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ABSTRACT: The spatial and temporal variations in terrestrial carbon storage play a pivotal role in regulating future cli-
mate change. However, Earth system models (ESMs), which have coupled the terrestrial biosphere and atmosphere, show
great uncertainty in simulating the global land carbon storage. Here, based on multiple global datasets and a traceability
analysis, we diagnosed the uncertainty source of terrestrial carbon storage in 22 ESMs that participated in phases 5 and 6
of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The modeled global terrestrial carbon storage has
converged among ESMs from CMIP5 (1936.9 6 739.3 PgC) to CMIP6 (1774.4 6 439.0 PgC) but is persistently lower than
the observation-based estimates (22856 669 PgC). By further decomposing terrestrial carbon storage into net primary pro-
duction (NPP) and ecosystem carbon residence time (tE), we found that the decreased intermodel spread in land carbon
storage primarily resulted from more accurate simulations on NPP among ESMs from CMIP5 to CMIP6. The persistent
underestimation of land carbon storage was caused by the biased tE. In CMIP5 and CMIP6, the modeled tE was far shorter
than the observation-based estimates. The potential reasons for the biased tE could be the lack of or incomplete represen-
tation of nutrient limitation, vertical soil biogeochemistry, and the permafrost carbon cycle. Moreover, the modeled tE be-
came the key driver for the intermodel spread in global land carbon storage in CMIP6. Overall, our study indicates that
CMIP6 models have greatly improved the terrestrial carbon cycle, with a decreased model spread in global terrestrial carbon
storage and less uncertain productivity. However, more efforts are needed to understand and reduce the persistent data–
model disagreement on carbon storage and residence time in the terrestrial biosphere.
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1. Introduction

Earth’s land surface stores more than 3 times the amount
of carbon (C) in the atmosphere (Houghton 2007). Based on
the updated global C budget (Friedlingstein et al. 2019), the
terrestrial ecosystem currently acts as a C sink and has cumu-
latively removed 31% of anthropogenic C emissions since in-
dustrial times. However, the vast terrestrial C storage is
vulnerable to climate change (Nottingham et al. 2020; Schuur
et al. 2015; Xia et al. 2014) and could turn into sources of C
emission in a warming future, further exacerbating climate

change (Arneth et al. 2010). For example, the substantial fro-
zen C stored in high latitudes can be thawed, decomposed,
and released into the atmosphere as the world warms (Koven
et al. 2017; Ahlström et al. 2013). Climate warming can also
trigger unexpectedly large CO2 releases from the tropical for-
est soil (Nottingham et al. 2020). Thus, understanding and
quantifying the vast but vulnerable C storage on the land
have profound implications for predicting how the terrestrial
C cycle responds to climate change (Nottingham et al. 2020;
Schuur et al. 2015; Todd-Brown et al. 2013).

Earth system models (ESMs) are an essential tool for un-
derstanding and predicting climate change (Bonan and Doney
2018; Flato 2011). However, the uncertainty stemming from
the terrestrial C cycle component strongly influences the tra-
jectory of future climate change (Bodman et al. 2013; Booth
et al. 2012; Cox et al. 2000; Friedlingstein et al. 2006, 2013;
Xia et al. 2020). Phase 5 of the Coupled Model Intercompari-
son Project (CMIP5) (Taylor et al. 2011), for example, has
recognized uncertainty in modeled terrestrial C cycle as a
dominant factor for the spread of model ensemble in future
climate prediction (Anav et al. 2013; Ciais et al. 2014; Fried-
lingstein et al. 2013). To confidently predict future climate–C
feedback, ESMs need to improve the estimate of the current
state of terrestrial C stocks (Todd-Brown et al. 2013). However,
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CMIP5 ESMs vary widely in simulating both the magnitude
and the spatial distribution of global terrestrial C storage (Anav
et al. 2013; Jones et al. 2016; Todd-Brown et al. 2013; Wieder
et al. 2015).

Over the past few years, numerous studies have evaluated
the terrestrial C cycle in the CMIP5 models. Most of the CMIP5
models have overestimated leaf area (Anav et al. 2013) and net
primary productivity (Anav et al. 2013; Wieder et al. 2015) but
underestimated ecosystem C turnover time (Carvalhais et al.
2014; Todd-Brown et al. 2013; Wang et al. 2019). Koven et al.
(2015) have separated ecosystem C storage change into four cat-
egories based on productivity and C turnover time. They found
that productivity determines the intermodel spread in C stocks
changes, but C turnover time dominates model disagreement in
the initial state. Those model evaluation analyses together rec-
ommend the implementation of many critical processes into
ESMs, such as nutrient cycles (Koven et al. 2015; Wieder et al.
2015), vertical soil profiles (Koven et al. 2013), permafrost dy-
namics (Schuur et al. 2015), and disturbance regimes (Ciais et al.
2014).

In CMIP6, models have significantly improved the process
representation for the terrestrial C cycle (Eyring et al. 2016;
Jones et al. 2016). For example, an increasing number of
models have explicitly included the nutrient limitation on
terrestrial C processes (Davies-Barnard et al. 2020); some
models have added vertical representation of soil biogeo-
chemistry (Lawrence et al. 2019; Seland et al. 2020); land
use and land cover changes are also explicitly involved in
modeling terrestrial C cycle in several models (Lawrence
et al. 2019; Wu et al. 2019). Even with those substantial de-
velopments, models in CMIP6 still show considerable uncer-
tainty in terrestrial C stocks (Akihiko et al. 2020). A critical
step to reducing such model uncertainty is understanding
the causes of model spread and the model deviations from
the observations.

This study evaluates whether and how the intermodel spread
and model–data difference in terrestrial C storage change from
CMIP5 to CMIP6. Recently, a growing body of observation-
derived data products at high spatiotemporal resolutions has be-
come publicly available (Fan et al. 2020; Hengl et al. 2017; Kolby

Smith et al. 2016; Spawn et al. 2020), such as satellite-derived ter-
restrial productivity maps (Kolby Smith et al. 2016; Running
et al. 2015), global maps of aboveground and belowground bio-
mass C (Spawn et al. 2020), and observation-based estimates on
soil organic C density (Hengl et al. 2017). These valuable data
pave the way to assess the current state of the terrestrial C cycle
and can be used to benchmark model performance. This study
first evaluated the intermodel spread and data–model difference
in terrestrial C storage in CMIP5 and CMIP6. Then, we con-
ducted data–model comparisons on specific processes to identify
the potential reasons for model bias in terrestrial C storage.
Last, we applied a traceability analysis to diagnose why models
performed differently within and between the two CMIP
ensembles.

