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A B S T R A C T   

Forestation is a key strategy to mitigate climate change caused by anthropogenic carbon dioxide emissions. 
However, the impacts of forestation on soil pH remain unclear, despite critical roles of soil pH in regulating key 
soil biogeochemical processes. Here, we collected a global dataset of soil pH change after forestation, which 
included 1082 observations from 171 published papers. Results showed that soil pH declined significantly by 
0.23 after forestation over the globe. Soil pH consistently declined after forestation, no matter the forest was 
established naturally or by planting, on croplands or grasslands. The decline of pH after forestation was generally 
larger in neutral soils (pH 6–7) than in acidic soils (pH < 6) and alkaline soils (pH > 7), and larger in boreal and 
temperate forests than in tropical forests. Soil pH decreased significantly in humid areas but not in arid regions. 
Random forest analysis showed that climate was the most important regulatory factor to influence soil pH change 
after forestation. Mean annual temperature and precipitation probably affected soil pH both directly and indi
rectly via altering soil physiochemical properties. Given vital roles of soil pH in regulating carbon and nutrient 
dynamics, our findings have important implications for the long-term impacts of forestation on carbon and 
nutrient dynamics.   

1. Introduction 

Forestation is employed globally for several forest services such as 
timber production and the conservation of water and soil (Berthrong 
et al., 2014; Jackson et al., 2005). Forestation on bare lands can also 
improve water and nutrient cycles and enhance soil properties such as 
microbial activities, thereby boosting the quality and functionality of 
the ecosystem (Wu et al., 2019; Schwärzel et al., 2020). Moreover, 
forestation can increase the efficiency of terrestrial ecosystems to 
remove carbon dioxide from the atmosphere (Parfitt and Ross, 2011; 
Dou et al., 2016). Forestation has been selected by the Paris Agreement 
as a key approach toward the mitigation of climate change (Wu, 2016). 

Forested areas have increased rapidly, at approximately 300,000 
km2 per year from 2000 to 2017, a trend that is projected to continue 
(Chen et al., 2019). The effects of forestation on ecosystem functions 
such as nutrient cycling, are strongly linked to changes in soil pH values. 
Consequently, it is universally agreed that potential impacts of foresta
tion on soil pH need to be better understood (Ji et al., 2014; Guo et al., 

2021; Dorak et al., 2017). 
Numerous studies have explored the regional and global patterns of 

soil pH changes after forestation (Rasiah et al., 2015; Fung et al., 2017; 
Ozalp and Cavdar, 2016; Yazici and Turan, 2016). However, the results 
have been inconsistent. For example, an early global analysis concluded 
that after forestation soil pH dropped by 0.3 on average (Berthrong 
et al., 2009). Studies in tropical regions also found that the pH value of 
soil (topsoil in particular) decreased following forestation in the absence 
of calcification, which may have been related to net nutrient export and 
leaching loss (Veldkamp et al., 2020). However, a recent study in 
Northern China found that forestation neutralized the soil pH (decreased 
it in alkaline soil and increased it in acidic soil), and that the initial (pre- 
forestation) pH had a significant effect on the downstream soil pH (Hong 
et al., 2018). Several other studies claimed that forestation had a 
negligible effect on the soil pH (e.g., Da et al., 2011). Thus, it is necessary 
to comprehensively synthesize available data in literature to reveal 
generalizable patterns of soil pH response to forestation at the global 
scale. 
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Given considerable variations in soil pH change after forestation 
found in previous studies (e.g., Hong et al., 2018; Veldkamp et al., 
2020), it is critical to understand why forestation impact on soil pH 
varies across sites. There is no consensus on the major drivers of soil pH 
changes after forestation. For example, the Global Soil Data Task Group 
(2000) suggests that climate is the single most critical factor to influence 
soil pH at the global scale, presumably because of great variations in 
precipitation and temperature at the global scale (Hijmans et al., 2005). 
Precipitation and temperature may affect soil pH change after foresta
tion through their effects on the growth and metabolism of tree species 
(Laganiãre et al., 2010). Meanwhile, precipitation and temperature may 
affect soil pH change after forestation via their impacts on soil organic 
carbon concentration, a high value of which may result in a low soil pH 
due to more organic acids production and a stronger sorption of H+

(Deng et al., 2014). The original pH of soil may also significantly 
determine the direction and degree of soil pH changes following fores
tation (Hong et al., 2018). Time since the ages of forestation can also 
affect soil pH either positively or negatively (Zhang et al., 2018). 
Furthermore, site properties such as geography and soil clay content 
have been also reported to regulate the changes of soil pH following 
forestation (Sidari et al., 2008; Fabian et al., 2014; Guo et al., 2021). 

