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Abstract
Aim: Fresh carbon (C) inputs to the soil can have important consequences for the de-
composition rates of soil organic matter (priming effect), thereby impacting the deli-
cate global C balance at the soil–atmosphere interface. Yet, the environmental factors 
that control soil priming effect intensity remain poorly understood at a global scale.
Location: Global.
Time period: 1980–2020.
Major taxa studied: Soil priming effect intensity.
Methods: We conducted a global dataset of CO2 effluxes in 711 pairwise soils with 
13C or 14C simple C sources inputs and without C inputs from incubation experiments 
in which isotope-labelled C was used to quantify fresh C-induced rather than exudate-
induced priming.
Results: Soil priming effect intensity is predominantly positive. Soil texture and C con-
tent were identified as the most important factors associated with priming effects, 
with sandy soils from tropical and mid-latitudes supporting the highest soil priming 
effect intensity, and soils with greater C content and fine textures from high latitudes 
maintaining the lowest soil priming effects. The negative association between C con-
tent and soil priming effect intensity was also indirectly driven by changing mean 
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1  |  INTRODUCTION

Earth's soils contain more carbon (C) than the vegetation and 
atmosphere combined and play an important role in regulat-
ing ecosystem functions and services such as the modulation 
of atmospheric CO2 concentrations, climate change, and biodi-
versity conservation (Lehmann & Kleber,  2015). Consequently, 
even a small loss of soil organic C (SOC) can cause a significant 
increase in the atmospheric CO2 concentration (Davidson & 
Janssens,  2006). The soil priming effect, the change in the mi-
crobial decomposition of SOC in response to fresh C inputs (i.e., 
litter input or root exudation of carbohydrates), is a key compo-
nent of global C cycling (Kuzyakov, 2010; Kuzyakov et al., 2000). 
Incorporating soil priming effects into earth system models 
(ESMs) could potentially improve the prediction of global C stocks 
(Guenet et al., 2018; Sulman et al., 2014). However, the magni-
tudes of priming effects among various ecosystems remain highly 
uncertain, with potential soil C release ranging from a 380% in-
crease to a 50% reduction, which greatly impedes the priming 
representation in ESMs (Guenet et al.,  2018; Huo et al.,  2017). 
The uncertainty regarding this soil phenomenon is partly due 
to the fact that soil C balance is greatly regulated by intricate 
above- and below-ground interactions (Bastida et al., 2019; Liang 
et al., 2018). In soil, fresh C inputs contribute to soil C sequestra-
tion, but can also alter the decomposition of SOC (Blagodatskaya 
& Kuzyakov, 2008; Kuzyakov et al., 2000). Therefore, knowledge 
of the global biogeographical distributions of soil priming effects 
is crucial for accurately predicting soil C dynamics under climate 
change.

Geographical distributions of soil priming effects are driven 
by both abiotic and biotic factors (Bastida et al.,  2019; Guenet 
et al.,  2018; Liang et al.,  2018). Previous studies have identified 
climate factors (temperature and moisture; Reinsch et al., 2013), 
plant properties (i.e., litter quality and quantity; Fanin et al., 2020; 
Pascault et al., 2013), soil properties (SOC content and stability, 

pH; Bastida et al.,  2019; Chen et al.,  2018, 2019), and microbial 
attributes (microbial biomass, diversity, and community structure; 
Fontaine et al., 2003; Liang et al., 2018; Razanamalala et al., 2018) 
as potential drivers of soil priming effects. Despite these findings 
providing useful information on the environmental drivers of soil 
priming effects across local and regional-biome, a systematic and 
holistic understanding of soil biogeography of priming effects 
and their dominant drivers is lacking at the global scale (Guenet 
et al., 2018; He & Xu, 2021; Wieder et al., 2013). Moreover, it is 
widely accepted that the direction and intensity of soil priming ef-
fects are regulated by a succession of processes rather than singu-
lar mechanisms (Kuzyakov et al., 2000), the fresh C input-induced 
soil priming effect is a general phenomenon that occurs in various 
terrestrial ecosystems involving diverse substrates, but we are 
still lacking a simple and generalizable framework to explain this 
important soil process (Liu et al., 2020). As such, the assessment 
of global soil priming effects should consider both abiotic and 
biotic factors simultaneously. Quantitative understanding of the 
global drivers of soil priming effect intensity can help to quantify 
the contributions of priming to climate warming feedbacks and in-
crease the accuracy of ESMs.