2. Methods

a. Model selection

We conducted intermodel and data–model comparisons on
the near-present land C storage in CMIP5 (Taylor et al. 2011)
and CMIP6 (Eyring et al. 2016). In the historical experiment,
ESMs were coordinately forced by reconstructed forcing data,
including atmospheric composition and land-use change (Eyring
et al. 2016; Hoesly et al. 2018; Taylor et al. 2011). Thus, the his-
torical model outputs included the impacts of land-use and
land-cover change (LULCC) on terrestrial C cycle (Lawrence
et al. 2016; Akihiko et al. 2020). Given that the covered histori-
cal periods were different in two CMIP ensembles (CMIP5:
1850–2005; CMIP6: 1850–2014), the near-present land C stor-
age was calculated as the 2001–05 mean for consistency. ESMs
were selected based on whether key variables were provided,
including Vegetation C (cVeg), Litter C (cLitter), Soil C (cSoil),
net primary production (NPP), gross primary production
(GPP), near-surface temperature (tas), precipitation (pr),
grid cell area (areacella), and land area fraction (sftlf). For
ESMs from the same modeling center, we only selected one
model as the representative because ESMs within a center
tended to produce very similar results (Todd-Brown et al. 2014;
Todd-Brown et al. 2013). Eventually, we selected 11 ESMs
from CMIP5 (Table 1) and 11 ESMs selected from CMIP6

TABLE 1. List of CMIP5 ESMs selected in this study. The ESM names in boldface indicate models participating in two phases of
CMIP but in different versions. (Expansions of many acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

ESM Land model N cycle

Number of C pools

Reference(s)Plant Litter Soil

BCC-CSM1-1m BCC_AVIM1.0 No 3 2 6 Wu et al. (2013)
CanESM2 CTEM No 3 1 1 Arora et al. (2009)
CCSM4 CLM4.0 Yes 18 4 3 Gent et al. (2011), Lindsay et al. (2014)
HadGEM2-ES MOSES/TRIFFID No 3 } 4 Collins et al. (2011)
IPSL-CM5A-MR ORCHIDEE No 8 4 3 Dufresne et al. (2013), Krinner et al. (2005)
MIROC-ESM SEIB-DGVM No 4 1 2 Watanabe et al. (2011), Sato et al. (2007)
MPI-ESM-MR JSBACH No 3 4 1 Giorgetta et al. (2013), Schneck et al. (2013)
NorESM1-M CLM4.0 Yes 18 4 3 Tjiputra et al. (2013)
BNU-ESM CoLM No 4 1 1 Ji et al. (2014), Sitch et al. (2003)
GFDL-ESM2G LM3.0 No 5 } 2 Dunne et al. (2012)
MRI-ESM1 HAL No 3 1 1 Yukimoto et al. (2011)
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(Table 2). Eight models from eight modeling centers partici-
pated in both CMIP5 and CMIP6 (Tables 1 and 2).

b. Data–model comparison on the near-present terrestrial
C storage

The modeled ecosystem C storage was calculated as
the sum of cVeg, cLitter, and cSoil. In HadGEM2-ES
(Collins et al. 2011), GFDL-ESM2G (Dunne et al. 2012), and
UKESM1-0-LL (Clark et al. 2011), litterfall from vegetation
is directly transformed into soil C, based on local litterfall
rates and the decomposable fraction of the litter input (Clark
et al. 2011). For these models, the combination of cVeg and
cSoil thus represents the estimation of ecosystem C storage.
We used a recently published dataset product of cVeg (Spawn
et al. 2020) and multiple observation-derived datasets of cSoil
for data–model comparison. The dataset of cVeg represented
biomass C density for the year 2010, including both above-
ground and belowground amounts. Here, we assumed that
biomass C stocks over 2001–05 could approximate that in
2010. The dataset products of cSoil included the regridded
Harmonized World Soil Database (HWSD) v1.2 (Wieder
2014), the SoilGrids (Hengl et al. 2017), the LandGIS
(https://zenodo.org/record/2536040#.Xzt1yOgzZjX), and the

Northern Circumpolar Soil Carbon Database version 2
(NCSCDv2) (Hugelius et al. 2013). The covered soil depth
varied from 1 m (HWSD v1.2) to 3 m (NCSCD). For SoilGrids
and LandGIS, the covered depth was 2 m. For consistency,
we used the 0–1-m layer of cSoil. We further combined the
observation-based estimates on cVeg and cSoil at 0–1 m to
derive the near-present terrestrial ecosystem C storage. Some
previous studies have detected significant differences among
these cSoil datasets (Fan et al. 2020; Todd-Brown et al. 2013).
Given a lack of consensus as to which dataset was better, we
merged these cSoil datasets and estimated terrestrial ecosystem
C storage through factorial combinations of the cVeg and
cSoil datasets. The uncertainty of dataset products was pro-
vided by the range of different estimates. Furthermore,
many studies have suggested that the CMIP5 models show
large intermodel and data–model disagreement over the
northern high latitudes (Carvalhais et al. 2014; Todd-Brown
et al. 2013; Koven et al. 2015). To investigate whether model
performance over this region improved from CMIP5 to
CMIP6, we separated global terrestrial C stocks into that
over the circumpolar and non-circumpolar areas based on
the map of the NCSCD (Hugelius et al. 2013). Dataset prod-
ucts are summarized in Table 3.

TABLE 2. List of CMIP6 ESMs selected in this study. The ESM names in boldface indicate models participating in two phases of
CMIP but in different versions.

ESM Land model N cycle

Number of C pools

Reference(s)Plant Litter Soil

BCC-CSM2-MR BCC-AVIM2 No 3 2 6 Wu et al. (2019)
CanESM5 CLASS-CTEM No 3 1 1 Swart et al. (2019)
CESM2 CLM5.0 Yes 18 4 3 20 3 3 20 Lawrence et al. (2019)
UKESM1-0-LL JULES-CN;TRIFFID Yes 3 } 4 Best et al. (2011), Clark et al. (2011)
IPSL-CM6A-LR ORCHIDEE Yes 8 4 3 Vuichard et al. (2019)
MIROC-ES2L VISIT-e Yes 3 1 1 Hajima et al. (2019), Ito and Oikawa (2002)
MPI-ESM1-2-LR JSBACH Yes 3 2 1 Goll et al. (2012), Mauritsen et al. (2019)
NorESM2-LM CLM5.0 Yes 18 4 3 20 3 3 20 Seland et al. (2020)
ACCESS-ESM1-5 CABLE Yes 3 3 3 Law et al. (2017)
CNRM-ESM2-1 ISBA No 6 4 3 Séférian et al. (2019)
EC-Earth3-Veg LPJ-GUESS Yes 3 8 3 Smith et al. (2014)

TABLE 3. Observation-based estimates of circumpolar, non-circumpolar, and global terrestrial C storage. Plant biomass C was
from Spawn et al. (2020). The values of soil C stock above 1 m estimated from four datasets were extracted from Fan et al. (2020)
(based on their Table 2). Ecosystem C storage was calculated based on factorial combinations of the reported plant and soil C
estimates. The classification of circumpolar and non-circumpolar regions was based on the map of the Northern Circumpolar Soil
Carbon Database (NCSCD; Hugelius et al. 2013).

C storage (Pg C) Circumpolar Non-circumpolar Global Referencea

Plant C 6 SD 45.5 6 21 366.8 6 207 412.3 6 227.9 Spawn et al. (2020)
Soil C 796 1399 2195 SoilGrids

787 1305 2091 LandGIS
568 764 1332 HWSD
567 NCSCD

Ecosystem C (minimum–

maximum range)
725 (591.6–862.5) 1522.8 (923.8–1972.7) 2285 (1516.4–2835.2) Factorial combinations

of plant C and soil C
(0–1 m) estimations

a For more information on the references, see https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763 (Spawn et al. 2020); https://www.isric.
org/explore/soilgrids (SoilGrids); https://zenodo.org/record/2536040#.XhxHRBf0kUF (LandGIS); http://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (HWSD); and https://bolin.su.se/data/ncscd/ (NCSCD).
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None of the ESMs in CMIP5 explicitly represented the ver-
tical distributions of soil C. From CMIP5 to CMIP6, only
CESM2 and NorESM2-LM from NCAR and the Norwegian
Climate Centre, respectively, had evolved to incorporate
the vertically resolved soil C and litter C to a depth of 8.03 m
(20 layers) (Lawrence et al. 2019). To simplify intermodel and
data–model comparison, we assumed models with a single soil
layer could simulate cSoil within the 1-m depth (Todd-Brown
et al. 2013). The 0–1-m cSoil and cLitter layers were used for
the two models with multiple soil layers to calculate the mod-
eled ecosystem C storage. The spatial resolution of the used da-
taset products varied from 250 m (SoilGrids and LandGIS) to
0.58 3 0.58 (NCSCD). Both model outputs and dataset products
were regridded into the 0.58 3 0.58 resolution for intermodel
and data–model comparisons.

