figure S1 and Table S1. Ra, autotrophic respiration derived
from plant roots; Rh, heterotrophic respiration from soil microbes, and Rt, soil total respiration; SOC, soil organic carbon; TN, total nitrogen.
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along with the season (Figures 3B and S3). Under both
warming and control conditions, the smallest network was
obtained in winter and the largest in fall. Compared to winter,
the avgK was 12.1%−19.9%, 11.8%−30.6%, and 39.5%
−78.9% higher in spring, summer, and fall, respectively. The
differences in network size and complexity between warming
and control were more profound in other seasons (3.6%
−14.8% larger with 45%−77% more links under warming)

than in summer (1.3% larger with 22.2% more links), con-
sistent with the smallest difference of community structure in
summer months (Figure 2B).

Module hubs, connectors, and network hubs were iden-
tified as key taxa in the network (Figure S4 and Table S3).
One to six module hubs were identified in each of the sea-
sonal networks. Thirty‐two of the 34 connectors occurred in
fall and global networks. Warming networks have more key
taxa than controls. Among all the seasons, fall networks had
the most module hubs and connectors (Figure S4C). The
number of connectors and module hubs coincided with the
complexity of networks. The key taxa in both global and
seasonal networks mostly belonged to abundant phyla, with
30% from Actinobacteria and 25% from Acidobacteria
(Figures S4 and S5 and Table S3). However, some module
hubs were low‐abundance, nondominant species, such as
the Gemmatimonadetes hub in Module 1 of the fall‐warming
network. Notably, some OTUs occurred as key taxa in more
than one network (Table S3). For instance, OTU_21, be-
longing to the Solirubrobacter genus in Actinobacteria, was a
module hub in fall‐control, winter‐control, and global‐control

Figure 2. Microbial community beta‐diversity indicated by the multivariate homogeneity of group variances. (A) PCoA of soil bacterial
community structure under warming and control treatments for 12 months, based on the Bray−Curtis distance metrics. (B) Community
distances of bacterial community between warming (W) and control (C) conditions over time. The temporal change of dissimilarity between
warmed and control plots in each block was fitted to nonlinear quadratic regression. The R2 reflects the variance explained by the regression.
(C) The distance of samples to group centroids by treatment, experimental plot (distance to centroid represents the temporal variation of
communities), and treatment × sampling time (distance to centroid represents a spatial variation of the four field blocks). Distances to group
centroids are significantly larger for warmed than control communities when grouping by treatment (F = 4.600, p = 0.022), experimental plots
(F = 3.375, p = 0.069), or treatment × sampling time (F = 3.256, p = 0.074). The labels of 1C−4C represent four control replicates, and 1W−4W
represent four warmed replicates, respectively. M01 C−M12 C represent control communities in 12 different months, and M01 W−M12 W
represent warmed communities in 12 different months, respectively. PCoA, principal coordinate analysis.

Table 1. The effects of warming and month on microbial community
structures tested by permutational multivariate analysis of variance.

F R2 p

Warming 3.792 0.034 0.001
Month 1.856 0.181 0.001
Warming ×month 0.996 0.098 0.447

Permutational multivariate analysis of variance (PERMANOVA) was performed
with the Bray−Curtis dissimilarity metric. The two‐way repeated‐measures
ANOVA model was set as “dissimilarity~warming ×month + block” using
function adonis in R package vegan. The degree of freedom was 1 for warming
treatment, 11 for month, and 69 for residuals. Significant effects (p ≤ 0.05) are
shown in bold.
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Figure 3. Soil microbial co‐occurrence networks from separated seasons and all time points. (A) Overall dynamics of microbial co‐occurrence
networks under warming and control. Modules separated using Greedy algorithm are uniquely colored in each network for modules with >5
nodes, and in gray for modules with ≤5 nodes. Network size (n) and connectivity (L) are shown for each network. Details of network topological
properties are listed in Table S2. (B) Seasonal change in network topological properties under warming (red) and control (blue), including
network size (i.e., total number of nodes), connectivity (i.e., total number of links), average connectivity (avgK), average clustering coefficient
(avgCC), connectance and relative modularity. Significance of warming effects on these topological properties was tested by linear mixed‐
effects models with season as a random intercept effect. The F and p values are shown above each plot.