In this study, we aimed to improve our understanding of the global 
variations and driving factors of soil pH changes after forestation. We 
explored the modulations of site properties such as mean annual tem
perature (MAT) and precipitation (MAP) on the change in soil pH after 
forestation, and quantified the relative importance of these moderators 
using machine learning methods. We hypothesized that the global var
iations in soil pH are primarily determined by climatic factors, namely 
climatic zones (e.g., tropical, temperate, and boreal zones), aridity index 
(e.g., humid, dry sub-humid, semi-arid, and hyper-arid arid regions), 
MAT, and MAP. Results in this study would provide scientific bases for 
the management and restoration of forested lands. 

2. Methods and materials 

2.1. Data selection 

We searched for published articles that involved reforestation and 
soil pH using Web of Science and the China National Knowledge Infra
structure with titles, abstracts, or keywords referring to ‘land use 
change’, ‘land cover change’, ‘reforestation’, ‘afforestation’, or ‘fores
tation’, and ‘soil pH’, or ‘soil acidification’ from 1984 to 2020. We 
selected relevant studies based on the title and abstract, and then 
scanned their full texts and supporting materials to extract data on soil 
pH change following forestation. We removed duplicated observations 
of soil pH change after forestation reported in different papers. 

To avoid bias in literature selection, the studies to be included were 
identified based on the following four criteria. (i) Only field studies were 
selected, with soil pH determined in water, CaCl2, or KCl solution. (ii) 
Studies should be performed using a paired plot design, with paired plots 
adjacent to each other. (iii) Only pH measurement of mineral soil with 
specific depth were selected, with forest floor litter measurements 
excluded. (iv) Forestation belong to one of the following four types: 
conversion of cropland or grassland to secondary forest or plantation 
forest. The conversion to secondary forest means that the forest is re
generated naturally; the conversion to plantation forest means that the 
forest is planted manually. 

2.2. Data extraction and overview 

After screening the eligible published papers, we extracted soil data 
including the initial pH (ipH) (i.e., soil pH prior to forestation), soil pH 
value after forestation, initial soil organic C concentration (SOC), soil 
depth, years since forestation, and soil clay content. We used GetData 
Graph Digitizer (version 2.0) to extract the numerical values from 
digitized graphs when the data were not presented as text or in table 

form. Moreover, we extracted site properties such as site coordinates (i. 
e., latitude and longitude), MAT, MAP, slope, and aspect from the 
published papers. 

Any missing MAT or MAP were filled with values derived from the 
WorldClim2 Dataset (add reference) using the geographic site locations. 
Any missing values of soil properties were filled with values derived 
from the SoilGrids database (Hengl et al., 2017) or the Regridded 
Harmonized World Soil Database v1.22 (FAO, 2012). Any missing 
values of site slope and aspect were filled with values derived from the 
shuttle radar topographic mission DEM data with 30 m resolution from 
NASA using the SAGA-GIS software v2.1.4 (Conrad et al., 2015). 

Our database covered all continents (except for Antarctica) and 
included 1082 observations of soil pH change following forestation from 
171 published studies. Site locations and climate spanned a large scope. 
For example, latitude was from 46.1◦S to 65.1◦N, longitude varied from 
155.2◦W to 176.5◦E, MAT ranged from − 6.6℃ to 27.2℃, whereas MAP 
ranged from 8 mm yr− 1 to 3950 mm yr− 1 (Fig. 1). Forestation types 
included the conversions of cropland to plantation forest (N = 564), 
grassland to plantation forest (N = 320), cropland to secondary forest 
(N = 106), and cropland to grassland (N = 92). 

2.3. Data analysis 

We used absolute soil pH change (SPC) to indicate the responses of 
soil pH to forestation, which was calculated as follows: 

SPC = pHafterforestation − InitialpH (1)  

where Initial pH represents soil pH before forestation. The variance of 
each study of SPC was calculated as follows: 

vi =
S2

a

naX2
a

+
S2

i

niX
2
i

(2)  

where Sa and Si are the standard deviations for soil pH after forestation 
(treatment groups) and initial pH (control groups), Xa and Xi are the 
mean soil pH after forestation and mean initial soil pH, and na and ni are 
the sample sizes for the treatment and control groups, respectively, of 
the study (i). 