c. Data–model comparison on tE and NPP

The capability of a terrestrial ecosystem to store C is deter-
mined by the rate of C into the ecosystem (through photosyn-
thesis) and how long this C input can reside in the ecosystem
(Carvalhais et al. 2014; Keenan and Williams 2018) (ecosys-
tem C residence time or ecosystem C transit time tE). When an
ecosystem approaches the steady state, the C influx equals ef-
flux, and C reservoirs reach their maximum C storage. The
product of C influx (or efflux) and tE defines the C storage ca-
pacity (XC) when the ecosystem is at a steady state (Koven et al.
2015; Luo et al. 2017; Luo andWeng 2011; Xia et al. 2013):

XC � tE 3 flux: (1)

Physiologically, a large proportion of photosynthetically
fixed C passes quickly back into the atmosphere via respira-
tion (Bradford and Crowther 2013). On the yearly to decadal
time scale, this study considered NPP as the C influx to an
ecosystem, assuming C losses via autotrophic respiration hap-
pened instantaneously in the process of photosynthesis. Un-
der the assumption of steady state, land C storage (X) equals
to XC, and the X in both observations and models could be
decomposed into NPP and tE:

X � tE 3 NPP: (2)

Then tE can be estimated as the ratio of X to NPP:

tE � X
NPP

: (3)

We then conducted a model–data comparison on NPP and
tE to investigate the sources of model bias in the modeled land
C storage in two CMIP ensembles. Three dataset products
of NPP were used as the benchmark, including MOD17A2
(Running et al. 2015), GIMMS-NPP (Kolby Smith et al.
2016), and CARDAMOM NPP (Bloom et al. 2016). The
GIMMS-NPP was derived based on the MODIS NPP algo-
rithm but driven by different satellite products, while the
CARDAMOM NPP was retrieved using data–model fusion
analysis. Similarly, we considered the range of three NPP data-
set products as the uncertainty range of the benchmarks. The
mean and uncertainty range of the ensemble data products

were used to evaluate the two CMIP model ensembles. Based
on the dataset products of ecosystem C storage and NPP, we
further calculated tE in the manner as shown in Eq. (3). The un-
certainty range of tE is estimated based on different combina-
tions of ecosystem C storage data and NPP data. Note that we
only considered cSoil within the top 1 m when comparing mod-
eled tE against the data.

d. Traceability analysis on the modeled land C storage

A traceability framework was further applied to address
how sources of model differences changed across two CMIP
ensembles. The traceability analysis has been developed for
tracing intermodel spread in the terrestrial C cycle (Huang
et al. 2018; Jiang et al. 2017; Xia et al. 2013; Zhou et al. 2018).
In the same manner, as shown in Eq. (2), the modeled terres-
trial C storage was first decomposed into NPP and tE. NPP is
jointly determined by gross primary productivity (GPP) and
C use efficiency (CUE) (Xia et al. 2017):

NPP � GPP 3 CUE, (4)

where CUE is a physiological parameter that defines the pro-
portion of assimilated C from photosynthesis allocating to
plant biomass (Bradford and Crowther 2013). We also con-
ducted a data–model comparison on GPP and CUE to diag-
nose the sources of model biases in NPP. Three dataset
products of GPP were used as benchmarks, including MODIS
(MOD17A2; Running et al. 2015), FLUXCOM (Jung et al.
2017), and VPM (Zhang et al. 2017). The CUE dataset prod-
uct was from CARDAMOM (Bloom et al. 2016).

The tE is an important ecosystem property involving multi-
ple processes (Carvalhais et al. 2014; Xia et al. 2013; Luo et al.
2017), including C allocation (term B), C transferring network
(term A), decomposition processes (term K), and regulations
from environmental factors (term j). These processes can be
characterized by an analytical solution (Xia et al. 2013; Luo
et al. 2017) as

tE � B AKj(t)[ ]21
: (5)

To reduce complexity in the traceability analysis, we merged the
influences of B, A, and K on tE and refer to it as the baseline C
residence time (t ′E). Thus the tE can be decomposed into t ′E and
the influences from environmental factors (Xia et al. 2013):

tE � t ′Ej
21, (6)

where the j is a scalar representing modifications of environ-
mental factors on t ′E. In this study, we only considered the
modifications of temperature and precipitation, that is, the
temperature scalar (jT) and the precipitation scalar (jW):

j � jTjW , (7)

tE � t ′E(jTjW)21: (8)

Based on Zhou et al. (2018), mean annual temperature (T)
and annual total precipitation (W) were used to estimate jT and
jW. For jT, it is expressed as a function of T, parameter Q10,

J OURNAL OF CL IMATE VOLUME 355486

Brought to you by CORNELL UNIVERSITY | Unauthenticated | Downloaded 09/05/23 04:16 PM UTC



and the reference temperature T0. For jW, it is expressed as a
function ofW and the reference precipitationW0:

jT 5 Q[(T2T0)=10]
10 , (9)

jW 5
W
W0

, (10)

where Q10 is a parameter associated with the temperature
sensitivity of ecosystem respiration; T0 and W0 were set to be
the maximum values of annual temperature and precipitation,
respectively, across the simulation period for each ESM
(Todd-Brown et al. 2013; Zhou et al. 2018). The same optimi-
zation method as in Zhou et al. (2018) was applied to estimate
two unknown parameters, Q10 and t ′E. The tE calculated from
model outputs [Eq. (3)] was used to calibrate the estimated tE
from the baseline residence time and environmental scalars
[Eq. (8)]. The coefficient of determination R2 and the root-
mean-square error (RMSE) are used as indicators for the
goodness of the calibration, and the objective is to maximize
R2 and minimize RMSE. The comparison between the tE cal-
culated from model outputs based on Eq. (3) and that repro-
duced by using the optimization method is shown in Fig. S22.

e. Variance partitioning

Based on the traceability framework, we first decomposed
the modeled terrestrial C storage into its two determinants
(NPP and tE), and then traced the influential factors for both
NPP and tE. After the decomposition processes, we applied
the hierarchical partitioning method (Chevan and Sutherland
1991; Murray and Conner 2009) to detect independent contri-
butions of different variables to the total variance of land C
storage across models. The hierarchical partitioning method is
briefly described below.

For a given dependent variable Y and for k explanatory
variables (x1, x2, … , xk), there would be 2k different fits to Y
with different combinations of explanatory variables. Taking
k = 3 as an example, there are 23 combinations, namely
X0, X1, X2, X3, X12, X13, X23, and X123. The subscripts indicate
explanatory variables in that combination;X12 indicates the com-
bination of x1 and x2, whileX0 is a null number. The independent
effect of a specific explanatory variable xl (Ixl , l = 1, 2, 3, … , k)
to the variance in Y was calculated by comparing the fit of all
models including Xi to that when omitting Xi from the model,
based on a hierarchical ordering (Chevan and Sutherland 1991;
Murray and Conner 2009):

Ixl �
∑k21

i�0

∑(r2y, x1,xh 2 r2y,xh )
/

k 2 1
i

( )

k
, (11)

where xh is any combination of explanatory variables with-
out xl (Chevan and Sutherland 1991; Murray and Conner
2009). Its relative independent contribution (reIxl) is calcu-
lated as

I � ∑k
l�1

Ixl , (12)

reIxl � Ixl
I
: (13)

We conducted the hierarchical partitioning analysis in R by
using the “hier.part” package. Linear regression and the R2

goodness-of-fit measure were used. Formulations were loga-
rithmically transformed if the formulation was not expressed
as the sum of variables.