(A) (B)

Figure 4. Stability of microbial networks measured by robustness. (A) Robustness represents the proportion of taxa that remained with 50% of the
taxa randomly removed from each network. (B) Robustness represents the proportion of taxa that remained with five module hubs removed from each
network. The error bar indicates the standard deviation of 100 repetitions of the simulation. Significant differences between warming and control were
calculated by two‐sided t‐test and indicated by *** when p<0.001.
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networks. Additional eight OTUs (e.g., three Acidobacteria,
two Actinobacteria, one Gammaproteobacteria, one WPS‐1,
and one unclassified phylum) served as module hubs or
connectors in at least two networks.

The robustness of microbial networks, measured by the
network's resistance to node loss, was evaluated by simu-
lating random and targeted taxa extinction (Figure 4A,B). The
global networks under warming had significantly (p < 0.001)
higher robustness than those under control, based on either
random taxa loss or targeted removal of module hubs
(Figure 4A,B). Furthermore, warming significantly (p < 0.001)
enhanced the robustness of microbial networks in all sea-
sons except summer (Figure 4A,B).

Microbial community assembly mechanisms
We calculated the normalized stochasticity ratio (NST) index to
quantify the relative importance of stochastic and deterministic
processes in microbial community assembly. Stochastic proc-
esses contributed to 75.3%−89.2% of the community variations
under warming and control conditions (Figure 5), suggesting that
stochasticity was the major process in determining microbial
community structures. Across all months, warming exhibited no
significant effects on stochasticity. Interestingly, warming de-
creased the relative importance of stochastic processes by
11.4% in fall and by 4.7% in winter, whereas warming increased
the relative importance of stochastic processes by 8.7% in
summer (p<0.10).

Links between microbial community and soil
variables and ecosystem function
Canonical correspondence analysis (CCA) and Mantel tests
were performed to assess the relationships of microbial com-
munity structure with soil properties, soil respirations, and eco-
system C fluxes (Figure 6A,B and Table S4). The CCA results
indicated that microbial community structure was significantly
(F=1.435, p=0.014) shaped by soil SOC, total nitrogen (TN),

pH, moisture, and temperature (Figure 6A). Consistent with
these results, Mantel tests revealed that seasonal succession of
microbial community structure had stronger correlations with soil
moisture, pH, SOC, and N species under warming than under
control conditions (Figure 6B and Table S4).

To reveal the relationships among network modules, each
module with more than five nodes was decomposed into a
single representative abundance profile, the module ei-
gengene. The module eigengenes explained 59%−83%
variations of the module member abundance profiles in
seasonal networks and 34%−69% in global networks
(Table S5). The hierarchical clustering of the eigengenes was
used to represent the similarities of modules. In the global
control network, 13 modules were clustered into two major
groups, whereas the 6 modules in the global warming net-
work formed three distinct groups (Figure 6C,D). Modules in
the seasonal networks under warming also formed different
clusters compared with those in control networks (Figure S6).

The eigengene abundance profiles were correlated to the
environmental profile to reveal the correlations of modules
with environmental variables and ecosystem functioning
(Table S5 and Figures 6C,D and S6). Generally, the modules
in fall networks had more significant (19%−33% of total pairs
of correlations with p < 0.05) correlations with edaphic con-
ditions and ecosystem C fluxes, while the modules in winter
and spring networks had less (5%−15% of total pairs of
correlations with p < 0.05; Figure S6). The microbial
substrate‐related variables (e.g., SOC, TN, and NH4

+ con-
tents) were significantly (p < 0.05) correlated to at least one
module in all the networks, and to several modules in more
complex networks. Modules in the global control network
tended to correlate with GPP and NEE, but the modules in
the global warming network had more correlations with soil
temperature, moisture, Rh, and Rt (Figure 6C,D).

