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Plant stoichiometry and nutrient allocation can reflect a plant’s adaptation to
environmental nutrient changes. However, the allocation strategies of carbon (C),
nitrogen (N), and phosphorus (P) between leaf and fine root in response to wildfire
have been poorly studied. Our primary objective was to elucidate the trade-off of
elemental allocation between above- and belowground parts in response to the soil
nutrient changes after a wildfire. We explored the allocation sloping exponents of C, N,
and P between leaf and fine root at the species and community levels at four recovery
periods (year 2, 10, 20, and 30) after moderately severe wildfire and one unburned
treatment in boreal forests in Great Xing’an Mountains, northeast China. Compared with
the unburned treatment, leaf C concentration decreased and fine root C increased at
year 2 after recovery. The leaf N concentration at year 10 after recovery was higher than
that of unburned treatment. Plant growth tended to be limited by P concentration at
year 10 after recovery. Nutrient allocation between leaf and fine root differed between
species and community levels, especially in the early recovery periods (i.e., 2 and
10 years). At the community level, the nutrient concentrations of the leaf changed more
as compared to that of the fine root at year 2 after recovery when the fine root nutrients
changed more than those of the leaf. The different C, N, and P allocation strategies
advanced the understanding of plant adaptation to soil nutrient changes during the
postfire ecosystem restoration.

Keywords: elemental allocation, leaf, fine root, recovery periods, wildfires

INTRODUCTION

As a common disturbance factor in terrestrial ecosystems, wildfires have significant consequences
for forest ecosystems (Certini, 2005; Alonso-Canas and Chuvieco, 2015). Wildfires modify the
physical and chemical properties of soil and accelerate soil nutrient circulations (Adler et al.,
2014; Wang et al., 2015; Holden et al., 2016; Hume et al., 2016), but the effect of wildfire on
the dynamics of plant nutrients remains poorly understood. During ecosystem recovery, the
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stoichiometric characteristics of the fine root change (Toberman
et al., 2014; Yan et al., 2016) and will subsequently regulate
the stoichiometries of leaves (Liu et al., 2013; Shen et al.,
2016). Plants can change the allocation strategy of carbon
(C), nitrogen (N), and phosphorous (P) between above-
and belowground parts (Palmroth et al., 2013; Yang et al.,
2015). The dynamics of nutrients are important for ecosystem
recovery after a wildfire. However, our knowledge of plant
nutrient allocations during recovery periods is limited; thus,
understanding plant nutrient utilization strategies during the
recovery period must be deepened.

Wildfires can substantially change C, N, and P concentrations
in ecosystems (Holden and Treseder, 2013; Michalzik and
Martin, 2013). For example, wildfires with moderate severity can
reduce understory C and N pools within a short time, and then
these pools will recover in several decades (Turner et al., 2008;
Nave et al., 2011). An increasing number of studies have reported
that soil P concentration increases after wildfires and declines as
the ecosystem recovers (Hume et al., 2016; Butler et al., 2017). In
general, the alterations in the amount of soil nutrients are likely
to influence plant physiological processes, which further change
the C, N, and P stoichiometries of plant leaf and fine root.

Wildfire usually affects plant elemental concentrations
(Hansen et al., 2016). C, N, and P are considered as the most
essential elements to plant physiology (Elser et al., 2010). Few
studies revealed the responses of plant physiology to ecosystem
recovery. Wildfires may result in soil acidification that constrains
plant uptake of P and N and change C distribution in the leaf
and root (Scoffoni et al., 2011; Vernay et al., 2018). High soil
nutrients can increase leaf N content and facilitate plant C
synthesis in early recovery periods (approximately 10 years),
which accelerates community productivity (Chen et al., 2015;
Butler et al., 2017). With rapid regrowth of species after a
wildfire, P availability may gradually become insufficient (Huang
and Boerner, 2007; Lamont and Downes, 2011). During the
recovery periods, the limitation of N and P inhibits plant
growth and physiological processes, i.e., photosynthesis and
respiration, which are closely related to C dynamics (LeBauer
and Treseder, 2008; Chen et al., 2013). These nutrient changes
will regulate the C, N, and P stoichiometry of plants. Wildfire
changes the concentrations of soil nutrients, which usually occur
during the early recovery periods (Chen et al., 2015). Hence, we
hypothesized that the plant C, N, and P stoichiometry allocations
would be substantially changed in the early periods during
recovery (H1, Figure 1).