To address these knowledge gaps in biogeographical patterns 
for soil priming effect intensity, we conducted a global synthesis of 
CO2 effluxes in 711 pairwise soils with 13C or 14C labelled simple 
C sources inputs (e.g., glucose, organic acids, lignin, and cellulose, 
etc.) and without C inputs from incubation experiments (Figure 1, 
Supporting Information Table S1). Based on these incubation exper-
iments, a one-pool biogeochemical model was used to model soil 
C decomposition (see Methods). We then calculated the priming 
effect intensity and further analysed its macroscopic properties to 
develop an empirical model for it. Finally, we mapped soil priming 
effect intensity globally. In this study, we aimed to (a) explore the 
global drivers of soil priming effect intensity, and (b) investigate the 
biogeography of soil priming effects and create the first global atlas 
of their intensity.

China Postdoctoral Science Foundation, 
Grant/Award Number: 2019M650276; 
Chinese Academy of Sciences “Light of 
West China” Program for Introduced 
Talent in the West, Grant/Award Number: 
31570440

Handling Editor: Stephanie Kivlin

annual temperature, net primary productivity, and fungi  :  bacteria ratio. Using this 
information, we generated a global map of soil priming effect intensity, and found that 
the priming was lower at high latitudes and higher at lower latitudes.
Main conclusions: Global patterns of soil priming effect intensity can be predicted 
using environmental data, with soil texture and C content playing a predominant role 
in explaining in priming effects. These effects were also indirectly driven by climate, 
vegetation and soil microbial properties. We present the first global atlas of soil prim-
ing effect intensity and advance our knowledge on the potential mechanisms under-
lying soil priming effect intensity, which are integral to improving the climate change 
and soil C dynamics components of Earth System models.

K E Y WO RD S
climate change, global atlas, global drivers, priming effect intensity, soil C dynamics, soil 
texture
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2  | METHODS

2.1  | Data sources and preparation

The 13C or 14C labelled fresh C addition experiment is a common 
approach for quantifying the priming effects of SOC, which is tradi-
tionally expressed as a percent increase in CO2 emission from the old 
C under the new C addition treatment relative to that in the control. 
Thus, soil priming effects are calculated as the difference between 
the soil respiration derived from old C after fresh C input and that 
derived from the control samples. In order to investigate the global 
patterns of priming effects, a comprehensive literature survey was 
conducted through Google scholar (http://schol​ar.google.com/) 
from 1980 to 2019; the keywords were ‘soil’ and ‘incubation’ and 
‘isotope’ and ‘carbon.’ Articles were selected based on the following 
criteria: (a) both control and isotope-labelled simple C addition (e.g., 
glucose, organic acids, lignin, and cellulose, etc.) treatments were 
included in the same incubation experiments; (b) at least three time-
course measurements of CO2 emission rates were reported under 
control and isotope-labelled simple C addition treatments, and these 
CO2 emission rates could be partitioned into native C-derived CO2-C 
(12C) and simple C-derived CO2-C (13C or 14C) based on the isotopic 
signature of CO2-C; (c) all the incubation soils were from the topsoil 
(~20 cm); (d) the initial soil C and the amounts of added fresh C had 
to be available; and (e) if different publications included the same 
data from one study, we recorded the data only once. Finally, a total 
of 711 paired experiments (treatment versus control) were included 

in the present study (dataset). For each paired experiment, we ex-
tracted the observed C mineralization data including treatment-
induced cumulative total CO2, fresh C- and native SOC-derived CO2, 
as well as the cumulative total CO2 from the control at each time 
point of the time-course measurements.

