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drought affects biomass Cpools along an aridity gra-
dient remains poorly understood.
Methods To elucidate the effects of extreme drought 
on above- and belowground carbon storage, we con-
ducted a 3-year (2015–2017) precipitation manipu-
lation experiment (66% reduction in growing sea-
son precipitation) to simulate a multi-year extreme 
drought across six grasslands spanning an aridity gra-
dient from desert steppe, typical steppe, and meadow 
steppe in northern China.
Results Extreme drought significantly decreased 
aboveground biomass carbon (AGBC) and litter car-
bon (LC), but did not affect belowground biomass 
carbon (BGBC) across the six grasslands. As a result, 
grassland total carbon (TC) in plant biomass declined 

Abstract 
Background and aim As global climate change 
intensifies, the frequency and duration of extreme 
droughts are predicted to increase, resulting in 
extended periods of reduced soil water availability 
across ecosystems. The allocation of carbon (C) to 
above- and below-ground plant biomass is a funda-
mental ecosystem property that varies spatially and 
temporally with water availability. Yet, how extreme 
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overall by ~10%. Across the aridity gradient, drought-
induced reductions in AGBC and LC increased 
with increasing aridity (i.e., reductions were greater 
in desert steppe than meadow steppe). In contrast, 
extreme drought increased BGBC in the drier grass-
lands (desert steppe and typical steppe), but decreased 
BGBC in the more mesic meadow steppe sites.
Conclusion We found that extreme drought elic-
ited contrasting responses of plant above- and below-
ground carbon across an aridity gradient, and that 
regionally extreme drought will result in a loss of 
total plant carbon in grasslands dominated by above-
ground plant carbon pools.

Keywords Biomass carbon · Climate change · 
Extreme drought · Grassland · Precipitation 
manipulation experiment

Introduction

Grasslands are important terrestrial ecosystems cov-
ering more than 40% (59 million  km2) of the earth’s 
land surface (Hufkens et  al. 2016) and they play a 
major role in the global carbon budget (Frank and 
Dugas 2001; Luo et  al. 2020). Natural grasslands 
contribute more than 20% of total terrestrial biomass 
production and store one-third of all terrestrial car-
bon; thus, they have a considerable potential to influ-
ence global carbon reserves (Hoovers and Rogers 
2016). In the future, extreme climatic events, such as 
extreme drought, will likely alter grassland biomass 
production and carbon storage (Smith 2011; Shi et al. 
2014; Griffin-Nolan et  al. 2019). We define extreme 
drought as a statistically rare, extended occurrence of 
low water availability that alters ecosystem structure 
and function beyond the range of typical or normal 

variability in a particular site or region (Smith 2011). 
While short-term droughts frequently affect grass-
lands across the globe, especially those classified as 
arid and semi-arid (Schwinning et al. 2005; Heisler-
White et  al. 2008; Sherry et  al. 2008; Slette et  al. 
2019), extreme, prolonged droughts have the poten-
tial to disproportionately influence global grassland 
carbon storage (Mcsherry and Ritchie 2013) through 
its effects on biomass production, carbon allocation, 
and respiration (Ciais et  al. 2005; Reichstein et  al. 
2007; Mcsherry and Ritchie 2013; Frank et al. 2015; 
Zhou et al. 2016). Thus, knowledge on how extreme 
drought affects above- and belowground carbon pools 
is vital for predicting climate-biosphere feedbacks.