3. Results

a. Converging but still underestimated near-present land
C storage

We first compared intermodel spread in the near-present
terrestrial C storage between CMIP5 and CMIP6. The across-
model variation in the global terrestrial C storage decreased
from CMIP5 to CMIP6, and the model ensemble average be-
came smaller in CMIP6 (Figs. 1a,d). At the end of the historical
period, the global terrestrial C storage was 1774.4 6 439.0 PgC
(mean 6 s) for CMIP6 and 1936.9 6 739.3 PgC for CMIP5
(Table 3; see also Table S2 in the online supplemental
material). From CMIP5 to CMIP6, across-model divergence
(indicated by s) in global terrestrial C storage decreased by
40.6%. We analyzed a subset of models from eight modeling
centers that participated in both CMIP5 and CMIP6 (Tables 1
and 2) to make it more comparable. For the eight CMIP6
models, their ensemble model spread in terrestrial C storage
decreased by 46.4% compared to their predecessors in CMIP5.
While the decreased model spread was detected over many re-
gions in CMIP6 (Figs. 1a,d), northern high-latitude regions
showed relatively larger model divergence than tropical regions
(Figs. 1a,d). By combining dataset products of biomass (Spawn
et al. 2020) and soil C stocks (Table 3), the terrestrial ecosys-
tem was estimated to store 2285 PgC, with the uncertainty
ranging between 1516 and 2835 PgC (Table 3). Compared with
the ensemble mean value derived from the dataset products,
the two CMIP model ensembles underestimated the global ter-
restrial C storage (Figs. 1b,e). At the regional scale, ecosystem
C stocks at northern high latitudes were considerably underes-
timated by both CMIPs (Figs. 1c,f).

From CMIP5 to CMIP6, model performance in simulating
circumpolar-region C storage did not show significant im-
provement (Fig. 2). In general, biomass C stocks simulated
from CMIP6 models (41.9 6 16.9 PgC) converged more and
were closer to the range of observation-based estimates
(45.5 6 21 PgC) than CMIP5 (48.4 6 45.2 PgC; Fig. 2).
However, most CMIP6 models underestimated soil C at the
top 1-m depth (Fig. 2), even for the two CMIP6 models
(CESM2 and NorESM2-LM) representing vertically resolved
soil C (Table S2). Circumpolar-region soil C stocks in the top
1-m layer simulated by CESM2 and NorESM2-LM were 316.8
and 317.8 PgC, respectively. Despite the tremendous increases
compared to their predecessors (CCSM4, 56.9 PgC; NorESM1-M,
60.9 PgC), the two models were still far smaller than the
observation-based estimation, 679.5 PgC (ranging from 567 to
796 PgC; Table 3). Outside of the circumpolar region, the model
ensemble means of C stocks in two CMIP ensembles fell within
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the ranges of observation-based estimates, and the across-
model variations decreased from CMIP5 to CMIP6 (see
supplemental Figs. S4d,e).

b. Model bias stemming from NPP and tE

We then conducted a model–data comparison on NPP and
tE to gain a deeper insight into the persistently underesti-
mated global terrestrial C storage in two CMIP ensembles.
The analyses detected dramatic reductions in model bias and
intermodel variation in global terrestrial NPP from CMIP5 to
CMIP6 (Fig. 3). However, the global terrestrial tE was persis-
tently underestimated by two CMIP ensembles, and the inter-
model spread did not significantly change between the two
CMIP ensembles (Fig. 3). The persistent underestimation of
tE led to the persistently underestimated global terrestrial C
storage in two CMIP ensembles (Fig. 3). In CMIP6, the RMSE
of modeled land C storage decreased by 16.2% compared to
CMIP5, even though the bias score of land C storage in CMIP6
was slightly larger than that in CMIP5. The primary reason
for the lower underestimation bias in CMIP5 was the high

NPP in CMIP5 (Fig. 3a). Global terrestrial NPP in CMIP5
was 67.7 6 16.3 PgC yr21, which overestimated the observation-
derived value by 30.9% on average (Fig. 3a). From CMIP5 to
CMIP6 (58.26 11.3 PgC yr21), both the overestimation bias and
RMSE in modeled global terrestrial NPP decreased (Fig. 3).

The decreased uncertainty in NPP from CMIP5 to CMIP6
was widely detected, particularly over tropical regions where
NPP was vastly overestimated by the CMIP5 models (Figs. 4a–d).
Model performance in the African tropical forests was greatly
improved (Fig. 4c), while the improvement for the tropics over
South America was relatively small (Fig. 4c). In both the cir-
cumpolar and non-circumpolar areas, the overall bias and
RMSE of modeled NPP decreased from CMIP5 to CMIP6
(Figs. 4f,g). Observation-based estimates on circumpolar-
region NPP ranged from 3.8 to 5.1 PgC yr21. The modeled
NPP over the circumpolar region was 5.4 6 2.5 PgC yr21 in
CMIP5 and decreased to 4.5 6 1.1 PgC yr21 in CMIP6.
Over the non-circumpolar region, the observation-based es-
timates ranged from 40.7 to 53.4 PgC yr21. There were four
CMIP5 models within the observation-derived NPP range,

FIG. 1. Intermodel variation and model–data difference in the near-present land C storage (2001–05 mean). (left) The spatial patterns
of standard deviation in land C storage for (a) CMIP5 and (d) CMIP6 model ensembles. The inserted panels show intermodel spread in
global land C storage for two CMIP ensembles and the range of observation-based estimates (values shown in Table 3). Asterisks repre-
sent the mean and the edges of the bar represent the minimum and maximum. (center) The spatial patterns of model–data difference in
land C storage for (b) CMIP5 and (c) CMIP6, computed as the difference between the model ensemble mean and the observation-derived
mean. The inserted panels show the model–data difference in global land C storage (in PgC) for individual models. (right) Zonal mean
plots of land C storage for (c) CMIP5 and (f) CMIP6, in comparison with dataset products. The thin lines represent simulations from indi-
vidual models, while the thick lines show ensemble-mean values for models and observation-based estimates. The gray shaded area shows
the uncertainty range of observation-based estimates from maximum to minimum. The spatial patterns of land C storage for individual
models and dataset products are displayed in Figs. S1–S3 in the online supplemental material.
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namely BCC-CSM1-1m, CCSM4, NorESM1-M, and BNU-ESM.
In CMIP6, the number increased to seven: BCC-CSM2-MR,
CESM2, IPSL-CM6A-LR, NorESM2-LM, ACCESS-ESM1-5,
CNRM-ESM2-1, and EC-Earth3-Veg.

Consistent with the bias pattern of land C storage (Figs. 1b,e),
model ensembles in two CMIP ensembles significantly underes-
timated tE in the northern high latitudes (Fig. 5). Over the
northern circumpolar region, the tE simulated from the CMIP6
model ensemble was 83.7 6 41.8 years, which was longer than
CMIP5 (66.4 6 39.8 years; Fig. 5f) but still far shorter than ob-
servation-based estimates (155.9 6 34.2 years; Fig. 5f). The un-
derestimation of tE outside of the circumpolar region was
less severe (Fig. 5g). The tE values simulated from two
CMIP ensembles were very close to the observation-derived
tE (33 6 6.6 years). The tE over the noncircumpolar region
was 25.1 6 6.7 years in CMIP5 and slightly increased to
26.5 6 6.6 years in CMIP6.

c. Increasing role of tE in causing intermodel variation in
land C storage

Our traceability analysis at a global scale showed that the
role of tE in causing across-model variation in global land C
storage increased from CMIP5 to CMIP6 (Fig. 6). NPP and tE
contributed 49.8% and 50.2%, respectively, to the across-
model variance in global land C storage in CMIP5 (Fig. 6a).
In CMIP6, tE contributed 74% to the across-model variance
in global terrestrial C storage, while the contribution of NPP
decreased to 26% (Fig. 6b).