Furthermore, we extracted the data relevant for the site background, 
edaphic, microbial, and incubation information for these 711 paired ex-
periments. These variables included latitude, longitude, climatic factors, 
bulk density (BD), soil pH, soil texture (sand, silt, and clay fraction), soil or-
ganic C content (SOC), total nitrogen (TN), C : N ratio, soil microbial prop-
erties, and the amount of fresh C addition. However, if the environmental 
variables were not fully reported in a published study, we extracted the 
required data from global datasets based on the latitude and longitude 
(Supporting Information Table S2). Specifically, for climatic factors, we ex-
tracted mean annual temperature (MAT) and mean annual precipitation 
(MAP) during 2006–2015 from global atmospheric re-analysis II data of 
the National Centers for Environmental Prediction (NCEP-2). In addition, 
vegetation properties (gross primary production, GPP; net primary pro-
ductivity, NPP) for the period 2006–2015 were obtained from the moder-
ate resolution imaging spectroradiometer (MODIS) products (MOD17A3) 
(Yuan et al., 2020). We also obtained data for soil pH, BD, soil texture (i.e., 
sand, silt, and clay), and soil substrates (SOC, TN, C : N) from version 1.2 of 
Harmonized World Soil Data (https://daac.ornl.gov/SOILS/​guide​s/HWSD.
html). Soil microbial properties (fungal biomass C, bacterial biomass C, and 
fungi : bacteria ratio) were also retrieved from a global fungal and bacterial 
biomass C dataset compiled by He et al. (2020) (Supporting Information  
Table S2).

F IGURE  1 Spatial distribution of the data points used in this study
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2.2  |  Calculation of modelled priming 
effect intensity

A one-pool biogeochemical model was used to model soil C de-
composition (van Groenigen et al., 2014) using the incubation data-
sets with a Bayesian Markov chain Monte Carlo method (Hararuk 
et al., 2014). The model validation confirmed the robustness of our 
empirical model for global priming effects (Figure 2); order equations 
are shown below:

 

 

 

 

where N1 is the fresh-C input rate (mg C/g soil/day), which is the amount 
of added substrate C in the isotope-labelled C addition treatment at 

time 0, Nn is the size of the N pool after a period (n) of decomposition. 
There is no N pool for the control (i.e., no C addition). O1

c
 and On

c
 are 

the pool of native C at time 0 and time n in treatment. Ot is the pool of 
native C in the control. KN, KOt

, and KOc
 are decay rates of the N pool, 

and of the native C pool in the treatment and control, respectively. r is 
the transfer coefficient (unitless) from the newly added fresh C to soil 
C pool. The priming effect intensity was calculated as shown below:

2.3  |  Potential predictors for priming 
effect intensity

Structural equation modelling (SEM) was used to graphically show 
the influence of each variable in the model, when the other vari-
ables in the model were held statistically constant. Before SEM, the 
Moran's I test statistic for spatial correlation (Moran, 1950) was cal-
culated to reduce the random effects from the location. The value of 
Moran's I was .454 and the p value = .073 > .05, which indicated that 
priming effect intensity among our sample sites had no spatial au-
tocorrelation. Thus, when designing the SEM, the space effect was 
not considered; however, other environmental variables including 
climate factors (MAT, MAP), vegetation properties (GPP, NPP), soil 
properties (bulk density, silt, clay, pH, SOC content, total nitrogen), 
and microbial properties (fungal biomass C, bacterial biomass C, and 

(1)dN1

dt
= N

1 − KN × N
1

(2)dC1

dt
= KN × N

1 × r − KOc
× O

1
c

(3)dNn

dt
= − KN × N

n

(4)dCn

dt
= KN × N

n × r − KOc
× O

n

c

(5)dC

dt
= − KOt

× Ot

(6)Priming effect intensity (%) =

(

Kot − Koc

)