The responses of C, N, and P stoichiometries in plants to soil
nutrient alterations will affect species composition (Li et al., 2012;
Zhang et al., 2012); therefore, ultimately elemental allocations
among plant organs are observed not only at the species level
but also at the community level (Enquist, 2002; Elser et al.,
2010). Previous studies have reported that nutrient allocation
among plant organs is not constant and is regulated by soil
and litter nutrients (Yan et al., 2016; Zhang Q. et al., 2018).
Hence, to fully understand the effects of the nutrient changes
on plant physiology after a wildfire, it is necessary to reveal
the allocation strategies between organs (Zhang et al., 2015).
Allometry theory provides an approach to describe elemental

distribution among plant organs at the species and community
levels (Kerkhoff et al., 2006; Enquist et al., 2007). Based on the
phylogeny of plants, the allometric scaling indicator was derived
from a general model, i.e., Y = bXa, where a represents the sloping
indicator (Enquist, 2002; Reich et al., 2010). This relationship has
been used successfully in predicting the numerous physiological
traits and nutrient utilizations from species to community
levels (Gillooly and Allen, 2007; Zhang J. et al., 2018; Zhao
et al., 2020). For example, according to the optimal allocation
theory, plants growing in nutrient-rich environments will allocate
more nutrients to the leaf to increase photosynthesis, while
plants allocate more nutrients to the root to increase nutrient
acquisition in infertile environments (Palmroth et al., 2013; Yang
et al., 2015). The changes in restricted nutrients will also affect
the C assimilation (Minden and Kleyer, 2014; Freschet et al.,
2015), which further influences species diversity and vegetation
community (Sterner and Elser, 2002). Therefore, due to the
alterations of nutrients in the burned area, we hypothesized
that the C, N, and P allocations between leaf and fine root will
change during the different recovery periods at the species and
community level (H2, Figure 1).

The change in C, N, and P allocation strategies with the
ecosystem recovery is vital but unclear. Boreal forests are
an important part of the global total carbon pool (Shuman
et al., 2011). Frequent occurrences of wildfires in boreal forests
had profound effects on plant nutrient utilization, ecosystem
structure, and functioning in the forest ecosystems (Wu et al.,
2013). Thus, understanding the nutrient circulation of fire-prone
boreal forests is a key issue for postfire management (Liu et al.,
2012a; Wu et al., 2014). As an important part of boreal forests,
the Great Xing’an Mountains of northeastern China host the
southern extension of the larch forests and account for 30% of
China’s timber production (Wang et al., 2010). Hence, our study
aims to address the abovementioned knowledge gap of plant
nutrient adaptation under moderate fire severity in boreal forests
in northeast China. The study sought to answer the following
scientific questions: (1) How do the C, N, and P stoichiometries
of leaf and fine root change during recovery periods? (2) How
do the plant C, N, and P allocations between leaf and fine root
change during the recovery period? (3) What is the difference in
elemental allocation at the species and community levels during
the ecosystem recovery?

MATERIALS AND METHODS

Site Description
This study was conducted in the Xilinji Forestry Bureau,
which belongs to Mohe city in the Great Xing’an Mountain
area of northeastern China. The climate is characterized by
a long and severe winter, with mean annual air temperature
ranging from –6◦C to 1◦C (Hu et al., 2017), and the mean
annual precipitation is 500 mm. The dominant tree species
are the Larix gmelinii (Rupr.) Kuzen, Pinus sylvestris Linn.
var. mongholica Litv., Picea koraiensis Nakai, Betula platyphylla
Suk., and two species of aspen (Populus davidiana Dode and
Populus suaveolens Fisch.). Understory shrubs are dominated by
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FIGURE 1 | Theoretical framework for the allocation strategies of carbon (C), nitrogen (N), and phosphorus (P) with recovery after a wildfire. The plants C, N, and P
stoichiometries allocation would be substantially changed in the early periods during recovery (H1), and the organ stoichiometry allocation strategies may be different
in the species level and the community level (H2). 2a, 10a, 20a, and 30a are at year 2, year 10, year 20, and year 30 after recovery, respectively. UB, unburned.