By further tracing sources of intermodel spread in tE into
baseline residence time (t ′E) and environmental scalars (j), we
found that t ′E explained 98% and 67% of the across-model
variance in tE in CMIP5 and CMIP6, respectively (Fig. 6).
The contributions of environmental scalars to the across-
model variance in tE were negligible in the CMIP5 ensem-
bles (Fig. 6a). In CMIP6, however, the jT contributed 32%
to the across-model variance in tE. The modeled NPP was
further decomposed into GPP and CUE. The latter defines
the proportion of assimilated C from photosynthesis that is
allocated to plant biomass growth (Bradford and Crowther
2013). In CMIP5, GPP and CUE contributed 68% and 32%
to the variation of modeled NPP (Fig. 6a). In CMIP6, their
relative contributions turned out to be equal (Fig. 6b).

d. Evaluating model performance in simulating GPP
and CUE

For the global terrestrial GPP, the value simulated by
CMIP6 models was 125.0 6 13.8 PgC yr21, which was smaller
and more converged than CMIP5 (152.1 6 40.4 PgC yr21;
Fig. 7a). Compared with the satellite-based estimates, which
ranged from 98.1 to 136.0 PgC yr21, model uncertainty in GPP
was significantly reduced from CMIP5 to CMIP6 at both global
(Fig. 7a) and local scales (Fig. 8). However, model performance
in representing the spatial pattern of CUE did not show signifi-
cant improvement (Figs. 8d,h), although the model ensemble in
CMIP6 showed slightly more convergent and less biased CUE
at the global scale (Figs. 7b,c).

FIG. 2. Comparison between model-based and observation-based estimations on the land C storage over the circumpolar region.
(left) Distributions of ecosystem C storage over the circumpolar region estimated from (a) dataset products, (b) CMIP5, and
(c) CMIP6. The classification of circumpolar and non-circumpolar regions was based on the map of the Northern Circumpolar Soil
Carbon Database (NCSCD; Hugelius et al. 2013). (right) Comparison of (d) ecosystem (involving plant C and soil C above 1 m),
(e) plant, and (f) soil (0–1 m) C storage in the circumpolar region between models and dataset products. The green shaded area
shows the range (minimum–maximum) of observation-based estimates (Table 3). Circles represent models without nutrient cycle.
Triangles represent models explicitly incorporating nutrient cycle with terrestrial C cycle. Solid dark lines of boxplots show multi-
model means. The edges of boxplots show standard deviation.
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4. Discussion

a. The persistent underestimation of global land C
storage in two CMIP ensembles

By integrating the newly published datasets of above- and
belowground C stocks, we evaluate how model performance
in presenting the near-present land C storage, including both
the magnitude and spatial distributions, changed between
CMIP5 and CMIP6. We have identified persistent underesti-
mation of global land C storage in two CMIP ensembles (Fig. 1),
especially over the northern high latitudes (Fig. 2). Although
we apply the data product of biomass C storage in the year
2010 (412.3 6 227.9 PgC; Spawn et al. 2020) to approximate
that over 2001–05, the persistent underestimation of global
land C storage is still unchanged after accounting for associ-
ated uncertainties. A recent study suggests that the global C
storage in vegetation biomass varies from 377 to 385 PgC
over 2000–19 (Xu et al. 2021). Although different approaches
are used in various studies (Ruesch and Gibbs 2008; Xu et al.
2021) to map the live biomass C, these observation-based es-
timates all fall within the range (412.3 6 227.9 PgC) used in
our data–model comparisons. To avoid compensation error
from mixing vegetation and soil C stocks, we also conduct
data–model comparisons of plant and soil C storage sepa-
rately (Fig. 2; see also Fig. S4). We find that the underesti-
mation of global terrestrial C storage primarily originates
from the soil component, particularly over the circumpolar
region (Fig. 2).

By decomposing terrestrial C storage into NPP and tE
based on the steady-state assumption (Fig. 3), we further diag-
nose the reason behind the persistent underestimation of
global terrestrial C storage. The global terrestrial tE in the
two CMIP ensembles are far shorter than the observation-
derived estimate, which caused the persistently underesti-
mated global terrestrial C storage (Fig. 3). We also use GPP
as the flux term in the estimation of tE to verify the results,
given that assimilated C from photosynthesis is not respired
instantaneously (Muhr et al. 2013; Sierra et al. 2022). The
underestimation of global terrestrial tE is not affected when
considering GPP as the flux term (Figs. S13 and S14). At the
regional scale, the bias patterns of tE in two CMIP ensem-
bles (Figs. 5a,c) are similar to the bias patterns of terrestrial
C storage (Figs. 1b,e), which show significant underestima-
tion in the northern high latitudes (Fig. 5). Many previous
studies have identified the underestimation of tE at high lati-
tudes in CMIP5 (Carvalhais et al. 2014; Todd-Brown et al.
2013) and have attributed it to the neglected representation
of permafrost processes. In CMIP6, many models have imple-
mented some key permafrost processes, such as freezing/thawing
processes (Lawrence et al. 2019; Wu et al. 2019), snow insulation
with multiple snow layers (Burke et al. 2017; Wu et al. 2019),
and cryoturbation of soil organic C (Bowring et al. 2019; Koven
et al. 2009). Although incorporating these processes leads to pro-
longed tE at northern high latitudes in CMIP6 (Fig. 5f), the
modeled tE is still shorter than the observation-based estimates
(Fig. 5f and Fig. S11).

FIG. 3. Evaluating model bias score, intermodel spread, and root-mean-square error (RMSE) in global terrestrial C
storage (cLand), NPP, and tE for (a) CMIP5 and (b) CMIP6. Here, the model bias score measures how much the
model ensemble mean differs from the reference mean value. Across-model variation measures how much models dif-
fer from each other, while the RMSE measures how concentrated the model simulations are around the observation-
based estimates. The above distributions show probability density plots for cLand, NPP, and tE. Values for individual
models are shown below. Circles represent models without the nutrient cycle. Triangles represent models explicitly in-
corporating nutrient cycle with terrestrial C cycle. Solid dark lines of boxplots show multimodel means. The edges of
boxplots show across-model variation from the maximum to the minimum.
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FIG. 4. Model performance in simulating the near-present (2001–05 mean) net primary productivity (NPP).
(a),(c) Model bias in NPP for CMIP5 and CMIP6 model ensembles, respectively, computed as the difference between
multimodel mean NPP and observation-derived estimate. (b),(d) Zonal mean plots of NPP for CMIP5 and CMIP6,
respectively, in comparison with that from three dataset products (see methods). The thin lines represent simulations
from each individual model, while the thick lines show the means. Also shown is the data–model comparison on NPP
at the (e) global, (f) circumpolar, and (g) non-circumpolar scales. CMIP5 and CMIP6 models are color-coded as in
Figs. 2 and 3. RMSE values for CMIP5 and CMIP6 are marked in different colors. The green shaded area shows the
range (minimum–maximum) of observation-based estimates. Circles represent models without the nutrient cycle.
Triangles represent models explicitly incorporating nutrient cycle with terrestrial C cycle. Solid dark lines of boxplots
show multimodel means. The edges of boxplots show standard deviations. The spatial patterns of NPP for individual
models and dataset products are displayed in Figs. S6–S8 in the online supplemental material.
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Two CMIP6 models (CESM2 and NorESM2-LM) have ap-
plied a vertically resolved model to represent multiple layers
of C distribution along with the soil profile. This new feature
allows for coupling thaw depth dynamics with vertical soil C
in the permafrost region and is promising to improve the per-
mafrost C cycle in models (Koven et al. 2011, 2013). In the
two models, the simulated full-depth soil C stock (Fig. S5)

and the corresponding tE (Fig. S15) are matched with the
range of observation-based estimates over the circumpolar
region. Other data–model comparison studies have also
highlighted the importance of vertical soil profile for C storage
in the northern high latitudes (Lawrence et al. 2019; Akihiko
et al. 2020). However, the two models with vertical soil biogeo-
chemistry still underestimate the soil C stock at a depth of 1 m

