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A B S T R A C T   

Temperature response of gross primary productivity (GPP) is a well-known property of ecosystem, but GPP at the 
optimum temperature (GPP_Topt) has not been fully discussed. Our understanding of how GPP_Topt responds to 
warming and water availability is highly limited. In this study, we analyzed data at 326 globally distributed eddy 
covariance sites (79oN-37oS), to identify controlling factors of GPP_Topt. Although GPP_Topt was significantly 
influenced by soil moisture, global solar radiation, mean annual temperature, and vapor pressure deficit in a non- 
linear pattern (R2 

= 0.47), the direction and magnitude of these climate variables’ effects on GPP_Topt depend on 
the dryness index (DI), a ratio of potential evapotranspiration to precipitation. The spatial pattern showed that 
soil moisture did not affect GPP_Topt across energy-limited sites with DI < 1 while dominated GPP_Topt across 
water-limited sites with DI >1. The temporal pattern showed that GPP_Topt was lowered by warming or low 
precipitation in water-limited sites while energy-limited sites tended to maintain a stable GPP_Topt regardless of 
changes in air temperature. Vegetation types in humid climates tended to have higher GPP_Topt and were more 
likely to benefit from a warmer climate since it was not restricted by water conditions. This study highlights that 
the response of GPP_Topt to global warming depends on the dryness conditions, which explains the nonlinear 
control of water and temperature over GPP_Topt. Our finding is essential to realistic prediction of terrestrial 
carbon uptake under future climate and vegetation conditions.   

1. Introduction 

Gross primary productivity (GPP) is the most important component 
of the terrestrial carbon cycle and its great variability can lead to large 
uncertainty in modeled dynamics of terrestrial carbon sequestration 
(Beer et al., 2010; Friedlingstein et al., 2020). Global warming pro
foundly affects GPP. Theoretically, ecosystem GPP increases with 
ambient temperature till the temperature reaches an optimum temper
ature (Topt) corresponding with peaked GPP (GPP_Topt), above which 
GPP declines sharply (Huang et al., 2019; Kumarathunge et al., 2019). 
Topt and GPP_Topt are the two most critical parameters in the 

temperature response of GPP. Thus, the adjustment of the two key 
properties to a warmer climate determines the magnitude of future 
carbon uptake (Way and Yamori, 2014). However, most previous studies 
on thermal acclimation and adaptation of ecosystem-scale photosyn
thesis focused on Topt (Kumarathunge et al., 2019; Sendall et al., 2015), 
less on GPP_Topt. It has been well documented that the inter-annual 
variability of GPP is determined by peak GPP more than any other 
drivers (Musavi et al., 2017; Xia et al., 2015; Zhou et al., 2016). 
Therefore, revealing the key climate variables of maximum photosyn
thetic capacities contributes to more accurate prediction of GPP and the 
carbon cycle-climate feedbacks (Gu et al., 2009; Yi et al., 2012). 
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A recent leaf-level study claimed that the maximum photosynthetic 
capacity, represented by the maximum rates of Rubisco carboxylation 
(Vcmax), is optimized to the climate variables including light, tempera
ture, vapor pressure and atmosphere pressure across the globe (Smith 
et al., 2019). Since the mechanisms and parameters of the 
photosynthesis-temperature response differs between different biolog
ical hierarchical levels, knowledge of leaf-level photosynthetic capacity 
is not necessarily applicable for understanding the controlling factors of 
GPP and its peak rate (GPP_Topt) at the ecosystem scale (Huang et al., 
2019; Smith et al., 2019). Although Huang et al. investigated the 
determinant of the temporal variation in GPP_Topt globally (Huang et al., 
2018), the major climate variables of the spatial variation of GPP_Topt is 
still unknown. 

Warming stimulates leaf-level photosynthesis at high soil moisture 
but reduces it under dry spells (Humphrey et al., 2018; Reich et al., 
2018; Smith and Dukes, 2018), thus it is reasonable to hypothesize that 
water availability also influences the response of GPP_Topt to tempera
ture. Previous studies have found that the inter-annual variation of 
terrestrial carbon uptake and atmospheric CO2 growth rate is strongly 
correlated to the terrestrial water storage, indicating a close interplay 
between carbon and hydrological cycles (Humphrey et al., 2018). 
However, it is still unknown how the responses of GPP_Topt to different 
climate variables varied with dryness conditions. 