Ledum palustre Linn., Vaccinium vitis-idaea Linn., Rhododendron
dauricum Linn., Vaccinium uliginosum Linn., and Eriophorum
angustifolium Honck (Meng et al., 2017). Soils are classified
as brown soil (Wrb Iwg, 2015). The Great Xing’an Mountains
are usually affected by natural wildfire disturbances due to the
accumulation of combustible matter on the forest floor. Fire
regimes are characterized by surface fires mixed with stand-
replacing crown fires (Liu et al., 2012a). Records of fire provided
us with the background to undertake experiments in this area.

Experimental Design
Fire severity refers to the severity of organic material consumed
or vegetation mortality directly caused by fire (Lentile et al.,
2006). Fire severity follows the standard of Composite Burn
Index (CBI) assessment protocol (Key, 2006; Lentile et al.,
2006). Specifically, we visually estimated the changes in coarse
woody debris, black carbon, char height, mortality rates of tall
trees, and the proportions of fallen trees (Key, 2006; Boby
et al., 2010; Fang and Yang, 2014). After the investigations, we
found that the burn proportion was 41–60% and was viewed as
moderate fire severity. Based on the precise historical records,
we selected five treatments with different recovery periods,
including four burned treatments (the fire occurred in 2015,
2007, 1997, and 1987, respectively) and one unburn treatment,

and each treatment had three replications (three plots per
treatment). The interval of each plot was more than 100 m
to avoid the spatial autocorrelation between plots. During July
and August 2017, 15 plots (20 × 20 m) were established,
with 12 plots in the burned treatments (2a, 10a, 20a, and 30a,
respectively) and the other 3 plots in the unburned treatment.
The treatments were presented as at year 2, year 10, year 20,
and year 30 after recovery and unburned treatment hereafter.
In our study, 2a and 10a were viewed as early recovery
periods, 20a and 30a as the medium recovery periods, and
unburned treatment as the long recovery period. Considering the
effects of environmental characteristics, there were no significant
differences in soil bulk, slope aspect, slope position, and altitude
among the selected plots (more details of the data information
in Supplementary Table 1). The study area is located in the cold
temperate continental climate. The forest type of treatment was
L. gmelinii forest. These treatments had similar topography and
environmental factors.

Field Sampling
Plant Sampling
We investigated the species in each plot, obtained data on
diameter at breast height (DBH), height, multiplicity of all trees,
canopy density, and multiplicity of shrubs and herbs to calculate
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species diversity and the importance value of each species. We
sampled all species in each quadrat (Species information in
Supplementary Table 1), in which three replicate individuals of
every healthy species were selected. We obtained 30 plant samples
from the unburned treatment, 39 plant samples from 2a, 48
plant samples from 10a, 36 plant samples from 20a, and 30 plant
samples from 30a. Plant samples were collected in August 2017.
The fresh intact current-year leaves of each individual species
were sampled from four orientations (the north and south, east
and west) at the middle and low height of the tree canopy, and
then the leaves were mixed into one leaf sample (ca. 80–100 g).
We manually dug a hole within the depth of 2 m and grubbed
the fine roots (diameter < 2 mm, ca. 40–60 g) from each species.
The leaf and fine root samples of each species were obtained from
the same individual. The samples were kept at 4◦C and quickly
transported to the laboratory. Plant samples (including leaf and
fine root) were cleaned carefully with distilled water and then
oven-dried at 65◦C to constant weight in the laboratory. The
samples were ground to 0.15 mm for chemical analyses.

Soil and Litter Sampling
Five litter samples were collected from five points (four vertices
and the center) in each plot. The aboveground plant material and
live roots were removed before soil sampling. Three soil cores
were collected from each point at a depth of 0–20 cm using a
metal auger with an inner diameter of 5 cm. Fresh samples were
placed in polyethylene ziplock bags, stored in a cooler with ice,
and transported to the laboratory within 8 h, where they were
preserved at 4◦C. The chemical analyses of the soil and litter
samples were completed in 10 days after sampling.

Samples Analyses
Chemical Analyses
The total C and N concentrations of the plant (leaf and fine root),
litter, and soil were measured with an elemental analyzer (Vario
MAX CN Elemental Analyzer, Elementar, Hanau, Germany). The
total P concentrations of plant, litter, and soil were measured
using the ammonium molybdate method with a continuous-flow
analyzer (AutoAnalyzer 3, Bran Luebbe, Hamburg, Germany),
after Se-CuSO4-K2SO4-H2SO4, H2SO4-H2O2, and H2SO4-H2O2
digestion for soil, litter, and plant samples, respectively.