FIG. 5. As in Fig. 4, but for tE. The spatial patterns of tE for individual models and dataset products are displayed in
Figs. S9–S12 in the online supplemental material.
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over the circumpolar region. A recent study on soil age reveals
that the surface soil C in current depth-resolved models cycles
too fast compared to the observation-derived datasets (Shi et al.
2020). Those findings suggest that decomposition rates of sur-
face soil are too fast over the circumpolar region in those
models, which might imply an unrealistic representation of
temperature sensitivity of surface soil C cycle or surface soil
temperature. For example, too much snow over the circum-
polar region could lead to high snow insulation effect and
further cause fast C turnover at the surface soil. Therefore,
a large amount of C cannot stay long at the surface soil but
transfer into deeper soil horizons in these models (Shi et al.
2020). More research efforts are still needed to improve the
representation of soil C processes, such as temperature sen-
sitivity of surface soil C cycle (Koven et al. 2017; Schädel
et al. 2018), vertical C transportation (Koven et al. 2013),
and decomposition rates along depths (Koven et al. 2017;
Shi et al. 2020).

The CMIP6 models have lower RMSEs than CMIP5 mod-
els in global terrestrial C storage and NPP (Figs. 3–5). Process
developments in the terrestrial nutrient cycle might play a
role in the improvement. In CMIP5, only two models explic-
itly represent the nutrient limitation on the terrestrial C cycle
(Fig. 3a and Table 1). Most CMIP5 models showed positive
bias in simulating global terrestrial NPP and land C storage
(Fig. 3a). With nutrient limitation incorporated into more mod-
els (Fig. 3b and Tables 1 and 2), global terrestrial C storage and

NPP simulated by CMIP6 models are smaller and more con-
verged than CMIP5 (Fig. 3). In addition to process develop-
ments, an increasing body of data products from in situ and
remote sensing is available to inform models (Collier et al.
2018; Davies-Barnard et al. 2020; Randerson et al. 2009). There-
fore, the model improvement in productivity processes is ex-
pected (Davies-Barnard et al. 2020; Piao et al. 2013). Other
recent studies have also revealed that models with nutrient limi-
tations generally agree with global dataset products (Akihiko
et al. 2020; Davies-Barnard et al. 2020). In this study, we further
show that the improved model performance in NPP contributes
to the reduced model spread in terrestrial C storage, whereas
the persistent underestimation of tE leads to the underesti-
mated land C storage in the two CMIP ensembles.

b. Uneven model improvement in simulating productivity
and CUE

Consistent with NPP, model spread and bias in GPP also
significantly reduced at both regional (Figs. 8c,g and Fig. S18)
and global scales (Fig. 7a). The model ensemble in CMIP6
shows a more convergent and less biased CUE at the global
scale (Fig. 7), but the model improvement in representing the
spatial pattern of CUE is slight (Figs. 8a,e). It probably results
from model differences in representing the downregulation of
nutrient limitations on NPP, either by decreasing GPP or in-
creasing autotrophic respiration, or both (Meyerholt and
Zaehle 2015). Consequently, models converge in estimating

FIG. 6. Attributing the variance of global land C storage among models into different components. Results of trace-
ability analysis on the model spread in land C storage for (a) CMIP5 and (b) CMIP6 (see section 2 on traceability
analysis). The circular diagram shows the hierarchical decomposition of terrestrial C storage into its determinants.
Land C storage is first decomposed into NPP and tE. NPP can further be traced into GPP and CUE, while tE can be
traced into baseline residence time (t ′E), temperature scalar (jT), and precipitation scalar (jW). The relative contribu-
tion of a component to its upper-level variable is shown next to the line. The above pie shows the relative contribu-
tions of GPP, CUE, t ′E, jT, and jW to the variance of global land C storage among models.
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productivity but diverge in CUE. On the other hand, the
observation-based estimations of CUE are also uncertain due
to the difficulty of accurately accounting for autotrophic respi-
ration (Kolby Smith et al. 2016).

A recent study has evaluated nitrogen (N)-related perform-
ances of the C–N coupled models in CMIP6 (Davies-Barnard
et al. 2020). These C–N models do well at reproducing global
GPP and NEP, but significant uncertainty still exists in model-
ing autotrophic and heterotrophic respiration. As N availability
exerts stoichiometric controls on allocation and decomposition
processes, the uncertainty of respiration in current C–N coupled
models might suggest that the N cycle and C–N coupling
schemes are highly uncertain (Davies-Barnard et al. 2020; Du
et al. 2018). More process understanding and dataset products
are in need to constrain relevant processes. For example, soil N
availability regulates many C processes, such as plant C uptake,
plant respiration, allocation of NPP, and decomposition of litter
and soil organic matter. However, the N cycle itself is relatively
open, in which multiple pathways of inputs and outputs deter-
mine the N availability (Wei et al. 2019). Davies-Barnard et al.
(2020) has found that biological nitrogen fixation drives the
significant variation of N inputs among models, while N losses
differ strongly among current C–N coupled models. A lack of
knowledge leaves space for the variety of hypotheses embedded
in models, leading to various model representations of the
N cycle and C–N coupling (Du et al. 2018; Meyerholt et al. 2020).

c. Increasing importance of tE in causing model variance
in land C storage

The traceability framework offers us a common yet system-
atic way to discern the critical process governing across-model

variation in terrestrial C storage, even though models had
myriad different process representations of the terrestrial C
cycle. By decomposing the modeled terrestrial C storage into
its determinants in a hierarchical way, we have found the in-
creasing importance of tE in causing across-model variation in
global land C storage. The increase in fractional variance in
tE implies two aspects: 1) NPP in CMIP6 has become less un-
certain and 2) model spread in tE becomes the primary con-
troller of model variation in global land C storage. Further,
the variation in tE is dominated by t ′E. The t ′E is the ecosystem
C residence time at a reference environment condition. It usu-
ally represents intrinsic properties of vegetation and soil pro-
cesses (Carvalhais et al. 2014; Cui et al. 2019; Xia et al. 2013),
such as allocation of photosynthate, C transfer from plant to
soil, and decomposition of soil organic C [Eq. (5)]. The term j

represents the modification of environmental factors on t ′E
via the temperature scalar (jT) and precipitation scalar (jW).
Although the contribution of jT to the across-model variation
in tE increases from CMIP5 to CMIP6, t ′E still dominates the
variation of tE in two CMIP model ensembles. The dominant
role of t ′E implies that the parameterization and model struc-
ture of C turnover both differ significantly among models.