Several studies have investigated how extreme 
drought affects aboveground net primary production 
and carbon storage in grasslands (Ma et  al. 2016b; 
Anadon-Rosell et al. 2017; Luo et al. 2020; Muraina 
et al. 2021). For example, extreme drought decreased 
plant aboveground carbon storage due to reduced 
water availability, increased evapotranspiration, 
reduced photosynthesis and decreased aboveground 
biomass production (Zhang et al. 2011; Craine et al. 
2012; Xia et  al. 2014). In contrast, drought may 
increase belowground carbon storage by promoting 
root growth and increased root/shoot ratios due to the 
development of drought resistance plant traits (San-
aullah et al. 2012; Burri et al. 2014; Li et al. 2021). 
However, Gilgen and Buchmann (2009) and Chen 
et al. (2020) reported that extreme drought decreased 
both above- and belowground carbon storage in a 
temperate grassland ecosystem. A recent study found 
that extreme drought reduced plant biomass and 
altered ecosystem carbon storage in grasslands glob-
ally (Hoover et  al. 2018). These decreases in plant 
biomass carbon pools under drought could result 
from a reduction in leaf and stem biomass (Mcsherry 
and Ritchie 2013), which can lead to decreased turno-
ver rates in root sucrose, a key compound for carbon 
translocation from leaf to root (Hasibeder et al. 2015).

Despite the well-documented response of above-
ground carbon storage to extreme drought, the 
response of belowground carbon storage under con-
trasting aridity conditions is relatively unknown. 
For instance, increased belowground carbon stor-
age during extreme drought results from positive 
root responses (Burri et  al. 2014; Hasibeder et  al. 
2015), however, in some cold and semi-arid grass-
lands carbon allocation belowground is water rather 
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than temperature limited. Thus, ecosystem carbon 
storage can be constrained by drought-induced 
severe soil water deficit (Niu et  al. 2008; Wang 
et  al. 2019b). In some other studies, no significant 
changes in belowground carbon were observed. In 
these cases, root biomass of some grasses increased 
while others decreased under drought, and this com-
pensation held root biomass as well as root carbon 
constant (Bessler et al. 2009; Gilgen and Buchmann 
2009). These complexities together with differ-
ences in climate, and vegetation, make it challeng-
ing to forecast the response of belowground carbon 
to extreme drought across an aridity gradient which 
may hinder accurate predictions of plant biomass 
carbon storage in grassland ecosystem.

The inconsistent results across multiple stud-
ies suggest that a comprehensive analysis of the 
response of plant above- and belowground carbon 
storage is needed to better understand the effect 
of extreme drought on grassland carbon dynam-
ics. To better predict how extreme drought may 
affect carbon storage in grasslands, research needs 
to incorporate information across scales, while also 
accounting for the impacts of future changes in pre-
cipitation and temperature (Luo et al. 2004). While 
plants produce less aboveground carbon in arid 
environments due to lower precipitation (Cherwin 
and Knapp 2012; Burri et al. 2014), resource alloca-
tion serves as a key factor influencing aboveground 
production because aboveground biomass produc-
tion and carbon allocation increase with increas-
ing precipitation (McCulley et  al. 2005; Liu et  al. 
2016). Belowground biomass responses to precipi-
tation, on the other hand, are more variable. Pre-
cipitation can increase belowground biomass car-
bon in arid and semi-arid ecosystems, and decrease 
these responses in mesic ecosystems (Niu et  al. 
2008; Hasibeder et  al. 2015; Wang et  al. 2019a). 
We assessed the impact of extreme drought on plant 
ecosystem carbon storage in six grasslands along 
an aridity gradient. To do so, we conducted experi-
ments using rainfall exclusion shelters to better 
understand the effects of extreme drought on plant 
above- and belowground carbon across six grass-
land sites in northern China. We hypothesized that: 
(1) grassland carbon storage would decrease under 
extreme drought due to lower above- and below-
ground carbon allocation, and (2) the response of 
plant above- and belowground carbon would depend 

on grassland type and mean annual precipitation, 
decreasing from mesic to arid grassland.