Data Analyses
Reduced major axis (RMA, also called standardized major axis)
regression was used to determine the sloping indicator and
constant of the log–log-linear functions (Warton et al., 2010).
The data of C concentration in leaf and fine root were log-
transformed. The allocation relationship of C in leaf and fine root
was described by the equation as follows:

Log (Y) = log (a)+ b∗log (X) ,

where X is the total C concentration of leaf, Y is the total
C concentration of fine root, a is the intercept on the y-axis,
and b is the slope of the linear equation, which represents
the allometry exponent (Supplementary Tables 2, 3). When
b = 1, the relationship of X to Y is isometric; otherwise, the

relationship is allometric. If b > 1, Y changes more than
X, whereas b < 1 indicates that X changes more than Y
(Warton and Weber, 2015).

The sloping relationships of the elemental concentrations
between fine root and leaf were analyzed at species and
community levels. At the species level, we explored the sloping
relationship of the elemental concentration using the log-
transformed elemental concentrations of the fine roots and leaves
of all species. The significant level for testing slope heterogeneity
and differences from slope = 1 was P < 0.05. Differences in the
regression slopes among different recovery periods were tested
using multiple post-hoc comparisons (Duncan’s tests). Similar
analyses were conducted for N and P between leaf and fine root
at different recovery periods.

The Importance Value Index (IV) is calculated based on the
relative dominance (Dr) through the basal area, the relative
frequency (Fr) by the presence of the species, relative height (Hr)
through the tree height, and relative coverage (Cr) according to
the number of trees per unit area (Zhao et al., 2020):

Tree’s IV = (Hr+ Fr+ Dr)/3;

Shrub’s IV = (Dr+ Cr)/2;

Herb’s IV = (Dr+ Cr)/2

At the community level, the elemental concentrations of
leaf and fine root were calculated using importance value (IV)
weighted averages as follows:

Ecom =
n∑
i1

(Ei × IVi)/
n∑

i = 1

IVi,

where Ei (g/kg) is the elemental concentration of the ith species in
a quadrant and IVi is the importance value of the ith plant species.
The investigated data were used for IV measurement. Ecom
(g/kg) is the elemental concentration at the community level.
The analyses of scaling relationships of elemental concentrations
at the community level were the same as those at the species
level. All statistical analyses were performed using the package
of “smatr” in R 3.3.2.

Differences in elemental concentrations in the litter and soil in
different recovery periods were tested using analysis of variance
(ANOVA) with multiple comparisons of Duncan’s post-hoc tests
using the general linear regression model. The significant level
was set at P < 0.05. All statistical analyses were performed using
R 3.3.2 statistical software (R Core Team, 2017). All graphs were
generated by SigmaPlot (Systat Software, San Jose, CA, United
States, 2017).

RESULTS

Changes of Soil and Litter Nutrients in
Recovery Periods
Compared with the unburned treatment, the soil N concentration
decreased after a wildfire (Figure 2A, P < 0.05), whereas soil
P concentration significantly increased (Figure 2B, P < 0.05),
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FIGURE 2 | Changes of soil and litter N and P concentrations in different recovery periods. Error bars are standard errors. Different lowercase letters indicate
significant differences among different recovery periods (**P < 0.01; *P < 0.05). 2a, 10a, 20a, and 30a are at year 2, year 10, year 20, and year 30 after recovery,
respectively. The number of the data involved in analysis of variance (ANOVA) in each recovery period was as follows: soil n = 9 and litter: n = 15. (A,B) The pattern of
soil. (C,D) The pattern of litter.

especially in early periods of recovery (2a and 10a). The litter N
concentration decreased at 2a and was the highest at 20a recovery
(Figure 2C, P < 0.05). The litter P concentration significantly
decreased at 2a compared with the unburned area and then
increased at 10a (Figure 2D, P < 0.05).

Changes in Leaf and Fine Root
Stoichiometry of C, N, and P in Recovery
Periods at the Species Level and the
Community Level
At the species level, the C, N, and P stoichiometries showed
significant differences among five recovery periods (Figure 3,
P < 0.05), and the concentrations of these elements were higher
in the leaf than in the fine root. The leaf C concentration was
significantly lower at the early recovery period (2a) than those
at other recovery periods, whereas fine root C concentration
was significantly lower at the medium recovery period (30a;
Figure 3A, P < 0.01). Leaf N was higher at 10a recovery.
Compared with unburned, fine root N concentration significantly
decreased after a wildfire (Figure 3B, P < 0.05). The P
concentration of leaf significantly decreased at 10a (Figure 3C,
P < 0.05). The C:P ratio of leaf and fine root significantly
increased at 10a (Figure 3E, P < 0.01). Moreover, the N:P ratio of
the leaf significantly increased at 10a. The mean value of leaf N:P

ratios was lower than 14 under the unburned treatment but was
higher than 16 at 10a (Figure 3F, P < 0.01).