DISCUSSION
In temperate ecosystems, the weather and plant growth
follow seasonal cycles.29 While climate warming is known to
alter the phenology of plants and animals, to date, insufficient
information is available on how climate warming affects the
seasonal succession of microbial communities. Here, we
report that despite large seasonal variations, warming
changed the structure of soil microbial communities and in-
creased the complexity of their networks in all the seasons,
signifying a robust warming effect also observed over mul-
tiple years8,30. Furthermore, warming altered the seasonal
dynamics of microbial succession by imposing a stronger
deterministic effect in winter than in the summer, leading to
larger differences in community structure between warming
and control plots. These effects may enlarge in the long term,
resulting in considerable impacts on the overall soil C bal-
ance between land and atmosphere.

Consistent with the previous reports31–33, we also ob-
served rapid changes in soil microbial community structure
along seasons, with a larger seasonal effect than what was
imposed by simulated warming. Microbial network size and
complexity also changed along with the season, likely in

Figure 5. Community stochasticity under control and warming
conditions. NST in control and warmed plots were calculated to
quantify overall community stochasticity. The significant differences
between warming and control conditions are indicated as *p < 0.05,
and #p < 0.10 based on permutational multivariate analysis of var-
iance (PERMANOVA). The error bars indicate standard errors.
NST, normalized stochasticity ratio.
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response to changed soil microclimate and resource avail-
ability34,35. From non‐growing season to growing season, soil
temperature and moisture became favorable for more spe-
cies. As most plants are annual in our field site, microbial
substrates from plant exudates also increase along plant
growth during this time frame36. With gradually increased
microbial diversity and stronger environmental filtering from
plant roots26, the networks became increasingly large and
complex from non‐growing season to growing season.

Despite large seasonal variations, soil microbial com-
munities responded to warming with altered taxonomic
composition and increased network complexity in all
seasons and across the entire year. Both microbial com-
munity structure and network modules are correlated with

soil moisture, N availability, and SOC. The decrease in
water content caused by warming could impede the
movement of nutrients in soil37, leading to patches of
communities that spatially co‐occur (e.g., dispersal limi-
tation); it may also cause nutrient depletion and promote
microbial cooperation and competition25,38,39. Meanwhile,
warming could favor microorganisms for the decom-
position of high C/N ratio substrates40,41, which may re-
structure the networks.

Soil sampling on a monthly basis enabled us to capture
uneven warming effects on microbial communities in dif-
ferent seasons. Warming effects on both community
structure and microbial networks were stronger in the
winter months and weaker in the summer months. We also

Figure 6. Microbial community structures link to soil variables and ecosystem C fluxes. (A) CCA of microbial communities and environmental
variables, including GPP, Reco, soil moisture, pH, temperature (Tm), SOC, TN, NO3

−, and NH4
+ contents. (B) Correlations between microbial

community structures and environmental variables under warming and control treatments by Mantel tests. (C, D) Module eigengenes’ cor-
relations with environmental variables for the control (C) and warmed (D) networks across all months. An eigengene was calculated for each
module to represent all nodes within each module. Clusters show the hierarchical structure of eigengenes for modules numbered as in
Figure S3. The Pearson correlation coefficient of each eigengene−environmental variable pair is indicated by the heatmap. Significances of
these correlations are indicated by *** when p < 0.001, ** when p < 0.01, and * when p < 0.05. CCA, canonical correspondence analysis.
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found that in fall and winter, warming tended to increase
the importance of deterministic processes (e.g., selection)
in driving community assembly, which is consistent with
our long‐term observations conducted every year in the
fall8. In contrast, warmed communities showed higher
stochasticity in summer, suggesting that selection im-
posed by warming was weaker. The magnitude of the
warming effect on the community across seasons is con-
sistent with the relative importance of selection imposed
by warming, as opposed to stochasticity caused by
warming. We did not see a larger warming effect on soil
temperature in winter. However, soil moisture was con-
sistently decreased by warming spanning the fall and
winter months of October to December, January, and
February, but was not changed by warming in the spring
and summer months. It is possible that warming‐induced
moisture decrease imposes deterministic selections on the
community37 and then leads to larger differences in mi-
crobial communities between warming and control con-
ditions in the winter months.