Materials and methods

Study sites and experimental design

This study was conducted as part of the Extreme 
Drought in Grasslands Experiment (EDGE, 
http:// edge. biolo gy. colos tate. edu/) in six grass-
lands distributed along a broad aridity gradi-
ent (Supplementary Fig.  S1). These six sites 
represented the major grassland types in Inner Mon-
golia, northern China (106°58′00″E-120°06′00″E, 
41°25′00″N-49°21′00″N): desert steppe, typical 
steppe, and meadow steppe (Table  1). The desert 
steppe is located in the western region with dry-toler-
ant short grasses, such as Stipa klemenzii and S. brevi-
flora while typical steppe ranges from the middle part 
of the region and is mainly composed of perennial 
xerophytic species, such as S. grandis and Leymus 
chinensis. Meadow steppe is situated in the sub-
humid zone of the eastern part of the study area and 
is composed of herbaceous perennial mesophytic and 
xerophytic species, such as L. chinensis, Styloscolex 
baicalensis and Filifolium sibiricum. In addition, 
the meadow, typical and desert steppes are primarily 
underlain by chernozem, chestnut and brown calcic 
soil types, respectively. In 2014, we established iden-
tical precipitation manipulation experiments with two 
treatments (control and extreme drought) at each site. 
Plots were relatively homogeneous and the experi-
ment involved a randomized complete block design 
with six replicates of each treatment at each site. To 
achieve an extreme drought at each site, we imposed 
a 66% reduction of ambient growing season (May to 
August) precipitation (growing season precipitation 
accounts for 60–75% of MAP in these ecosystems) 
by constructing rainout shelters that minimize micro-
climatic effects (Griffin-Nolan et  al. 2019; Whitney 
et  al. 2019; Carroll et  al. 2021). Rainout shelters 
permit 90% of photosynthetically active radiation to 
pass through (Yahdjian and Sala 2002). To minimize 
potential greenhouse effects, roofs were constructed 
2 m above the ground surface to allow air to circulate. 
Control plots did not have rainout shelters. Every plot 
was 6 × 6  m in size, with at least 2  m spacing from 
the closest plots and were hydrologically isolated 
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from the surrounding soil matrix by aluminum flash-
ing buried 1 m deep to help prevent surface and sub-
surface water flow. All plots included a 1 m external 
buffer zone to allow access to the plot and minimize 
the edge effects associated with the infrastructure.

Biomass sampling and measurement

Aboveground live biomass, surface litter biomass, 
and belowground root biomass were harvested at 
the end of the growing season (i.e., August) in 2015, 
2016 and 2017. Aboveground live biomass of all spe-
cies was harvested by clipping to the ground level and 
surface litter biomass was collected from each experi-
mental plot. For collection of belowground biomass, 
we used a soil core sampling method. Eight soil cores 
were taken at a depth of 40 cm at increments of 0–10, 
10–20 and 20–40 cm in each experimental plot using 
a root auger (diameter 5 cm). The roots were washed 
of soil using a 0.5  mm mesh sieve. Live, litter, and 
belowground biomass were oven dried at 60  °C for 
48  h and weighed separately. We calculated means 
and standard deviations of aboveground, below-
ground, and litter biomass within drought and control 
plots at each site (Table 1).

Statistical analysis

We calculated carbon content (45% of plant dry mat-
ter weight, DM) of aboveground biomass (AGBC, 
 gm−2), belowground biomass (BGBC,  gm−2) and lit-
ter biomass (LC,  gm−2) and expressed values as g C 
 m−2 = g DM  m−2  × 0.45 (Ni 2004; Piao et  al. 2007; 
Fan et al. 2008; Ma et al. 2016a). Total carbon (TC) 
was the sum of AGBC, BGBC and LC. The response 
ratio was calculated by relative changes in above or 
belowground biomass carbon of drought versus con-
trol plots as follows: AGBC Response ratio =  (AGB
CTreatment-AGBCControl)/AGBCControl, LC Response 
ratio =  (LCtreatment–  LCControl)/LControl, and BGBC 
Response ratio =  (BGBCTreatment-BGBCControl)/BGB-
CControl (Hsu et al. 2012; Zhang et al. 2017). The arid-
ity index (AI) was derived from global aridity index 
and potential evapotranspiration climate database 
v2-CGIAR-CSI (cgisrcsi.community) using Arc-
GIS. To measure the effect of treatments and year on 
carbon pools at each site, we used one-way analysis 
of variance (ANOVA) for treatment and year sepa-
rately. Further, repeated measure analysis of variance 

(RMANOVA) was applied to identify the interaction 
of treatments and year (Supplementary Table  S1). 
Tukey’s HSD test was used to test for significant dif-
ferences between treatments. We quantified total plant 
carbon (TC) as the sum of above, below and litter car-
bon over the 3 years of the experiment (2015–2017). 
Regression analysis was applied to assess the rela-
tionships between aridity index, mean annual precipi-
tation, temperature and response ratio of total carbon 
pools. All statistical analyses were performed using R 
studio (ver. 3.6.2) and ggplot2 was used for creating 
figures.