The C, N, and P stoichiometries at the community level
showed variations among five recovery periods (Figure 4).
Compared with the unburned treatment, leaf C concentration
significantly declined at 2a, while the C concentration of fine root
decreased significantly at 30a (Figure 4A, P < 0.01). Similarly,
the leaf N concentration at the community level was the highest at
10a. However, fine root N concentration decreased significantly at
30a as compared with unburned treatment (Figure 4B, P < 0.05).
The fine root P concentration decreased significantly at 10a
compared with the unburned treatment (Figure 4C, P < 0.05).
The leaf N:P ratios at the community level also increased
significantly at 10a, and the mean value was higher than 16
(Figure 4F, P < 0.01).

Sloping Relationships of C, N, and P
Between Leaf and Fine Root in Recovery
Periods at the Species Level and the
Community Level
The C, N, and P allocation slope exponents of fine root vs. leaf at
the species level were significantly different among the recovery
periods (Figure 4 and Supplementary Table 1). The slopes of
C concentration showed an allometry pattern (b < 1) at 2a
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FIGURE 3 | Changes in the stoichiometry of leaf and fine root at the species level in different recovery periods. Boxplots stand for the range of C, N, and P
stoichiometry during recovery periods. The dashed horizontal line stands for N:P ratio = 16 above which indicates the P limitation in subfigure (f). 2a, 10a, 20a, and
30a are at year 2, year 10, year 20, and year 30 after recovery, respectively. UB, unburned. Error bars are standard errors. Different lowercase letters indicate
significant differences among different recovery periods. The number of the data involved in ANOVA in each recovery period was as follows: 2a: n = 39, 10a: n = 48,
20a: n = 36, 30a: n = 30, UB: n = 30 (**P < 0.01; *P < 0.05). (A–C) The stoichiometry concentration. (D–F) The stoichiometry ratio.

after when it exhibited an isometry pattern (b = 1; Figure 5A,
P < 0.05), indicating that the allocation of leaf C would change
more in the early recovery periods. All slope exponents of N
concentration were larger than 1 (b > 1), indicating that the
allocation of root N would change more than the leaf (Figure 5B,
P < 0.05). As for the P concentration, the slope exponents
transformed from b > 1 in early recovery periods (10a) to
b < 1 in medium recovery periods (Figure 5C, P < 0.01). The
slope exponent of C:N in the long recovery period (unburned)
decreased as compared with those of early recovery periods. The
slope of C:P and N:P was generally smaller than 1.

At the community level, C, N, and P allocation slope
exponents between fine root and leaf also showed differences
among the five recovery periods. The allocation slope exponents
of C concentration between fine root and leaf showed allometry
(b > 1) after burn (Figure 6A, P < 0.05). As for N and P
concentrations, the slope exponents (b) were smaller than 1
at 2a then transformed to larger than 1 after 10a recovery
(Figures 6B,C, P < 0.05). Interestingly, all slope exponents of
plant C, N, and P concentrations at medium-term recovery
(20a) showed clear allometry (b > 1), which further exhibited
a transformation from b < 1 to b > 1 at 20a and 30a. This
transformation indicated that more C, N, and P changes in fine
root with an increased recovery period in comparison with those
in leaf at the community level (Figures 6A–C, P < 0.05). The

slopes of C:N and C:P all showed an allometric pattern, which
transformed the slope from smaller than 1 to larger than 1 with
increasing recovery periods.

DISCUSSION

The results demonstrated that wildfires altered the soil and
litter nutrients and consequently changed plant C, N, and P
stoichiometries during the recovery periods. Plant allocated more
nutrients to fine roots than leaves at the species level, whereas
more nutrients were allocated to the leaves at the community
level in early recovery periods (i.e., 2a and 10a). Subsequently,
the plant allocated more N and P to fine roots with increasing
recovery periods at the community level, which highlights the
effect of wildfire on the elemental allocation strategies that differ
between species level and community level.