Notably, warming tended to increase both the temporal
and spatial variations of soil microbial community, possibly
implying faster species turnover in warmer conditions. This
mirrors our long‐term observation that warming led to the
community's divergent succession and accelerated tem-
poral scaling7,8, as well as reported in a montane com-
munity and a coastal ecosystem42,43. Based on the
metabolic theory of ecology, temperature determines
metabolic rates and thus affects nearly all biological
processes, including species turnover44,45. Thus, the trend
of an increase in community variation among months and
across experimental plots can be directly predicted by
elevated temperature. Such changes are potentially im-
portant for the seasonal dynamics of C fluxes and the
overall C balance between land and atmosphere in the long
term and should be taken into account by terrestrial eco-
system models.

In summary, this study revealed that climate warming al-
tered the seasonal succession of microbial community
structure and network patterns in a temperate tall‐grass
prairie ecosystem. Although strong seasonal changes in soil
microclimate and resource availability led to vastly different
microbial network sizes and complexity across seasons,
warming increased the complexity of the networks, with the
most profound influence in colder months. The stronger
warming effect on community structure and network char-
acteristics in colder months were likely related to stronger
deterministic selection and less significant stochasticity in
community assembly imposed by soil moisture loss under
warming. Furthermore, elevated temperature directly led to
increased seasonal and spatial variation in soil microbial
communities as predicted by the metabolic theory of
ecology. This study demonstrated that the seasonal dy-
namics of the microbial community can be greatly re-
structured by warming. Such seasonality of microbial
responses to warming may enlarge, potentially resulting in
significant impacts on the terrestrial carbon cycle.

MATERIALS AND METHODS
Study site and experimental design
The field experiment is a part of the Kessler Atmospheric and
Ecological Field Station (KAEFS), located in a tall‐grass
prairie ecosystem of the US Great Plains in Central
Oklahoma, USA (34̊°59ʹN, 97̊°31ʹW). As described pre-
viously46,47, the experiment is in a temperate climate region
with four distinct seasons and two plant biomass peaks.
Spring is characterized by increasing temperature and pre-
cipitation, the germination and growth of C3 grasses, and
forbs toward an earlier biomass peak, and usually spans mid‐
February, March, and April till early or mid‐May. Summer is
warm with the scenes of earlier vegetation cover and rapid
growth of tall grasses, including Ambrosia trifida and Sol-
anum carolinense belonging to C3 forbs, and Tridens flavus,
Sporobolus compositus, and Sorghum halapense belonging
to C4 grasses. It lasts from May to mid‐ or late‐August. In fall,
the biomass of plant community reaches its second peak in
September and gradually turns into litter in October, and the
temperature dramatically drops in November. The winter
months of December, January, and February are cold and
windy, with residual litter covering the ground. The local
mean annual temperature (1948−2012) was 16.3°C, with
monthly means ranging from 3.5°C in January to 28.1°C in
July. Annual precipitation was 895mm, with monthly totals
from 33mm in January to 126mm in May (based on Okla-
homa Climatological Survey). Since July 2009, the temper-
ature of experimental plots has been manipulated to simulate
climate warming. Each of the four biological replicate blocks
contains a pair of 2.5 × 1.75m plots, one for experimental
warming treatment and the other for control. One infrared
heater (165 × 9 × 15 cm; Kalglo Electronics) was installed
1.5 m above each warmed plot to achieve warming of the
whole ecosystem. In each control plot, a woody bar of the
same dimensions was installed as a “dummy” heater to
mimic the shading effect.

Field measurements, soil sampling, and
physical‐chemical analysis
Soil temperature at 7.5 cm was recorded every 15min by
thermocouples (T‐type; Campbell Science Inst.) installed at
the center of each plot7. Soil volumetric water content was
measured at a depth of 0−15 cm every 30min by TDR meters
(ESI Environmental Sensors Inc.) installed in each plot. In
accordance with the monthly soil sampling, monthly aver-
ages of soil temperature and moisture were calculated and
further analyzed in this study. As described previously46,47,
soil Rt and its Rh and Ra were measured monthly. An LI‐6400
Portable Photosynthesis System (LI‐COR. Inc.) was used to
measure monthly ecosystem C exchanges (e.g., NEE, Reco,
and GPP)47.