As models evolve from CMIP5 to CMIP6, the model struc-
ture representing the terrestrial C cycle has become more
complex. All ESMs in CMIP5 simulated topsoil C dynamic
based on a network system of multiple C pools. The pool
numbers ranged from two in CanESM2, BNU-ESM, and
MRI-ESM1 to eight in CCSM4 and NorESM1-M (Table 1).
Among all the CMIP5 models, only two of them explicitly in-
cluded terrestrial C–N interactions. In CMIP6, two models
(CESM2 and NorESM2-LM) have applied a vertically resolved

FIG. 7. Model–data comparisons on global terrestrial NPP, GPP, and CUE for two CMIP ensembles. (a) The global
terrestrial GPP from 2001 to 2005 was plotted against the corresponding NPP for models in CMIP5 and CMIP6.
Distributions along the axis show the probability density function of model simulations in the same CMIP.
(b),(c) Temporal average (2001–05 mean) of CUE for individual models in CMIP5 and CMIP6, respectively. The
shaded areas in the three panels show the range (from the maximum to the minimum) of observation-based estimates.
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model to represent multiple layers of C distribution along with
the soil profile. They have 140 soil and litter C pools (Table 2).
Eight of the 11 CMIP6 models selected in our study have incor-
porated the N cycle. Furthermore, mechanism-rich models are
usually “data hungry” (DeAngelis and Mooij 2003) and lack
data to constrain relevant processes. Thus, a critical challenge
for future CMIP models is how to improve the traceability of
uncertainty in the terrestrial C cycle associated with the rapid
increase in model complexity.

5. Conclusions

Overall, the converging but persistently underestimated global
terrestrial C storage in CMIP6 models results from uneven model
improvement in process representation for productivity and res-
idence time. The models in CMIP6 are adequate in capturing
the near-present terrestrial productivity, while the modeled tE
is lower than the dataset products. Thus, tE becomes the essen-
tial source for model ensemble bias and intermodel spread in
terrestrial C storage. From CMIP5 to CMIP6, the more accu-
rate simulation of productivity and persistently biased tE could
further influence model uncertainty in future projections of
the terrestrial C feedback to climate change (Arora et al. 2020;
Friedlingstein et al. 2006). Moreover, current observation-

derived products show considerable disagreement, calling
for more efforts to reduce data uncertainty. The more con-
vergent but biased model simulations also emphasize the need
to treat model spread in a more sophisticated way. Many recent
studies have paid great attention to reducing model spread
(Lovenduski and Bonan 2017; Varney et al. 2020). However, it
should be noted that the reduced model spread does not neces-
sarily lead to more reliable model simulations (as shown in Fig. 3)
or projections (Bonan et al. 2019; Lovenduski and Bonan 2017).
Overall, our findings show an improvement in the terrestrial
C cycle in ESMs from CMIP5 to CMIP6 and call for more
model evaluations based on dataset products and experimen-
tal data in the future.

Acknowledgments. We acknowledge the World Climate
Research Programme’s working group on Coupled Modelling,
which coordinated and promoted CMIPs. We thank the climate
modeling groups for producing and making their model outputs
available, the Earth System Grid Federation (ESGF) for
archiving the data and providing access, and the multiple
funding agencies that support CMIP6 and ESGF. We thank
T. Wu and J. Yan for sharing BCC-CSM1-1m outputs, and
W. Kolby Smith for helping with the interpretation of
GIMMS3g NPP GPP data. This work is financially supported

FIG. 8. Model bias and intermodel spread in NPP, GPP, and CUE. (a),(e) The spatial patterns of model bias score in CUE for CMIP5
and CMIP6 model ensembles, respectively, were computed by subtracting the multimodel mean from the observed mean value and then
dividing by the observed mean value. (b),(f) Latitudinal patterns of model bias score in NPP for CMIP5 and CMIP6, respectively.
(c),(g) As in (b) and (f), but for GPP. (d),(h) As in (b) and (f), but for CUE.

W E I E T A L . 54951 SEPTEMBER 2022

Brought to you by CORNELL UNIVERSITY | Unauthenticated | Downloaded 09/05/23 04:16 PM UTC



by the National Key R&D Program of China (2017YFA0604
600) and the National Natural Science Foundation of China
(31722009).

Data availability statement. CMIP5 and CMIP6 model out-
puts are downloaded from the Earth System Grid Federation
(ESGF) data archive (https://esgf-node.llnl.gov/projects/esgf-
llnl/). All datasets used in the study are publicly available, and
their sources are provided in the text. References to observa-
tion-derived data of C stocks in vegetation and soil are sum-
marized in Table 3. All codes and metadata used in this study
can be accessed by https://github.com/NingWei-227/Evolution-
of-Uncertainty-in-Terrestrial-Carbon-Storage-in-Earth-System-
Models-from-CMIP5-to-CMP6.

REFERENCES

Ahlström, A., B. Smith, J. Lindström, M. Rummukainen, and
C. B. Uvo, 2013: GCM characteristics explain the majority of
uncertainty in projected 21st century terrestrial ecosystem
carbon balance. Biogeosciences, 10, 1517–1528, https://doi.org/
10.5194/bg-10-1517-2013.

Akihiko, I., and Coauthors, 2020: Soil carbon sequestration simu-
lated in CMIP6-LUMIP models: Implications for climatic
mitigation. Environ. Res. Lett., 10, 1748–9326, https://doi.org/
10.1088/1748-9326/abc912.

Anav, A., and Coauthors, 2013: Evaluating the land and ocean
components of the global carbon cycle in the CMIP5 Earth
system models. J. Climate, 26, 6801–6843, https://doi.org/10.
1175/JCLI-D-12-00417.1.

Arneth, A., and Coauthors, 2010: Terrestrial biogeochemical feed-
backs in the climate system. Nat. Geosci., 3, 525–532, https://
doi.org/10.1038/ngeo905.

Arora, V. K., and Coauthors, 2009: The effect of terrestrial photo-
synthesis down regulation on the twentieth-century carbon bud-
get simulated with the CCCma Earth system model. J. Climate,
22, 6066–6088, https://doi.org/10.1175/2009JCLI3037.1.

}}, and Coauthors, 2020: Carbon–concentration and carbon–
climate feedbacks in CMIP6 models and their comparison to
CMIP5 models. Biogeosciences, 17, 4173–4222, https://doi.org/
10.5194/bg-17-4173-2020.

Best, M. J., and Coauthors, 2011: The Joint UK Land Environ-
ment Simulator (JULES), model description}Part 1: Energy
and water fluxes. Geosci. Model Dev., 4, 677–699, https://doi.
org/10.5194/gmd-4-677-2011.

Bloom, A. A., J.-F. Exbrayat, I. R. van der Velde, L. Feng, and
M. Williams, 2016: The decadal state of the terrestrial carbon
cycle: Global retrievals of terrestrial carbon allocation, pools,
and residence times. Proc. Natl. Acad. Sci. USA, 113, 1285–1290,
https://doi.org/10.1073/pnas.1515160113.

Bodman, R. W., P. J. Rayner, and D. J. Karoly, 2013: Uncertainty
in temperature projections reduced using carbon cycle and
climate observations. Nat. Climate Change, 3, 725–729, https://
doi.org/10.1038/nclimate1903.

Bonan, G. B., and S. C. Doney, 2018: Climate, ecosystems, and
planetary futures: The challenge to predict life in Earth sys-
tem models. Science, 359, eaam8328, https://doi.org/10.1126/
science.aam8328.

}}, D. L. Lombardozzi, W. R. Wieder, K. W. Oleson, D. M.
Lawrence, F. M. Hoffman, and N. Collier, 2019: Model struc-
ture and climate data uncertainty in historical simulations of

the terrestrial carbon cycle (1850–2014). Global Biogeochem.
Cycles, 33, 1310–1326, https://doi.org/10.1029/2019GB006175.

Booth, B. B. B., and Coauthors, 2012: High sensitivity of future
global warming to land carbon cycle processes. Environ. Res.
Lett., 7, 024002, https://doi.org/10.1088/1748-9326/7/2/024002.