Results

We observed the following effects of extreme 
drought: 1) aboveground biomass carbon (Fig.  1a) 
and litter carbon (Fig.  1c) decreased significantly 
across all sites (Table  2); 2) belowground biomass 
carbon (Fig. 1b) and total carbon (Fig. 1d) had mixed 
effects across the sites. Extreme drought reduced 
aboveground biomass carbon by 50% at the desert 
steppe (site A and B), more than 40% in the typi-
cal steppe (site C and D), and 5–39% in the meadow 
steppe (site E and F) (Fig. 2a). Belowground biomass 
carbon increased by 50% at the desert steppe sites 
and 21–48% at the typical steppe sites (Fig. 2b). The 
only site that experienced a decrease in belowground 
biomass carbon was the meadow steppe (2–6% 
decrease). Similar to aboveground biomass carbon, 
litter carbon also had a significant negative response 
to drought across all sites (Fig.  2c). Regarding total 
biomass carbon extreme drought had a positive effect 
in desert steppe, negative effect in meadow steppe, 
and mixed effects in the typical steppe sites (Fig. 2d).

When averaged across all sites, extreme drought 
significantly decreased aboveground biomass car-
bon by 35.0% (−32.8   gm−2, P < 0.001) (Fig.  3a), 
increased belowground biomass carbon by 5.4% 
(+16.8   gm−2, P = 0.255) (Fig. 3b) and decreased lit-
ter carbon by 28.1% (−6.9  gm−2, P = 0.008) (Fig. 3c). 
In addition, drought decreased total carbon by around 
10% (−40.2   gm−2; P = 0.041) across the six grass-
lands (Fig. 3d).

To understand mechanisms driving these 
responses, we assessed the relationship between 
aboveground, belowground, litter and total carbon 
to an aridity index, temperature and precipitation. 
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We found that as aridity and mean annual tem-
perature (MAT) increased, aboveground biomass 
carbon (AI:  R2 = 0.18, P < 0.001; Fig.  4a, MAT: 
 R2 = 0.22, P < 0.001; Fig.  6a) and litter carbon 
(AI:  R2 = 0.10, P = 0.021; Fig. 4c, MAT:  R2 = 0.15, 
P = 0.007; Fig. 6c) decreased, but belowground bio-
mass carbon increased (AI:  R2 = 0.15, P = 0.003; 
Fig.  4b, MAT:  R2 = 0.19, P = 0.0081; Fig.  6b). 
Alternatively, increased precipitation increased 
aboveground biomass carbon  (R2 = 0.14, P = 0.013; 
Fig.  5a) and litter carbon (R2 = 0.17, P = 0.0049; 
Fig.  5c) but decreased belowground biomass car-
bon  (R2 = 0.13, P = 0.014; Fig.  5b). We found no 
significant relationship between total carbon and 
aridity  (R2 = 0.006, P = 0.71; Fig. 4d), precipitation 

 (R2 = 0.02, P = 0.18; Fig.  5d) or temperature 
 (R2 = 0.0026, P = 0.82; Fig. 6d).