One surface (0−15 cm) soil sample core (2.5 cm diam-
eter) was taken monthly from each of the four warmed plots
and four control plots for soil physical‐chemical and mi-
crobial analysis in 2012. Therefore, a total of 96 monthly soil
samples were collected in this study and stored in −80°C
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freezers after each sampling event until processing. The
samples from different months were grouped as follows
based on the local weather condition: spring from March to
May, summer from June to August, fall from September to
November, and winter covering January, February, and
December. Thus, there are 12 warmed samples and 12
control samples in each season.

Visible roots and stones were picked out from soil sam-
ples before processing. Soil pH was measured at a 1:5 soil‐
to‐water mass ratio mixture using an Accumet Excel XL15 pH
Meter (Fisher Scientific) with a combined calibrated elec-
trode. For determining SOC and TN, the dried samples were
treated with 1 N HCl for 24 h to remove soil inorganic C
(carbonates) and applied to a dry combustion C and N an-
alyzer (LECO). Soil NH4

+ and NO3
− concentrations were

measured by a Lachat 8000 flow‐injection analyzer (Lachat).

DNA extraction, PCR, and Illumina sequencing
Soil total DNA was extracted by a freeze‐grinding method
followed by the SDS‐based lysis and phenol‐chloroform ex-
traction48, and purified through the columns provided in the
MoBio PowerSoil DNA isolation kit (MoBio Laboratories). The
quality and purity of DNA was assessed by a NanoDrop ND‐
1000 Spectrophotometer (NanoDrop Technologies Inc.). The
final DNA concentrations were quantified by PicoGreen using
a FLUOstar OPTIMA fluorescence plate reader (BMG
LabTech).

To determine the microbial composition, a 16S riobo-
somal RNA (rRNA) gene amplicon library was prepared and
sequenced by an Illumina MiSeq platform49. DNA was am-
plified by PCR in triplicates for the V4 region of 16S rRNA
genes using the Illumina adapted primer set 515F and 806R
according to a previous protocol50. The amplicons from each
sample were gel‐purified and further used to prepare the
sequencing library. The library was then sequenced on an
Illumina MiSeq.

Data processing of the 16S rRNA gene was performed in
the pipeline developed by the Institute for Environmental
Genomics (IEG) (http://zhoulab5.rccc.ou.edu:8080). More
than 8 million raw sequences were retrieved by matching the
sample barcodes, and primer sequences at the end of each
read were trimmed. OTUs were clustered by UPARSE51 at
97% identity, and singletons were removed from the re-
maining sequences. In UPARSE, the green reference data
set52 for the 16S rRNA gene was used as a reference data-
base to remove chimeras. Finally, the OTU table was ran-
domly subsampled so that the total sequence number in
each sample was 17,700. A total of 18,333 OTUs were ob-
tained from all 96 samples. The OTU taxonomic classification
was performed using representative sequences from each
OTU through the Ribosomal Database Project (RDP) Classi-
fier with 50% confidence estimates53.

Microbial ecological network analysis
Microbial ecological networks were constructed by using the
Molecular Ecological Network Analyses pipeline (MENAP,

http://ieg2.ou.edu/MENA/)54. First, two global networks, one
for control treatment, and the other one for warming treat-
ment were constructed, each containing 48 samples from all
field replicates across all months. The OTUs present in 36 or
more (≥75%) samples were included in each network con-
struction to obtain robust data association estimations. Then,
eight seasonal networks were constructed, each containing
12 samples from four field replicates across 3 months of
each season. For the seasonal networks, the OTUs occurring
in at least nine samples (≥75%) were used for construction.