Carbon and water cycles in the terrestrial ecosystems are closely 
coupled. It is well-described by Budyco’s curve through incorporating 
the concept of water and energy limits that evapotranspiration was 
mainly controlled by the balance between potential evapotranspiration 
and precipitation (i.e. the dryness index, DI) (Budyko et al., 1974; Potter 
and Zhang, 2009; Yi and Jackson, 2021) (Fig. 1). When DI < 1, evapo
transpiration is limited by available energy; when DI > 1, evapotrans
piration is limited by available water (Fig. 1). Given the close 
relationship between GPP and evapotranspiration (Beer et al., 2009; Yu 
et al., 2008), the concept of water and energy limits possibly applies to 
the determinant climate variables of GPP_Topt as well. Additionally, 
different vegetation types vary in climatic preference (Lin et al., 2015; 
Wang et al., 2017; Whittaker, 1975). Cropland, grassland and forest 
naturally differ in Vcmax and peak vegetation growth (Huang et al., 
2018). None has ever studied the variation of GPP_Topt among vegeta
tion types and teases apart the effects of vegetation types and different 
climate variables. 

Using data from 326 FLUXNET eddy covariance sites across large 
geographical gradients from 37oS to 79oN, we explore the major climate 
variables of GPP_Topt across space. Extensive ecological researches have 

demonstrated that control of water over carbon process is nonlinear 
(Huxman et al., 2004; Luo et al., 2017) across large geographic areas 
while within a site carbon processes usually respond linearly to available 
water (Luo et al., 2017). We hypothesize that GPP_Topt responds to water 
availability and other environmental drivers non-linearly across the 326 
sites (H1). The response of GPP_Topt to different climate variables de
pends on dryness conditions, i.e., water availability determines GPP_Topt 
in water-limited ecosystems while temperature boosts GPP_Topt in 
energy-limited ecosystems (H2). We also hypothesize that GPP_Topt 
respond to climate variables differently among vegetation types (H3). 

2. Material and methods 

2.1. Site information and climate data 

We obtained daily mean GPP and air temperature from standardized 
files of the LaThuile and FLUXNET2015 databases. The data were 
quality-controlled and gap-filled by consistent methods as described in 
previous reports (Chu et al., 2017; Niu et al., 2012). Data with remained 
gaps less than 5% in a whole year were selected for further analysis, 
leaving a total of 326 sites with 1634 site-years data spanning from 37oS 
to 79oN (Fig. S1). Daily mean GPP and air temperature (Tair) instead of 
hourly data was used to generate GPP-Tair response curve, avoiding the 
influence from the diurnal pattern. Specifically, for each site-year, the 
daily air temperatures were binned in 1 ◦C. The daily air temperature 
and the corresponding GPP in each temperature bin was averaged to 
construct the GPP-Tair response curve. The peaked GPP (GPP_Topt) was 
determined by calculating the running mean of every three temperature 
bins. 

Mean annual temperature (MAT, ◦C), mean annual precipitation 
(MAP, mm yr− 1), growing season temperature (GST, ◦C), growing sea
son precipitation (GSP, mm yr-1), global solar radiation (GSR, MJ m− 2 

d− 1) and growing season vapor pressure deficit (VPD, kPa) of each site 
were obtained from World Clim (Fick and Hijmans, 2017), which are the 
average for the years 1970–2000. The warmest quarter in a year is 
considered as the growing season. Humidity index was obtained from 
FAO dataset (Food and Agriculture Organization of the United Nations, 
2015), which is calculated the ratio of precipitation to potential 
evapotranspiration (P/PET). The reciprocal of humidity index is dryness 
index (DI, PET/P). Soil moisture (mm) is obtained from CPC soil mois
ture data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 
USA, from their Web site at https://www.esrl.noaa.gov/psd/. These 
data were used to investigate the spatial variation in GPP_Topt. 