Changes of Soil and Litter Nutrients
Among Recovery Periods
In our study, the changes in soil and litter nutrient concentrations
largely varied among the different recovery periods, for example,
litter N, litter P, and soil N concentrations decreased at year
2 after recovery. Wildfire altered the soil nutrient pools and
reduced litter nutrient concentrations (Tufekcioglu et al., 2010;
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FIGURE 4 | Changes in C, N, and P stoichiometry of leaf and fine root at community level among different recovery periods. 2a, 10a, 20a, and 30a are at year 2,
year 10, year 20, and year 30 after recovery, respectively. UB, unburned. Error bars are standard errors. Different lowercase letters indicate significant differences
among different recovery periods. The dashed horizontal line stands for N:P ratio = 16 above which indicates the P limitation in subfigure (f). The number of the data
involved in ANOVA in each recovery period was as follows: 2a: n = 9, 10a: n = 9, 20a: n = 9, 30a: n = 9, UB: n = 9 (**P < 0.01; *P < 0.05). (A–C) The stoichiometry
concentration. (D–F) The stoichiometry ratio.

Michalzik and Martin, 2013; Holden et al., 2016). Wildfire
incinerates the majority of litter on the forest floor, where the
amount of nutrients volatilizes with the destroyed vegetation
(Toberman et al., 2014; Scalenghe et al., 2015). Limited nutrient
supplement hampers aboveground growth and lowers the
nutrient concentrations of litter (Nobles et al., 2009). Soil total
N decreased in early recovery periods, which is consistent with
a previous study that wildfires with moderate severity caused
the declines in soil N pool (Wan et al., 2001). In contrast,
significant increases in soil P concentration were observed in
our study, which may be because the P is hard to volatilize
under moderately severe fires, and fires can promote the P
released from soil (Butler et al., 2018). The soil and litter N
concentrations were increased in the medium recovery periods
(Figure 2). With increasing recovery periods, the increases of
soil and litter N may be caused by the restoration of the
understory community, which is consistent with the increasing
soil and litter nutrient concentrations with higher species
diversity (Scalenghe et al., 2015).

Differential Stoichiometries of C, N, and
P Among Recovery Periods
An important issue of plant growth is its response to the
changes of N and P supplements in burned ecosystems
(Tarvainen et al., 2016). The total C, N, and P stoichiometries of

leaf and fine root showed variations among five recovery periods
regardless of the levels (Figures 3 and 4). The most striking
result was that the stoichiometry of the leaf and fine root at
year 10 after recovery was significantly different from others. At
the species and community levels, leaf N concentrations were
the highest, and the P concentrations of leaf and fine root were
the lowest at year 10 after recovery. Although soil nutrients
substantially decreased after being burned, plants adopt a growth
strategy in response to severe environmental changes (Song et al.,
2021). These flexible growth strategies of the plant would change
resource allocations among organs to enable them to adapt to
the nutrient-insufficient environment (Wright and Sutton-Grier,
2012; Song and Liu, 2019). The results of our study show that
the C, N, and P concentrations were higher in leaf than in fine
roots. Plants usually promote the photosynthetic efficiency of the
leaf and allocate more resources to the aboveground (Ordoñez
et al., 2009), which promotes leaf N utilization in our study.
Additionally, to fully use light after a wildfire, plants can promote
leaf photosynthesis and allow more nutrient investments to
leaf (Muqaddas et al., 2015), which can be demonstrated in
the higher litter nutrient concentration in our results. Leaf
N absorption efficiency rapidly increases during the period of
nutrient insufficiency, and thus, plants significantly promote leaf
N concentrations (Scoffoni et al., 2011).

The decline of plant P concentration at year 10 after recovery
may be due to the massive appearance of regenerating species that
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FIGURE 5 | Slope exponents (b) of C, N, and P between fine root (Y) and leaf (X) at the species level. 2a, 10a, 20a, and 30a are at year 2, year 10, year 20, and year
30 after recovery, respectively. UB, unburned. The sloping exponents of five recovery periods were shown with standard error. The slope exponents were estimated
using reduced major axis (RMA) regressions. The summary of RMA, including intercept (a) and R2, is shown in Supplementary Table 2. The number of the data
involved in slope fitness in each recovery period was as follows: 2a: n = 39, 10a: n = 48, 20a: n = 36, 30a: n = 30, UB: n = 30. All regressions are significant at
P < 0.05. Red dotted lines mean the slope is equal to 1. The red dots indicate that the exponents are not significantly different from 1 (isometric relationship) based
on the likelihood tests. The different lowercase letters denote significant differences between the exponents within burned years based on the likelihood tests. (A–C)
The stoichiometry concentration. (D–F) The stoichiometry ratio.