Discussion

Effects of extreme drought on aboveground, 
belowground, and total biomass carbon

Understanding the effects of extreme drought on eco-
system carbon pools is vital to predicting global ter-
restrial carbon-climate feedback (Yue et  al. 2017). 
While research demonstrates that grasslands serve 
as active carbon sinks, extreme drought and precipi-
tation anomalies during the growing season (Novick 

Fig. 1  Effects of extreme 
drought on (a) aboveground 
biomass carbon (AGBC), 
(b) belowground biomass 
carbon (BGBC), (c) litter 
carbon (LC) and (d) total 
biomass carbon (TC). Val-
ues represent mean carbon 
contents at each site (A-F) 
in three consecutive years 
(2015–2017). See Table 1 
for site codes and descrip-
tions. Error bars represent 
standard error of the mean. 
Asterisks for individual 
study sites indicates signifi-
cant treatment differences 
at the 0.05(*), 0.01(**) 
and 0.001(***) level of 
probability. Site details are 
presented in Materials and 
Methods section

Table 2  Results of the 
mean difference between 
control and drought 
plots in aboveground 
biomass carbon (ABGC), 
belowground biomass 
carbon (BGBC), and litter 
carbon (LC)

Grassland type Site Mean difference in  gm−2 (p value)

ABGC BGBC LC

Desert steppe A −9.38 (< 0.001) +36.83 (0.010) −4.45 (0.011)
B −30.43(<0.001) +36.03 (0.019) −10.40 (<0.001)

Typical steppe C −51.75 (<0.001) +79.81 (0.011) −9.28 (0.016)
D −45.12 (0.013) +29.76 (0.303) −7.26 (0.046)

Meadow steppe E −46.25 (<0.001) −17.76 (0.649) −5.94 (0.035)
F −14.10 (0.031) −63.77 (0.050) −12.47 (0.014)
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et  al. 2004; Scott et  al. 2009; Zhang et  al. 2011) 
have the potential to shift these ecosystems from 
carbon sinks to carbon sources (Zhang et  al. 2011). 
Our results show that extreme drought significantly 

decreased aboveground plant carbon pools in all years 
across six sites spanning an aridity gradient (Supple-
mentary Fig.  S2). This decrease is attributed to the 
corresponding decrease of aboveground biomass in 

Fig. 2  Response ratio of 
(a) aboveground biomass 
carbon (AGBC), (b) below-
ground biomass carbon 
(BGBC), (c) litter carbon 
(LC), and (d) total biomass 
carbon (TC) to extreme 
drought for sites A to F (See 
Table 1 for site codes and 
descriptions). Symbols indi-
cate the mean value of the 
response ratio (treatment-
control/control) for each site 
and vertical bars represent 
standard error of the mean

Fig. 3  Effects of extreme 
drought and study site on 
(a) aboveground biomass 
carbon (AGBC), (b) 
belowground biomass 
carbon (BGBC), (c) litter 
carbon (LC) and (d) total 
biomass carbon (TC). 
Values are mean carbon 
content over the six sites 
in three consecutive years 
(2015–2017). Error bars 
represent standard error of 
the mean. Asterisks indicate 
significant treatment dif-
ferences at the 0.05 (*), 
0.01(**) and 0.001(***) 
level of probability
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Fig. 4  Relationships 
between response ratio 
(treatment-control/control) 
of (a) aboveground biomass 
carbon (AGBC), (b) below-
ground biomass carbon 
(BGBC), (c) litter carbon 
(LC) and (d) total biomass 
carbon (TC) vs. aridity 
index. Points are from all 
six sites and gray lines 
indicate 95% confidence 
interval.

Fig. 5  Relationships 
between response ratio 
(treatment-control/con-
trol) of (a) aboveground 
biomass carbon (AGBC), 
(b) belowground biomass 
carbon (BGBC), (c) litter 
carbon (LC) and (d) total 
biomass carbon (TC) vs. 
mean annual precipitation. 
Points are from all six sites 
and gray lines indicate 95% 
confidence interval.
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extreme drought plots (Kahmen et  al. 2005; Smith 
et al. 2020). Previous research has reported that water 
availability plays a vital role in regulating plant C 
storage or release in terrestrial ecosystems. Extreme 
drought reduces water availability and creates water 
stress in plants leading to loss of aboveground plant 
carbon (Niu et al. 2008; Burri et al. 2014; Wang et al. 
2018). Drought had no measurable impacts on eco-
system respiration; therefore, the reduction in total 
biomass carbon is likely caused by a decrease in 
above- and belowground productivity in these grass-
lands (Jentsch et al. 2011; Wang et al. 2015). Drought 
can impair physiological activities such that plants 
are unable to achieve optimum transpiration due to 
insufficient water and/or carbon supply, which will 
ultimately reduce biomass production and alter car-
bon allocation (van Heerwaarden et  al. 2005; Wang 
et  al. 2018). Although we found that belowground 
root biomass was sensitive to extreme drought in the 
semiarid sites due to lower root production (Badeck 
et al. 2005; Bowling et al. 2008; Carroll et al. 2021), 
our study and others (Srivastava et  al. 2018) have 
found aboveground plant carbon pools (aboveground 