Vegetative patterns of the sites used in this study were divided into 
13 vegetation types according to the International Geosphere-Biosphere 
Programme (IGBP) (Peel et al., 2007): deciduous broadleaf forest (DBF, 
n = 42), evergreen broadleaf forest (EBF, n = 26), evergreen needle leaf 
forest (ENF, n = 77), deciduous needle-leaf forest (DNF, n = 1), mixed 
forest (MF), closed shrubland (CSH), opened shrubland (OSH), grassland 
(GRA, n = 61), cropland (CRO, n = 34), savannah (SAV, n = 12), woody 
savannah (WSA, n = 6), and wetland (WET, n = 32). For the statistical 
analysis, closed shrubland (CSH, n = 8), opened shrubland (OSH, n =
14) are merged to shrubland (SH). Savannah (SAV) and woody savannah 
(WSA) were merged into savannah (SAV). The global vegetation distri
bution was derived from MODIS (MOD12Q1 Land Cover Science Data 
Product) at a spatial resolution of 1 km using the classification scheme of 
IGBP. 

2.2. Statistical analysis 

GPP_Topt of each site was averaged across multiple years of data. The 
response of GPP_Topt to climate variables was examined by ridge 
regression in order to control the collinearity of climate variables across 
space. GPP_Topt was logarithm transformed to meet the assumption of 
homogeneity of variance. We further estimated the relative contribu
tions of climate variables by traditional R square partitioning of 

Fig. 1. A Budyko curve (revised from Yi and Jackson, 2021). When PET < P, 
evapotranspiration is limited by available energy; when PET > P, evapotrans
piration is limited by available water. Here, EI = ET/P, DI = PET/P, where ET is 
evapotranspiration, PET is potential evapotranspiration, P is precipitation. 
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multivariate regression and gradient boost regression (machine 
learning) using “hier.part” and “gbm” packages, respectively. 

The relationship between each climate variable and GPP_Topt was 
examined by polynomial regression and localized polynomial regression 
(LOESS). We found that GPP_Topt-water availability response function is 
nonlinear saturating and GPP_Topt-energy response function is concave 
down. We estimated the saturation point of water availability and 
turning points of energy using breaking point analysis with R package 
“segmented”. 

We analyzed the interaction between climate variables and DI as well 
as vegetation types by analysis of variances (ANOVA). Rolling window 
analysis was applied to climate variables to investigate the effects of DI 
on the partial slope of GPP_Topt to climate variables with window size of 
90 sites. We first sorted the 326 sites by DI. Then the mean DI was 
calculated for every neighboring 90 sites and a multivariate regression 
was performed within each group with GPP_Topt as response variable 
and SM, VPD, MAT and GSR as explanatory variables. By testing with 
different sites of moving window, the 90 sites moving-window allowed a 
sufficient sample size and most robust goodness of fit for the regression 
analysis although the results were similar among different sites of 
moving windows. Based on previous analysis that groups the 326 sites 
by DI, within each DI group, the function between climate variables and 
GPP_Topt is linear except for GSR. Thus we used the following function in 
each 90 neighboring sites. 

GPP_Topt= f(SM, VPD, MAT, GSR, GSR2, GSR3) 

The responses of GPP_Topt to each climate variable were considered 
as the effect of each climate variable with other climate variables 
controlled. Then we plotted the partial coefficients derived from this 
function against the average DI of the corresponding sites. R package 
“zoo” was used to perform the rolling window analysis. 

Then we tested the effects of vegetation types on GPP_Topt using the 
function below: 

GPP_Topt= f((SM, SM2, VPD, MAT, GSR, GSR2, GSR3)*vegetation 
types) 

This function was then used to predict the global distribution of 
current GPP_Topt. 

The average MAT, SM, VPD, GSR and DI are calculated for each 
vegetation type to evaluate the climate preference (Yi and Jackson, 
2021). The sensitivities of GPP_Topt to SM (SMsen) and MAT (MATsen) 
were estimated for each vegetation types. The normalized GPP_Topt of 
each vegetation type is calculated by setting climate variables at the 
average level (SM=345mm, VPD=0.78 kPa, MAT=9.6 ◦C, GSR=13.4 
MJ m− 2 d− 1). Principle component analysis (PCA) was used to investi
gate the relation between climate preference and the sensitivity of 
GPP_Topt to climate variables as well as normalized GPP_Topt among 
vegetation types. 