have low P concentrations (Yu et al., 2011; Shenoy et al., 2013).
Moreover, in early recovery periods, soil organic acid secretion
increases soil acidification, causing a huge loss in soil available P
(Butler et al., 2017), which then decreases root P concentrations
(Hume et al., 2016). Compared with unburned treatment, leaf C
concentration was significantly decreased at year 2 after recovery,
whereas fine root C concentration increased (Figures 3 and
4). At the species and community levels, a previous study also
observed that the aboveground biomass decreased during early
recovery periods (Nave et al., 2011). In the context of soil nutrient
deficiencies, the regenerating tree species will synthesize more C
to root growth to absorb nutrients under disturbance conditions
(Mo et al., 2010; Kong et al., 2015).

The plant C:nutrient ratios are not constant after wildfires
(Cui et al., 2010; Pellegrini et al., 2015), which was also observed
in our results with significant changes of C:P and N:P ratio,
especially at year 10 after recovery. More importantly, the N:P
ratio at the species and community levels showed a similar
pattern that the leaf N:P ratio was higher than 16 at year 10 after
recovery, suggesting that plant growth tended to be a P limitation.
This result of leaf N:P ratios was consistent with the previous
observation under fire (Bai et al., 2013). N and P are usually
the limiting nutrients for plant growth in forest ecosystems
(Bünemann et al., 2018). According to the eco-stoichiometry

theory, the higher leaf N:P ratio leads to a lower concentration
of mRNA, thereby suggesting that species growth may likely be
limited by P deficiency (Güsewell, 2004). During the recovery
period, the appearance of regenerating species enhances the
leaf N concentration, but leaf P concentration tends to be
lower (Certini, 2005). After a decade’s recovery from wildfire,
the recovery of N and P suggests that community restoration
attenuates P limitation in plant growth (Wood and Bowman,
2012; Dantas Vde et al., 2016). Thus, the nutrient changes
in different recovery periods may contribute to the allocation
strategies of plant C, N, and P.

Differential Allocation of C, N, and P
Between Leaf and Fine Root Between
Species Level and Community Level in
Early Recovery Periods
As mentioned above, plants can adjust the elemental
concentrations according to the nutrient supply, especially
in early recovery periods. These stoichiometry shifts would
further affect the nutrients’ reallocation between above- and
belowground parts (Niklas, 2005; Schafer and Mack, 2010).
Allocation slope exponents of fine root vs. leaf at the species and
community levels were significantly different among recovery
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FIGURE 6 | Slope exponents (b) of C, N, and P with fine root (Y) vs. leaf (X) at the community level. 2a, 10a, 20a, and 30a are at year 2, year 10, year 20, and year
30 after recovery, respectively. UB, unburned. The sloping exponents of five recovery periods were shown with standard error. The slope exponents were estimated
using RMA regressions. The summary of RMA, including intercept (a) and R2, is shown in Supplementary Table 3. The number of the data involved in slope fitness
in each recovery period was as follows: 2a: n = 9, 10a: n = 9, 20a: n = 9, 30a: n = 9, UB: n = 9. All regressions are significant at P < 0.05. Red dotted lines stand for
the slopes are equal to 1. The red dots are that the exponents are not significantly different from 1 (isometric relationship) based on the likelihood tests. The different
lowercase letters denote significant differences based on the likelihood tests. (A–C) The stoichiometry concentration. (D–F) The stoichiometry ratio.

periods (Figures 5 and 6). At the species level, the allocation
slopes of N and P concentrations were significantly larger than
1 during the recovery period of 2 years and 10 years, indicating
that more nutrient changes occur in the fine root than a leaf in
early recovery periods. The changes in the element distribution
of leaf and fine root largely drive the pattern of organs’
metabolic activity and their functions (Kerkhoff et al., 2006). Leaf
functioning usually depends on the nutrients offered by the roots,
and at the same time, root growth relies on the carbohydrates
produced by the leaf (Minden and Kleyer, 2014; He et al.,
2016). Under low soil N concentrations, more nutrients will be
allocated to the root to sustain vital physiological functions to
mine nutrients (Fortunel et al., 2012; Yan et al., 2016). Another
possible reason is that the leaf needs more nutrients to ensure
photosynthesis, which requires higher nutrient investments to
roots to mine nutrients (Marschnert et al., 1997). Increased soil P
concentrations could promote root growth. Thus, at the species
level, nutrients were more changed in fine root than a leaf in
early recovery periods.