and litter biomass) to be more sensitive to drought 
than belowground pools. In this case, drought causes 
an imbalance between water supply and demand, 
which results in the dehydration of plant leaves and 
damage to photosynthetic and metabolic systems 
leading to a decrease in aboveground biomass carbon 
(Wang et al. 2018; Liu et al. 2020).

To our knowledge, few studies have shown that 
extreme drought increased belowground biomass 
carbon (Sanaullah et  al. 2012). We found that 
extreme drought increased belowground carbon 
from 0 to 40  cm depth in the drier sites (desert 
and typical steppe) but decreased belowground 
carbon at the more mesic meadow steppe sites. 
The decrease at the mesic sites could be due to a 
long history of higher precipitation. For example, 
a recent experiment in a mountainous meadow 
grassland with similar precipitation to our site sug-
gested that extreme drought reduced belowground 
carbon allocation by 50% because shallow root 
systems (e.g., 0–10 cm) that evolved under higher 
precipitation regimes might not be adapted to 
drought (Hasibeder et  al. 2015). Moreover, higher 

Fig. 6  Relationships 
between response ratio 
(treatment-control/con-
trol) of (a) aboveground 
biomass carbon (AGBC), 
(b) belowground biomass 
carbon (BGBC), (c) litter 
carbon (LC) and (d) total 
biomass carbon (TC) vs. 
mean annual temperature 
(°C). Points are from all six 
sites and gray lines indicate 
95% confidence interval.

Plant Soil (2022) 473:167–180 175



1 3
Vol:. (1234567890)

precipitation promotes turnover of root sucrose that 
hinders metabolic activities of roots and the rate of 
root carbon allocation at 0–10 cm depth (Fuchslue-
ger et al. 2014).

For the drier sites, the increase in belowground 
carbon could be attributed to dryland-adapted 
plants that allocate energy to get water during 
extreme drought through increased root growth 
between 20 and 40 cm depth (Milchunas and Lau-
enroth 2001; Saab et al. 1990; Tardieu and Davies 
1992). In addition, in arid ecosystems, plant root 
growth to 30  cm could buffer against drought 
effects through hydraulic lift which in turn would 
increase root biomass production and root carbon 
storage (McCulley et  al. 2005; Shi et  al. 2014). 
In arid systems, plants can produce root biomass 
down to 50  cm depth under resource scarcity 
through increased root productivity and changes 
in species composition from shallow-rooted sedges 
(up to 25 cm) to deep rooted grasses (up to 50 cm) 
(Liu et  al. 2018, 2020). Overall, we found that 
extreme drought increased belowground carbon 
storage at dry sites and decreased carbon storage 
at wet sites. This finding contradicts studies that 
found that extreme drought decreased root respira-
tion, suppressed root growth due to impaired root 
cell integrity, and limited substrate supply which 
then caused decreased root carbon flux (Atkin et al. 
2005). Moreover, in relatively wet ecosystems and 
greenhouse experiments, drought decreased can-
opy photosynthesis such that it restricted the sup-
ply of photosynthate to the roots across 0–20 and 
20–30  cm depths (Huang and Fu 2000; Galvez 
et al. 2011). Thus, the complex response of below-
ground carbon in different grassland ecosystems 
indicates the necessity of further study the effects 
of extreme drought in deep soil (e.g., > 40  cm) 
across wide climatic gradients.