The temporal variation of GPP_Topt in response to MAT and MAP was 
investigated using linear mixed-effect model with R package “nlme”. 
Site was treated as random effect, allowing both slope and intercept of 
regression to vary between sites. Sites that have more than five years’ 
data were used in the analysis (Fig. S2). We divided sites into water- 
limited (red) and energy-limited (blue) by DI. Note that neither en
ergy nor water availability explained GPP_Topt well when the dryness 
index was between 0.77 and 1.06 (Fig. S3) and it is difficult to define 
whether these sites are water-limited or energy-limited. Thus sites with 
dryness index between 0.77 and 1.06 were excluded from the analysis to 
avoid confusion (Fig. S3). We end up with 33 sites and 385 site-year data 
for energy-limited sites, 27 site and 252 site-year data for water-limited 
sites. 

All statistical analyses were performed using R x64 3.3.1 for Win
dows at α level=0.05. Graphs were constructed using package “ggplot2”. 

3. Results and discussions 

3.1. Nonlinear control of climate variables over GPP_Topt 

Soil moisture (SM), global solar radiation (GSR), mean annual tem
perature (MAT) and air vapor pressure deficit (VPD) explained 47% of 
the spatial variation in GPP_Topt (Fig. 2, Table S1). Our ridge regression 
analysis suggested that mean annual precipitation (MAP), growing 
season precipitation (GSP) and dryness index (DI) are lurking variables 
for GPP_Topt (Table S1). Soil moisture was the most important climate 
variable for controlling GPP_Topt, explaining 36% of the spatial variation 
by itself (Figs. 2a and S4, Table S2). GPP_Topt linearly increased with soil 
moisture but plateaued when soil moisture is larger than 353 ± 39 mm 
and maintained a constant GPP_Topt at the rate of 8 g C m− 2 d− 1 (Fig. 2a). 
GPP_Topt-precipitation function showed a similar non-linear saturation 
pattern and the saturation points for growing season precipitation and 
mean annual precipitation were 306 ± 39 and 804 ± 55 mm, respec
tively (Table S2). Similar relationship is observed between aboveground 
net primary productivity and precipitation across large spatial scales 
(Luo et al., 2017). 

Temperature and global solar radiation (GSR) represent thermal and 
light energy respectively. Vapor pressure deficit (VPD) is a combined 
effect of thermal energy and water. GPP_Topt-energy response curves 
were nonlinear concave down across space. The turning points of GSR, 
MAT, and VPD were 13.5 MJ m− 2 d− 1, 8.5 ◦C and 0.8 kPa, respectively 
(Fig. 2b–d, Table S2). These turning points of energy delineate a low- 
energy range over which GPP_Topt increased with increasing energy 
and a high-energy range over which GPP_Topt decreased with excess 
energy. Vcmax is modeled to linearly increase with light, which explains 
overestimated photosynthetic capacity in wet, tropical forest since a 
linear function fails to capture the suppression of photosynthetic ca
pacity at high light level (Smith et al., 2019). During the periods of 
global dimming, plants photosynthesized more efficiently and seques
trated more carbon (Wild, 2009), agreeing with our results since most 
sites locate in a radiation range that further increase in GSR suppresses 
GPP_Topt (Fig. 2b). 

3.2. The effects of climate variables depend on the dryness condition 

The existence of the thresholds of soil moisture indicates a transition 
from water-controlled stage to energy-controlled stage for GPP_Topt. 
Therefore, the effects of soil moisture, light, temperature and air dryness 
depended on dryness conditions, as indicated by the significant inter
action between these climate variables and DI (Table 1). We divided 
sites into energy-limited group and water-limited group (Fig. 3) based 
on the balance between water demand (PET, potential evapotranspira
tion) and water supply (P, precipitation), using the same concept of 
Budyko’s curve (Budyko, 1961; Budyko et al., 1974) that well-describes 
evapotranspiration. 

The response function of GPP_Topt to soil moisture, air temperature 
and vapor pressure deficit became linear within water- and energy- 
limited group (Table 2). Thus, we were able to extract the partial 
linear slope of GPP_Topt to soil moisture, air dryness and mean annual 
temperature along the dryness gradients using moving window analysis. 
Variations caused by solar radiation were represented by a third-degree 
polynomial function since GPP_Topt-GSR response curve is still non- 
linear within water-limited and energy-limited groups (Table 2). 