Koc

× 100

F IGURE  2 Observation versus 
simulation values of priming effect 
intensity (%). The 1:1 dotted line is plotted
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the ratio of fungi to bacteria biomass C (F : B ratio)] were considered. 
Moreover, two types of statistical models (random forest analysis 
and generalized linear model) were used to test the relative impor-
tance of predictor variability for priming effect intensity. First, the 
visualizations of random forests were chosen to show the partial 
feature contributions of the most important variables (Supporting 
Information Figure S2). The plots were arranged according to vari-
able importance, and the goodness-of-visualization was evaluated 
with leave-one-out k-nearest neighbour estimation (R2 values). For 
example, for the microbial properties' groups, the R2 for the F  : B 
ratio was significantly higher than those for both fungal biomass 
carbon and fungal biomass carbon; thus, the F  : B ratio was more 
important than these other two factors. Second, the generalized lin-
ear model was also used to show the important factors for changed 
priming effects. Generally, if the important value was higher (shown 
on the horizontal axis), the variable was considered as the predomi-
nant factor (Supporting Information Figure S3). After attaining a 
satisfactory variables, we introduced composite variables into our 
model. The use of composite variables did not alter the underlying 
SEM model, but collapsed the effects of multiple conceptually re-
lated variables into a single composite effect, aiding interpretation of 
model results. Also, before SEM analysis, an a priori model was built 
to explore the direct and indirect effects (Supporting Information 
Figure S4). All the analyses were conducted using the R statistical 
software environment v.4.0.2 (https://www.r-proje​ct.org/).

2.4  |  The empirical model for global priming 
effect intensity

An empirical model was developed to estimate the priming effects 
with consideration of the primary controlling factors from the SEM 
analysis. The log-transformation was used to a normal distribution 
for robust statistical analysis. Two-thirds of the observed data points 
were used to build the model, while the one-third of the data points 
were used to evaluate the model (Supporting Information Figure S5).  
We then built the model based on the 14th degree polynomial re-
gression function before Akaike information criterion (AIC) selec-
tion. The full primary model is shown below:

where a1–a14 are the coefficients for the primary corresponding con-
trolling factors and b is the primary intercept. After choosing by the 
lowest AIC score, the final empirical model for predicting priming ef-
fects is shown below:

where a1'–a7' are the coefficients for the corresponding controlling 
factors and b is the intercept (Supporting Information Table S3). Based 

on the global biome classification criteria, we summarized the differ-
ences in priming effects across 12 major terrestrial biomes: boreal 
forest, temperate coniferous forest, temperate broadleaf forest, trop-
ical forest, mixed forest, grassland, shrubland, tundra, desert, natural 
wetlands, cropland, and pasture. Most statistical analyses were con-
ducted using the free software environment R (https://www.r-proje​
ct.org/). Resample processes were carried out and the global maps cre-
ated using NCL (National Center for Atmospheric Research Command 
Language, version 6.5.0, https://www.ncl.ucar.edu/).