At the community level, the slope of C, N, and P allocation
between leaf and fine roots was smaller than 1 at year 2 after
recovery, indicating that more elements changed in leaf than fine
root (Figure 6). Species diversity and community composition

are being strongly influenced by the nutrient changes (Liu et al.,
2012b), especially after a wildfire (Nave et al., 2011). In the early
recovery periods, greater species diversity with the occurrence
of regeneration species presents fast growth strategies and high
nutrient utilization. Even under low soil nitrogen concentrations,
more N and P were allocated to aboveground at the community
level (Maliakal et al., 2000; Niklas, 2005). Further evidence shows
that the increasing soil P concentration after wildfire promotes
more nutrient changes in the leaf of regenerated species, such
as herbs with a shorter leaf life span (Johnstone et al., 2010;
Chen et al., 2013). The regenerated plants need to enhance
their photosynthetic rate to obtain light during their short
growing season (Elser et al., 2010). Compared to woody species,
herbaceous species were characterized by more leaf nutrient
changes and quick growth, which can boost community recovery
(Adler et al., 2014).

Transformed Nutrient Allocation at the
Community Level With an Increasing
Recovery Period
At the community level, the N and P allometry slope between leaf
and fine root showed a clear transformation with the increasing
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recovery periods. Specifically, all slope exponents of N and P
concentration showed allometry (b < 1) in early recovery periods
(i.e., 2a and 10a), after when the slope exponents were more than
1 at medium recovery period (Figure 6). This transformation
of slope exponents indicated that more N and P would change
in fine root in the medium recovery periods (i.e., 20a and
30a). At the community level, the nutrient allocation in early
recovery periods showed more changes of nutrient in leaf than
fine root, which is similar to the finding that shrubs would
preferentially allocate P to leaf to maintain plant physiological
functions (Fortunel et al., 2012). From early- to medium-term
recovery, the species diversity would enrich with the community
recovery. The nutrient allocation relationship would be changed
at the community level (Chen et al., 2019). The dynamics of
nutrients at the community level reflect the combined results
of nutrient allocation in the ecosystem (Lavorel and Grigulis,
2012). In medium recovery periods (i.e., 20a and 30a), soil
N and P concentrations were recovered to those of unburned
treatment; therefore, more nutrients will be transported to
nonphotosynthetic organs to promote plant growth and enhance
plant competitiveness (Fortunel et al., 2012), especially in the
regenerated shrub species (Lavorel, 2013). Plants may allocate
more nutrients to the stems and roots than the leaf to survive in
nutrient-limited conditions (Enquist, 2002). Even in areas where
soil N content is relatively abundant, more N is transported to
roots to promote community stability (Fortunel et al., 2012).
Thus, more nutrients are allocated to the leaf in early recovery
periods, and more nutrients are allocated to root in medium
recovery periods, which is consistent with our hypothesis (H2).

Nutrient allocation is important for plants to adapt to
environmental changes, which may be of particular importance
for plant resource distribution in response to nutrient changes
(Ordoñez et al., 2009; Smithwick et al., 2012). Therefore,
the findings in our study suggest that differentially elemental
allocation of a plant is crucial for resource utilization during
ecosystem recovery after the wildfire.

CONCLUSION

In our study, we demonstrated that the N and P concentrations
at year 10 after recovery were significantly different from other
times at the species and community levels due to the changes
in soil and litter nutrients, especially in early recovery periods.
Specifically, at the species level, more changes of nutrients occur

in the fine root than in the leaf, while more changes of nutrients
occurred in the leaf at the community level. Additionally,
more changes in the nutrients were observed in fine roots
during the medium recovery periods at the community level.
Plant growth tends to P limitation at 10 years of recovery.
This study emphasized the importance of the C, N, and P
allocation strategies of leaf and fine root and differed among
recovery periods at the species and community levels, which
will promote the understanding of plant adaptation during forest
ecosystem restoration.
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