GPP_Topt linearly increased with soil moisture (P = 0.002, Table 2) 
and became increasingly more sensitive to soil moisture along the dry
ness gradients (Fig. 3a). However, the sensitivity to water peaked when 
dryness index was around 2.1–2.4 and decreased with further increase in 
aridity. Vegetation types that occur in extremely arid region have rela
tively low productivity and highly adapted mechanisms to cope with 
extreme drought compared with semiarid regions, causing the reduced 
sensitivity of GPP_Topt to soil moisture when dryness index was larger 
than 2.4 (Liu et al., 2018, 2020). GPP_Topt linearly increased with soil 
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moisture across water-limited sites and did not affect GPP_Topt across 
energy-limited sites (Table 2, Fig. 3a). Consequently, a nonlinear satu
ration function was observed between GPP_Topt and soil moisture across 
the 326 sites, supporting the double asymmetric model of the controlling 
of water availability over carbon cycles (Knapp et al., 2017). The linear 
increase in GPP_Topt with soil moisture across water-limited sites is 
consistent with the linear increment of carbon process with water 
availability in grassland that often occurs in water-limited habitat (Zhou 
et al., 2009). Vcmax model excludes the influence of soil moisture or 
precipitation (Smith et al., 2019) because its parameters are derived 
from greenhouse studies that did not consider the influences from 
drought. Thus, the current model might overestimate GPP_Topt in 
water-limited regions. Since soil moisture is the most important climate 
variable for controlling GPP_Topt (Fig. S4), it is imperative to include soil 
moisture into the model for estimating GPP_Topt. 

High air temperature enhanced GPP_Topt (P = 0.012, Table S1, 
Fig. 3b), similar to the leaf model that Vcmax increases with air tem
perature (Smith et al., 2019). Warming-induced air dryness enhanced 

GPP_Topt in very mesic regions but suppressed GPP_Topt in dry regions 
(Fig. 3c). Air dryness consistently reduced GPP_Topt across sites with a 
dryness index larger than 1.5 (Fig. 3c), which is also defined as dryland 
by UNESCO (Unesco, 1979). Ecosystem carbon process is generally 
depressed in water-logged environment (Taylor et al., 2017), explaining 
air dryness caused stimulation of GPP_Topt in mesic areas. GPP_Topt is 
withheld by air dryness in water-limited regions, consistent with a 
recent study reporting that increased air dryness reduces the global 
vegetation growth in the new era (Yuan et al., 2019). High temperature 
induced increase in vapor pressure deficit is also accused for faster 
mortality of tree seedlings common to the forest–grassland ecotone 
(Will et al., 2013). However, the leaf-level model assumes an increase of 
Vcmax with VPD throughout the whole range of VPD (Smith et al., 2019). 
Leaf-level knowledge about photosynthetic capacity is from greenhouse 
studies that usually do not impose drought stress, which possibly ex
plains the discrepancy between leaf-level and ecosystem-level knowl
edge. Thus, only the most mesic sites benefit from increasing VPD 
(Fig. 3c). Direct upscaling of leaf-level knowledge to ecosystem level will 
overestimate the carbon uptake capacity in water-limited regions. 

GPP_Topt is determined by and increases with water or energy, 
depending on which one is more limiting. The strong climate control of 
GPP_Topt (R2: 40%–50%, Fig. S3) supports photosynthetic coordination 
theory that photosynthetic capacities are controlled by climate, instead 
of soil nitrogen (Prentice et al., 2013; Smith et al., 2019). However, 
neither energy nor water availability explained GPP_Topt well when 
water-limit and energy-limit reached equilibrium (dryness index be
tween 0.77 and 1.06, Fig. S3). The decoupling of climate variables and 
GPP_Topt was reflected by the oscillation of the slopes when dryness 
index was around 1 (Fig. 2). Other factors, such as soil nutrients and 
microbes, possibly come into play when energy-limit and water-limit 
reach equilibrium. 