3  |  RESULTS AND DISCUSSION

3.1  | Global drivers of soil priming effect intensity

We found that soil priming effect is a global phenomenon (Guenet 
et al., 2018), with positive soil priming effect observed in 560 soils 
(79%) and a negative soil priming effect observed in 151 soils (21%) 
(Figure 1, Supporting Information Figure S1). SEM was conducted 
to identify the most important environmental factors associated 
with soil priming, and found that soil texture and SOC content are 
the fundamental drivers of soil priming effect intensity globally 
(Figure 3). Highly positive soil priming effect intensities are more 
likely to be observed in sandy soils (Bastida et al., 2019; Fontaine 
et al., 2004). In these soils, typically found in deserts and tropical 
regions, microbial communities are known to be adapted to the 
rapid recycling of organic matter, which promotes high C minerali-
zation rates, when mining for other nutrients (Bastida et al., 2019). 
Higher soil priming effects are associated with greater sand con-
tent globally (Figure  3), suggesting that soil priming effects are 
greater in coarser soils. Sandy soils are often associated with low 
C contents (Delgado-Baquerizo et al.,  2020), and could support 
positive soil priming effect intensity in response to fresh C inputs. 
On the contrary, soils with higher silt content are associated with a 
negative soil priming effect (Figure 3). First, fine mineral particles 
contribute to the formation of microaggregates, which limit micro-
bial access to SOC due to spatial inaccessibility (Chen et al., 2019). 
Second, fine soils contribute to the stabilization of SOC by min-
eral protection, that is, interactions between SOC and fine mineral 
particles due to ligand exchange, polyvalent cation bridges, and 
complexation (von Lutzow et al., 2006). Further, our findings show 
that SOC is a direct driver for changed priming effect intensity, 
and had significantly negative associations globally, indicating that 
the initial C content regulates the directions and magnitudes of 
priming effect intensity (Figure 3). Importantly, soils with greater 
C content, such as those found in high latitudinal ecosystems in 
the Northern Hemisphere, are expected to have negative soil 
priming effect intensity (Figure  3). A possible reason for this is 
that, under high C conditions, fresh C is invested by microbes in 
producing newer biomass as well as using the C accumulated in 
organic matter, resulting in negative priming effects. In line with 
our results, negative relationships between soil priming effect in-
tensity and SOC content have been widely reported by previous 

(7)

PE = a1MAT+a2MAT+a3GPP+a4NPP+a5SOC+a6TN

+ a7C:N+a8pH+a9Silt+a10S and+a11Clay

+ a12FBC+a13BBC+a14F: B+b

(8)

PE=a1�MAT+a2’NPP+a3’SOC+a4’pH+a5’Ssilt+a6’Sand+a7’F: B+b
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local and regional studies (Bastida et al., 2019; Chen et al., 2014; 
Guenet et al., 2018).

In addition, the results of SEM analysis revealed the indirect as-
sociation between ecological predictors and soil priming effect in-
tensity (Figure 3). For example, the negative association between C 
content and soil priming effect intensity was found to be indirectly 
driven by climate, which is not unexpected as colder and more pro-
ductive soils often support higher C contents (Guenet et al., 2018). 
Soils from warmer climates are known to accumulate less C as a conse-
quence of the higher C decomposition and respiration rate (Thiessen 
et al., 2013; Yuste et al., 2007). Similarly, NPP can also control the 
chemistry of plant litter and root exudates, which can increase mi-
crobial metabolism (Waldo et al., 2019; Zhang et al., 2017) and shape 
microbial community composition (direct effect: r = −.678), thereby 
affecting the C dynamics and indirectly driving soil priming effect 
intensity globally. Previous observations have also shown the asso-
ciation between soil priming effects and the quantity and quality of 
plant C inputs over broad geographical scales (Huo et al., 2017; Luo 
et al., 2015), supporting this idea. Notably, our results also showed 
that soil F : B ratio had no direct effect on priming effect intensity 
but indirectly drove it through modification of SOC (Figure 3), im-
plying that the magnitudes of priming effect intensity were mainly 
determined by the different microbial groups mediating C dynam-
ics (Blagodatskaya & Kuzyakov, 2008; Davidson & Janssens, 2006). 
Specifically, fungi have generally more oligotrophic features and 
can produce a wide range of enzymes that allow the degradation 

of recalcitrant fractions (Eichlerova et al., 2015; van den Brink & de 
Vries, 2011). Bacteria show a wide metabolic diversity and often an 
opportunistic strategy that allow them to rapidly absorb labile sub-
strates (Di Lonardo et al., 2017). As such, it may be speculated that 
the positive association is due to the higher F  : B ratio inducing a 
higher degree of recalcitrant carbon degradation and the priming of 
SOC. Collectively, these results suggest that changing climate, veg-
etation characteristics, and microbial properties can indirectly alter 
soil priming effect intensity by changing soil C content.