The network topological properties, module separation,
key taxa identification, and eigengene analysis were all per-
formed in the MENA pipeline as previously described54.
Networks were visualized using Gephi 0.9.1 and Cytoscape
3.5.0. The nodes in each network were separated into
modules using the Greedy modularity optimization algo-
rithm55. A module is a group of nodes (e.g., OTUs) that are
highly connected within the group but have few connections
with nodes outside the group. Modularity (M) > 0.4 was used
as the threshold to define modular structures55. For each
node, its within‐module connectivity (Zi) and among module
connectivity (Pi) were calculated56, which were used to
identify module hubs, network hubs, and connectors as key
species that played important roles in the network topo-
logical structure. Module hubs are the highly connected
nodes within modules (Zi > 2.5), network hubs are highly
connected nodes within the entire network (Zi > 2.5,
Pi > 0.62), and connectors are nodes that connect modules
(Pi > 0.62). In addition to these three categories, the other
nodes belong to peripherals that are connected in modules
with few outside connections (Zi < 2.5, Pi < 0.62).

To reveal higher‐order organization among modules in a
network, eigengene analysis was performed by using the
large modules containing ≥5 nodes. An eigengene was cal-
culated based on methods as previously described54 to
summarize the species abundance information from a
module as a centroid. All eigengenes from the same network,
each representing one major module in the network, were
then used for the hierarchical clustering analysis to assess
the organization or relationship of different modules in one
network. Furthermore, the correlation of each eigengene
−environmental variable pair was calculated as Pearson's
product−moment to assess the potential associations of
each module to the environments.

To evaluate the robustness of the microbial network,
simulations of random or targeted species removal were
performed in this study. A certain proportion of nodes was
randomly removed to simulate random species removal.
Meanwhile, certain numbers of module hubs were removed
to simulate targeted removal. To test the effects of species
removal on the remaining species of the network, the
abundance‐weighted mean interaction strength of the node
was calculated as previously described9. After removing the
selected species in the network, the proportion of the re-
maining nodes was defined as the network robustness. We
reported the robustness of the network when 50% of random
nodes or five module hubs were removed in this study.
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Community assembly mechanisms
To disentangle the importance of deterministic mechanisms
from stochastic mechanisms underlying microbial community
assembly, NST was calculated based on taxonomic metrics
using the R package NST57. Since the taxonomic metrics are not
independent (pairwise comparisons), permutational multivariate
analysis of variance (PERMANOVA) considering the repeated‐
measures design (1000 permutations) was performed to eval-
uate the significance of treatment and month in this study.

Statistical analysis
To test the effects of experimental warming and time on envi-
ronmental variables, microbial communities, and their network
properties, as well as to assess the correlations among the
three aspects, the following analyses were performed: (1) Mi-
crobial β‐diversity was assessed by using the Bray−Curtis
distance metrics, and the distances of paired warmed and
control plots within each block over time were fitted to a
nonlinear quadratic regression. (2) PCoA of soil bacterial
community structures was performed to visualize microbial
community patterns under warming in different seasons. (3) A
multivariate permutational procedure, the PERMANOVA58, was
used to test how different the entire microbial community
structures were under different treatment and sampling time.
Bray−Curtis distance was used to calculate the distance matrix
in this test. (4) The test of multivariate homogeneity of group
variances59 was used to calculate the Sørensen distances of
microbial communities to their group centroids based on
treatment, sampling month, as well as sampling season. The
difference in the average distances to group centroids indicates
beta‐dispersion or heterogeneity of communities among
groups. This analysis was also used to infer variation of soil
variables and C fluxes within the control or warmed plots. (5)
CCA and Mantel tests were used to link the microbial com-
munity structures to soil variables and ecosystem functions. (6)
Linear mixed‐effects models with block as a random intercept
effect were used to analyze the effects of warming and sam-
pling months on the following variables: soil variables, soil
respirations and ecosystem fluxes, microbial α‐diversity in-
dexes, and the abundances of different microbial phyla. The
effects of warming on the topological properties of networks
were also analyzed using linear mixed‐effects models. All the
statistical analyses were performed using R software 3.5.1 with
packages vegan, picante, nlme, and lmerTest.
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