None of the previous study has ever revealed that the major climate 
variable for GPP_Topt differs between water-limited and energy-limited 
sites. Therefore, ignoring the effects of dryness causes bias because the 
estimated parameters would depend on the ratio of water-limited sites to 
energy-limited sites. In addition, a model generated for the whole globe 

Fig. 2. Effects of soil moisture, global solar 
radiation (GSR), vapor pressure deficit (VPD) 
and mean annual temperature (MAT) on 
GPP_Topt. GPP_Topt (g C m− 2 d− 1) is plotted 
against soil moisture (SM, mm), global solar 
radiation (GSR, MJ m− 2 d− 1), vapor pressure 
deficit (VPD, kPa) and mean annual tempera
ture (MAT, ◦C). The blue line is the weighted 
least squares fit determined by a nearest 
neighbor algorithm (LOESS) and light green 
shadow represents the 95% confidence interval. 
The vertical dashed line indicates the turning 
points of each climate variables and the grey 
shadow is the 95% confidence interval calcu
lated by segmented regression. The horizontal 
dashed line indicates the peak GPP_Topt at op
timum climate conditions.   

Table 1 
Analysis of variance of the interaction between climate variables and dryness 
index. Climate variables: Soil moisture (SM, mm), Global solar radiation (GSR, 
MJ m− 2 d− 1), Growing season vapor pressure deficit (VPD, kPa), Dryness index 
(DI, PET/P), Mean annual temperature (MAT, ◦C), Growing season precipitation 
(GSP, mm yr− 1), Growing season temperature (GST, ◦C), Mean annual precipi
tation (MAP, mm yr− 1). GPP_Topt is log transformed.   

Sum Sq Mean Sq F value P  

SM 41.43 41.43 167.17 <0.001 ** 
VPD 5.75 5.75 23.2 <0.001 ** 
MAT 3.37 3.37 13.58 <0.001 ** 
GSR 2.29 2.29 9.23 0.003 * 
DI 0 0 0.01 0.913 N.S 
SM*DI 2.09 2.09 8.42 0.004 * 
VPD*DI 0.98 0.98 3.95 0.048 * 
MAT*DI 5.44 5.44 21.93 <0.001 ** 
GSR*DI 2.31 2.31 9.31 0.002 *  
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may work well in mesic region but not in drylands, or vice versa. 
Grouping sites based on the most limiting factor and applying different 
algorithms more realistically represents the nature process, as a result, 
improving the accuracy of ESMs’ projection of carbon influx in the 
future. 

3.3. Temporal variation in GPP_Topt as influenced by water- and energy- 
limitation 

Dryness affects the temporal variation in GPP_Topt in response to 
mean annual temperature (MAT) and mean annual precipitation (MAP). 
Inter-annual change in MAT does not affect the temporal variation in 
GPP_Topt in energy-limited sites yet reduces GPP_Topt by 0.17 g C m− 2 

d− 1 per 1 ◦C increase in MAT (P = 0.01, Fig. 4a, c). GPP_Topt tends to be 
higher in wetter years in both energy- and water-limited sites (Fig. 4b, 
d). However, water-limited sites are about 1.6 times more sensitive to 
changes in precipitation than energy-limited sites. Consequently, 
drought causes greater reduction in carbon uptake in water-limited re
gions. Given the relationship between carbon uptake and GPP_Topt, 
energy-limited sites are more likely to maintain a stable carbon uptake 
across years while water-limited sites are more susceptible to warming 
or drought. This rationale is in agreement with a recent report that 
water-limited regions are responsible for most of the inter-annual vari
ation (IAV) in atmospheric CO2 growth rate. The predicted wide- 
spreading drought by the next century (Girvetz and Zganjar, 2014) 
will turn many energy-limited ecosystems into water-limited ecosys
tems, indicating a larger IAV of atmospheric CO2 growth rate in the 
future. 