3.2  | A global atlas of soil priming effect intensity

Using the most important predictors from the SEM analysis, we 
extrapolated this relationship to the global scale and generated a 
global map of soil priming effect intensity. The results revealed a 
distinct pattern of changes in soil priming effects with latitude 
(Figure 4 and Supporting Information Figure S6), such that priming 
was lower at high latitudes (North America and northern Russia) and 
higher at lower latitudes (i.e., Indonesia, South Africa, and South 
America). Tundra and boreal forest showed the lowest soil priming 
effect intensity and subtropical forests showed the highest, predict-
ing that priming-induced C decomposition was higher in warmer 
regions than that in cold regions. The reason might be associated 
with the fact that high-latitude colder ecosystems in the Northern 
Hemisphere often accumulate more C in their soils, compared with 

F IGURE  3 Direct and indirect effects of climate, vegetation, and soil and microbial properties on the priming effect. The arrows indicate 
the hypothesized direction of causation. Black and red arrows indicate positive and negative relationships, respectively. The arrow width 
is proportional to the strength of the relationship. MAT = mean annual temperature; NPP = net primary productivity; SOC = soil organic 
carbon; F : B = the ratio of fungi to bacteria biomass C. The numbers adjacent to the arrows are the standardized path coefficients. An 
a priori model associated with this figure is available in Supporting Information Figure S4. Significance is represented by *** p < .001, 
** p < 0.05
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    | 1685REN et al.

tropical and subtropical soils. Furthermore, we found higher values 
of soil priming effect intensity in deserts (Supporting Information 
Table S1), with relatively low plant productivity but higher tempera-
tures. The positive priming effects in desert areas may be related 
to the high impact of fresh C inputs on soil microbial communities, 
which are naturally adapted to low SOC content but often support 
rapid C cycling (Bastida et al., 2013). The Tibet Plateau, the largest 
alpine permafrost region in the Northern Hemisphere, showed low 
soil priming effect intensity, attributable to the large quantities of 
SOC (Ding et al., 2016) and low temperature. The global atlas also 
indicates that soil priming effect intensity ranked as tropical forest/
subtropical forest > temperate forest.

In summary, this study represents the most comprehensive at-
tempt to date to understand the global patterns of soil priming ef-
fect intensity, producing a global map of soil priming effect intensity, 
and highlighting that priming induces stronger C–climate feedback. 
Our global atlas of soil priming effect intensity is important to un-
derstand where and why C priming could be fundamental to under-
standing climate change–C feedbacks globally. Soils that are subject 
to losses in C content associated with natural retrogression (e.g., 
very old tropical soils), anthropogenic desertification, acidification 
and agricultural processes might further support higher priming ef-
fects in response to fresh C input. Our results suggest that protect-
ing soils in boreal and cold regions wherein C is accumulated is now 
more important than ever before. Previous earth system models did 

not include priming mechanisms and spatial heterogeneity in the 
global C models (Blagodatskaya & Kuzyakov,  2008); however, our 
results suggest that they are fundamental to properly incorporate 
the impacts of soil environments into the capacity of soil to capture 
C. Thus, in future work, including soil priming effects in earth system 
models should be considered to allow for accurate assessment of 
global soil C stocks.

3.3  |  Limitation and uncertainties

In this section, we acknowledge some limitations of our study. First, 
the distributions of observed data were disproportionate among 
different regions, which may have caused biases when establishing 
the global empirical priming effect model. Second, the environmen-
tal variables were not fully reported in each case and the data ex-
tracted from global datasets are likely to have added uncertainty to 
the analyses. In addition, the modelling uncertain from the driving 
datasets must be considered when we generated the global map of 
soil priming effect intensity. In spite of these limitations, our study 
constitutes the biggest effort to understand the drivers of soil prim-
ing effect intensity at the global scale. Future priming studies and 
observational studies should be changed to a wide range of scales 
to clarify the underlying patterns and controls of priming effect 
intensity.

F IGURE  4 Global pattern of priming effect intensity (%)
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