Bowring, S. P. K., R. Lauerwald, B. Guenet, D. Zhu, M.
Guimberteau, A. Tootchi, A. Ducharne, and P. Ciais, 2019:
ORCHIDEE MICT-LEAK (r5459), a global model for the
production, transport, and transformation of dissolved organic
carbon from Arctic permafrost regions}Part 1: Rationale,
model description, and simulation protocol. Geosci. Model
Dev., 12, 3503–3521, https://doi.org/10.5194/gmd-12-3503-2019.

Bradford, M. A., and T. W. Crowther, 2013: Carbon use efficiency
and storage in terrestrial ecosystems. New Phytol., 199, 7–9,
https://doi.org/10.1111/nph.12334.

Burke, E. J., and Coauthors, 2017: Quantifying uncertainties
of permafrost carbon–climate feedbacks. Biogeosciences, 14,
3051–3066, https://doi.org/10.5194/bg-14-3051-2017.

Carvalhais, N., and Coauthors, 2014: Global covariation of carbon
turnover times with climate in terrestrial ecosystems. Nature,
514, 213–217, https://doi.org/10.1038/nature13731.

Chevan, A., and M. Sutherland, 1991: Hierarchical partitioning.
Amer. Stat., 45, 90–96, https://doi.org/10.2307/2684366.

Ciais, P., and Coauthors, 2014: Carbon and other biogeochemical
cycles. Climate Change 2013: The Physical Science Basis, T. F.
Stocker et al., Eds., Cambridge University Press, 465–570.

Clark, D. B., and Coauthors, 2011: The Joint UK Land Environ-
ment Simulator (JULES), model description}Part 2: Carbon
fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701–722,
https://doi.org/10.5194/gmd-4-701-2011.

Collier, N., and Coauthors, 2018: The International Land Model
Benchmarking (ILAMB) system: Design, theory, and imple-
mentation. J. Adv. Model. Earth Syst., 10, 2731–2754, https://
doi.org/10.1029/2018MS001354.

Collins, W. J., and Coauthors, 2011: Development and evaluation
of an Earth-system model}HadGEM2. Geosci. Model Dev.,
4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011.

Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell,
2000: Acceleration of global warming due to carbon-cycle
feedbacks in a coupled climate model. Nature, 408, 184–187,
https://doi.org/10.1038/35041539.

Cui, E., and Coauthors, 2019: Vegetation functional properties de-
termine uncertainty of simulated ecosystem productivity: A
traceability analysis in the East Asian monsoon region.
Global Biogeochem. Cycles, 33, 668–689, https://doi.org/
10.1029/2018GB005909.

Davies-Barnard, T., and Coauthors, 2020: Nitrogen cycling in
CMIP6 land surface models: Progress and limitations. Bio-
geosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-
2020.

DeAngelis, D. L., and W. M. Mooij, 2003: In praise of mechanisti-
cally rich models. Models in Ecosystem Science, C. D. Can-
ham, J. J. Cole, and W. K. Lauenroth, Eds., Princeton Uni-
versity Press, 63–82.

Du, Z., E. Weng, L. Jiang, Y. Luo, J. Xia, and X. Zhou, 2018:
Carbon–nitrogen coupling under three schemes of model rep-
resentation: A traceability analysis. Geosci. Model Dev., 11,
4399–4416, https://doi.org/10.5194/gmd-11-4399-2018.

Dufresne, J. L., and Coauthors, 2013: Climate change projections
using the IPSL-CM5 Earth System Model: From CMIP3 to
CMIP5. Climate Dyn., 40, 2123–2165, https://doi.org/10.1007/
s00382-012-1636-1.

J OURNAL OF CL IMATE VOLUME 355496

Brought to you by CORNELL UNIVERSITY | Unauthenticated | Downloaded 09/05/23 04:16 PM UTC

https://esgf-node.llnl.gov/projects/esgf-llnl/
https://esgf-node.llnl.gov/projects/esgf-llnl/
https://github.com/NingWei-227/Evolution-of-Uncertainty-in-Terrestrial-Carbon-Storage-in-Earth-System-Models-from-CMIP5-to-CMP6
https://github.com/NingWei-227/Evolution-of-Uncertainty-in-Terrestrial-Carbon-Storage-in-Earth-System-Models-from-CMIP5-to-CMP6
https://github.com/NingWei-227/Evolution-of-Uncertainty-in-Terrestrial-Carbon-Storage-in-Earth-System-Models-from-CMIP5-to-CMP6
https://doi.org/10.5194/bg-10-1517-2013
https://doi.org/10.5194/bg-10-1517-2013
https://doi.org/10.1088/1748-9326/abc912
https://doi.org/10.1088/1748-9326/abc912
https://doi.org/10.1175/JCLI-D-12-00417.1
https://doi.org/10.1175/JCLI-D-12-00417.1
https://doi.org/10.1038/ngeo905
https://doi.org/10.1038/ngeo905
https://doi.org/10.1175/2009JCLI3037.1
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.1038/nclimate1903
https://doi.org/10.1038/nclimate1903
https://doi.org/10.1126/science.aam8328
https://doi.org/10.1126/science.aam8328
https://doi.org/10.1029/2019GB006175
https://doi.org/10.1088/1748-9326/7/2/024002
https://doi.org/10.5194/gmd-12-3503-2019
https://doi.org/10.1111/nph.12334
https://doi.org/10.5194/bg-14-3051-2017
https://doi.org/10.1038/nature13731
https://doi.org/10.2307/2684366
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.1029/2018MS001354
https://doi.org/10.1029/2018MS001354
https://doi.org/10.5194/gmd-4-1051-2011
https://doi.org/10.1038/35041539
https://doi.org/10.1029/2018GB005909
https://doi.org/10.1029/2018GB005909
https://doi.org/10.5194/bg-17-5129-2020
https://doi.org/10.5194/bg-17-5129-2020
https://doi.org/10.5194/gmd-11-4399-2018
https://doi.org/10.1007/s00382-012-1636-1
https://doi.org/10.1007/s00382-012-1636-1


Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled
climate–carbon Earth system models. Part II: Carbon system
formulation and baseline simulation characteristics. J. Climate,
26, 2247–2267, https://doi.org/10.1175/JCLI-D-12-00150.1.

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J.
Stouffer, and K. E. Taylor, 2016: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization. Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016.

Fan, N., and Coauthors, 2020: Apparent ecosystem carbon turn-
over time: Uncertainties and robust features. Earth Syst. Sci.
Data, 12, 2517–2536, https://doi.org/10.5194/essd-12-2517-2020.

Flato, G. M., 2011: Earth system models: An overview. Wiley In-
terdiscip. Rev.: Climate Change, 2, 783–800, https://doi.org/10.
1002/wcc.148.

Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle
feedback analysis: Results from the C4MIP model intercom-
parison. J. Climate, 19, 3337–3353, https://doi.org/10.1175/
JCLI3800.1.

}}, M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K.
Liddicoat, and R. Knutti, 2013: Uncertainties in CMIP5 cli-
mate projections due to carbon cycle feedbacks. J. Climate,
27, 511–526, https://doi.org/10.1175/JCLI-D-12-00579.1.

}}, and Coauthors, 2019: Global carbon budget 2019. Earth
Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-
1783-2019.

Gent, P. R., and Coauthors, 2011: The Community Climate Sys-
tem Model version 4. J. Climate, 24, 4973–4991, https://doi.
org/10.1175/2011JCLI4083.1.

Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle
changes from 1850 to 2100 in MPI-ESM simulations for the
Coupled Model Intercomparison Project phase 5. J. Adv.
Model. Earth Syst., 5, 572–597, https://doi.org/10.1002/jame.
20038.

Goll, D. S., V. Brovkin, B. R. Parida, C. H. Reick, J. Kattge, P. B.
Reich, P. M. van Bodegom, and Ü. Niinemets, 2012: Nutrient
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