3.4. The response of GPP_Topt to climate variables also depends on 
vegetation types 

Incorporating vegetation types increased R2 from 47% to 67% 
(Tables S2 and S3), substantially improving the prediction power of the 
model. The sensitivity of GPP_Topt to MAT and soil moisture varied 
among vegetation types (Fig. 5). Warming tended to increase GPP_Topt 
in vegetation types that inhabit wetter climate. Vegetation types that 
inhabit drier climate, such as grassland, are more responsive to changes 
in soil moisture. We normalized GPP_Topt by excluding the influence of 
climate variables. The normalized GPP_Topt still varied among vegeta
tion types (P < 0.001, Table S3), probably due to evolutionary adapta
tion to local environment (Huang et al., 2018). Shrub and Savanna, 
which inhabited the most arid niche, showed the lowest GPP_Topt even 
with climate variables adjust to the same value (Fig. 5c). Our finding 
indicates that when a natural ecosystem degraded to a less productive 
vegetation type, carbon sequestration is suppressed even if climate 
conditions go back to the previous conditions. Genetic selection or 
human management such as irrigation and fertilization possibly explains 
the higher normalized GPP_Topt in cropland (Fig. 5c), agreeing with 
previous studies that expanding cropland increase in maximum NDVI 
over time (Huang et al., 2018) and the land-use management in China 
and India lead the greening of earth (Chen et al., 2019). 

3.5. Global distribution of GPP_Topt 

We predicted current global distribution of GPP_Topt based on tem
perature, light, soil moisture, air dryness and vegetation types (Fig. S5). 
The global average GPP_Topt is 3.6 g C m− 2 d− 1, with spatial variations 
that echo the global distribution of GPP perfectly (Beer et al., 2010). 
Highest GPP_Topt occurs along the equator, followed by humid and 
temperate regions such as the great lake area in the U.S, southeast China 

Fig. 3. Dependence of the sensitivity of GPP_Topt to climate variables on the dryness gradients. Violin plots of the sensitivity of GPP_Topt to soil moisture (SM) (a), 
mean annual temperature (MAT) (b), and vapor pressure deficit (VPD) (c) across the dryness gradients (PET/P). White dots indicate the median values, black boxes 
cover the interquartile range, and thin black lines reach the 5th and 95th percentiles. 
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and Europe (Fig. 6). Water deficiencies constrained GPP_Topt (Fig. 6) and 
GPP (Beer et al., 2010) in subtropical region, disagreeing with the 
leaf-level model that predicts a high Vcmax in the same region (Smith 
et al., 2019). The discrepancies between ecosystem and leaf knowledge 
contribute to different projections of carbon uptake capacity. The lack of 
constraining from water contributes to overestimated Vcmax in 

water-limited regions (Smith et al., 2019). We also found GPP_Topt to be 
negative related with VPD in water-limited regions while modelled 
Vcmax continuously increases with VPD throughout the whole range 
(Smith et al., 2019). Furthermore, GPP_Topt-radiation response curve is 
non-linear concave down while Vcmax is modeled to linearly increase 
with irradiance (Smith et al., 2019). A better representation of the 
nonlinear relationship between carbon uptake processes and light helps 
to reduce the uncertainty in the prediction of carbon fluxes (Nicole and 
Gordon, 2017). 

4. Conclusions 

We found a strong regulation of the maximum gross primary pro
ductivity (GPP_Topt) across space by soil moisture, light, temperature, 
air dryness and vegetation types. Responses of GPP_Topt to climate 
variables depend on dryness gradients. GPP_Topt is limited by tempera
ture under wet condition while GPP_Topt is limited by water availability 
under dry condition. The concept of water and energy limits, which 
originates from researches concerning evapotranspiration, applies to the 
spatiotemporal variation in GPP_Topt. Global warming only reduces 
carbon uptake capacity of water-limited sites due to warming- 
aggravated water deficiencies and air dryness. Energy-limited ecosys
tems are able to maintain its carbon uptake capacity or even benefit 
from warming. The responses of GPP_Topt to climate variables also 
depend on vegetation types. GPP_Topt tends to be higher in vegetation 
types with humid climates and is more likely to benefit from a warmer 
climate without water deficit stress. These knowledge does not only 
improve our understanding of the photosynthetic processes at the 
ecosystem level, but also aid the modelers to improve the accuracy of 
coupled climate-carbon cycle process model. 

Data accessibility statement 

All FLUXNET data can be downloaded at: https://fluxnet.fluxdata. 
org. Climate variables of each site were obtained from WorldClim 
(https://www.worldclim.org/). Humidity index was obtained from FAO 
dataset (https://www.fao.org/home/en/). Soil moisture is obtained 
from CPC soil moisture data provided by the NOAA/OAR/ESRL PSD, 
Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa. 