Litter biomass serves as an important carbon 
pool that links above- and belowground carbon 
storage. Our results showed that extreme drought 
caused litter biomass carbon to decrease across all 
sites and all years (Supplementary Fig.  S2), likely 
due to reduced litter production because above-
ground biomass is reduced. In addition, increased 
temperatures and reduced precipitation that occur 
during drought can reduce litter decomposition rates 
and litter carbon accumulation (Bloor and Bardgett 
2012; Liu et al. 2020).

Differential response of biomass carbon to extreme 
drought and precipitation

While we found negative responses of aboveground 
and litter carbon to experimental drought across all 
sites, the level of the responses varied among sites. 
Arid grassland sites responded more negatively than 
mesic sites. Interestingly, we found the opposite 
results for belowground biomass carbon. We observed 
a mixed response of ecosystem carbon to extreme 
drought with positive responses in arid grassland 
sites and negative responses in mesic grassland sites. 
Few studies have reported that aboveground carbon 
showed the least negative response in water limited 
drier ecosystem under extreme drought due to low 
soil moisture and low soil fertility (Li et  al. 2021). 
The lack of a positive response of belowground car-
bon to extreme drought in wet sites may result from 
higher root turnover and decreased root-shoot ratio 
(Austin and Sala 2002; Bai et al. 2008). Overall, our 
results suggest that extreme drought at drier sites 
increases belowground carbon while having the oppo-
site effect at wet sites.

We observed that aboveground, belowground, 
and litter carbon pools were significantly regulated 
by increasing aridity, temperature and precipitation. 
Higher temperature had a similar influence as aridity 
on aboveground, belowground and litter carbon pools. 
One reason may be that higher temperatures increased 
plant respiration during drought leading to a decline 
in aboveground C (Raich et  al. 2006). However, 
higher temperatures under drought have been found to 
promote belowground carbon allocation via increased 
root production and root carbon residues (Raich et al. 
2006; Liu et al. 2020). In contrast, the opposite trends 
in carbon storage were observed with precipitation. 
In addition, lack of a relationship between total  car-
bon with aridity, temperature or precipitation may 
be attributed to pooling above- and belowground 
components with opposite responses in our analysis. 
Aboveground carbon pools can have a positive rela-
tionship with precipitation (Hossain and Beierkuhn-
lein 2018); however, other studies have demonstrated 
that aboveground plant carbon storage increases in 
drier ecosystems and decreases in mesic ecosystems 
(Lauenroth et al. 2000; Epstein et al. 2002). Similarly, 
McCulley et  al. (2005) reported that aboveground 
biomass carbon increased while belowground bio-
mass carbon showed a non-significant relationship 

Plant Soil (2022) 473:167–180176



1 3
Vol.: (0123456789)

with increasing precipitation. In our study, the posi-
tive linear response of aboveground carbon and lit-
ter carbon implies that higher precipitation mitigates 
the negative effects of aboveground carbon loss. Our 
results, are consistent with those from previous stud-
ies, suggesting that precipitation limitation constrains 
aboveground plant biomass production (Knapp et al. 
2004; Guo et al. 2019). We also found a negative rela-
tionship between belowground biomass carbon and 
precipitation, consistent with other studies (Galvez 
et al. 2011; Hasibeder et al. 2015).

Conclusions

Earth system models predict that climate will 
become more variable and droughts more extreme in 
the future. Thus, it is crucial to study the effects of 
extreme drought on carbon storage in grasslands—
the world’s largest terrestrial ecosystem. Our findings 
add to this understanding by revealing the effects of 
extreme drought on carbon storage at six grassland 
sites spanning an aridity gradient. First, we found that 
extreme drought reduced plant biomass carbon by 
~10%, which was driven by decreases in aboveground 
biomass carbon and litter carbon. Second, arid 
grasslands (desert steppe and typical steppe) were 
more sensitive to loss of plant aboveground carbon 
while belowground carbon loss was higher in mesic 
Meadow steppe. We also found that increased precip-
itation promoted aboveground carbon and litter car-
bon, decreased belowground biomass carbon, and had 
no effect on total carbon indicating that aboveground 
biomass carbon but not belowground was strongly 
mediated by precipitation.
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