Table 2 
Influences of climate variables in energy-limited (DI < 1) versus water-limited 
(DI > 1) regions. Soil moisture (SM, mm), Global solar radiation (GSR, MJ 
m− 2 d− 1), Growing season vapor pressure deficit (VPD, kPa), Dryness index (DI, 
PET/P), Mean annual temperature (MAT, ◦C), Growing season precipitation 
(GSP, mm yr− 1), Growing season temperature (GST, ◦C), Mean annual precipi
tation (MAP, mm yr− 1). GPP_Topt is log transformed. Coefficients that are sig
nificant at α=0.05 level are bolded.  

Group  Slope SE t- 
value 

P  R2 AIC 

Energy- 
limited 

SM1 0.55 0.61 0.90 0.368 N. 
S 

0.28 194 

DI < 1 
n = 143 

SM2 -0.43 0.56 -0.77 0.442 N. 
S    

GSR1 -0.54 0.85 -0.64 0.521 N. 
S    

GSR2 -1.55 0.58 -2.67 0.008 *    
GSR3 1.90 0.52 3.67 <0.001 **    
GST 0.01 0.02 0.26 0.80 N. 

S    
MAT 0.01 0.01 0.66 0.51 N. 

S    
VPD 0.37 0.33 1.11 0.27 N. 

S   
Water- 

limited 
SM1 2.10 0.68 3.11 0.002 * 0.53 268 

DI > 1 
n = 183 

SM2 -0.84 0.53 -1.57 0.118 N. 
S    

GSR1 -4.45 0.98 -4.52 <0.001 **    
GSR2 -1.91 0.59 -3.24 0.001 *    
GSR3 0.97 0.55 1.77 0.078 N. 

S    
GST 0.01 0.02 0.36 0.718 N. 

S    
MAT 0.04 0.01 3.35 0.001 **    
VPD -0.51 0.16 -3.22 0.002 *    

Fig. 4. Relationship of temporal variation in 
GPP_Topt with mean annual temperature (MAT, 
◦C) and mean annual precipitation (MAP, mm) 
depends on dryness. Mean annual temperature 
and precipitation’s effects on the temporal 
variation in GPP_Topt in 33 energy-limited sites 
(a, b). Mean annual temperature and pre
cipitation’s effects on the temporal variation in 
GPP_Topt in 27 water-limited sites (c, d). There 
are 385 site-year and 252 site-year data for 
energy-limited and water-limited sites, respec
tively. Black dashed lines are the fixed effect 
linear regression slope between sites from the 
mixed-effect model; colored lines indicate the 
temporal patterns within sites. Climate anomaly 
is calculated by deducing the mean value of 
each site from the value of each year of that 
site.   
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Fig. 5. Climatic preference of habitat among vegetation types in relation to the spatial sensitivity of GPP_Topt. The sensitivity of GPP_Topt to mean annual tem
perature (MATsen) in relation to the climatic preferences of vegetation types (a). The sensitivity of GPP_Topt to soil moisture (SMsen) among vegetation types in 
relation to the climatic preferences of vegetation types (b). Normalized GPP_Topt in relation to the climatic preferences of vegetation types (c). Principle component 
analysis (PCA) is used to investigate the relationship between climatic preference of vegetation types and MATsen, SMsen, and normalized GPP_Topt. Normalized 
GPP_Topt is calculated by adjust MAT, GSR, SM and VPD to the mean level of the dataset (see material and method). The angle of two arrows indicates the relationship 
of the two variables. 

Fig. 6. Globally predicted present GPP_Topt. GPP_Topt is computed using global solar radiation, mean annual temperature, growing season precipitation, soil moisture 
and vegetation types as predictors with resolution of 0.1o×0.1o. GPP_Topt is regressed on latitude using generalized additive model (GAM), as shown in the 
right panel. 

B. Wang et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 323 (2022) 109073

8
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Köstner, B., Moors, E., Roupsard, O., Verbeeck, H., Vesala, T., Williams, C.A., 
Wohlfahrt, G., 2009. Temporal and among-site variability of inherent water use 
efficiency at the ecosystem level. Glob. Biogeochem. Cycles 23, GB2018. 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., 
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