The weighted mean response SPC+ of each group was as follows: 

SPC+ =
Σm

i=1w*
i × SPC

Σm
i=1w*

i
(3)  

where m is the number of experiments in each treatment group, andw*
i is 

the weighting factor of the ith experiment in each treatment group. 
Thew*

i was calculated as follows: 

w*
i =

1
v*

i
(4)  

where v*
i is the variance of study (i) in each group. The v*

i was calculated 
as follows: 

v*
i = vi +T2 (5)  

where T2 is the between-studies variance and calculated process, which 
can be seen in Borenstein et al., (2010). 

The standard error of the SPC+ was calculated as: 

SSPC+
=

̅̅̅̅̅̅̅̅̅̅̅
1

∑m

i=1
w*

i

√
√
√
√
√

(6) 

The 95% confidence interval (CI) for the SPC+ was calculated as 
follows: 

95%CI = SPC+ ± 1.96SSPC+ (7) 
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For literature sources where the standard error (SE) rather than SD 
was reported, we recalculated the SD by: 

SD = SE× (8) 

If neither SD nor SE was reported, we approximated the missing SD 
by multiplying the reported mean by the average coefficient of variance 
of our complete dataset. If sample size was not reported, we assigned 
sample sizes as the median sample size of our complete dataset. 

We used the random forest method to quantify the relative impor
tance of moderators in explaining variation in soil pH change following 
forestation. Random forest is an example of a machine learning method 
that consists of an ensemble of randomized classification and regression 
trees (Breiman, 2001). For all random forest computations, we used the 
“randomForest” package (Liaw and Wiener, 2002) for the R statistical 
language (R Development Core Team, 2020). We sorted the %IncMSE 
value obtained by “importance” function and the importance of different 
factors is obtained according to the sequence. The “importance” function 
and “randomForest” function were used to produce Fig. 3. In addition, 
we used boosted regression tree analysis (max.trees = 30000) to verify 
the results. The “gbm.step” function in gbm package was used to produce 
Supplementary Fig. 3. The moderators we used in the analysis included 
climate factors (i.e., MAT and MAP), forestation regime (i.e., forestation 
type, and the year after forestation), soil physiochemical properties (i.e., 
SOC, clay, and ipH), and site geographical properties (i.e., aspect and 
slope). 

Compared with other statistical modeling approaches, random forest 
has several advantages (Breiman, 2001; Liaw and Wiener, 2002). The 
variables can be both continuous and categorical. The random forest 
algorithm is quite robust against noise in its predictors, which does not 
require the pre-selection of variables (Diaz-Uriate and de Andres, 2006). 
Random forest provides reliable error estimates by using the Out-Of-Bag 
(OOB) data (the proportion which is not used in the bootstrap subset - on 
average about one third of the data is excluded, while some others will 
be repeated in the sample). Thus, eliminating the need for an indepen
dent validating dataset. 

The number of trees (ntree) in the forest, the minimum number of 
data points in each terminal node (nodesize), and the number of features 
attempted at each node (mtry) are the three user-defined parameters of 
random forest. We initially tested the combination of ntree, nodesize, and 
mtry with a training set. The default of ntree was 500, however, more 
stable results for estimating variable importance were achieved with a 
higher ntree number (Díaz-Uriarte and Alvarez de Andrés, 2006). 
Therefore, we used ntree = 1000. For nodesize we used the default for 
regression random forest, which has five instances in each terminal 
node. The default value of mtry is one third of the total number of 

predictors. However, since the random forest prediction performance 
can be sensitive to mtry (Breiman and Cutler, 2004), we employed an 
iterative approach to determine the best mtry in terms of the smallest 
OOB mean square error (Eqn. (9)). Within each interval we applied the 
random forest algorithm with ntree = 2000, nodesize = 5, and mtry 
values of 1/3p, 2/3p, p. The random forest analysis was then repeated 
with different parameter combinations for each variable set, and the 
goodness of fit (% var explained) of each combination was compared. 
We selected the parameter combination with the highest goodness of fit. 

The model performance was ideally addressed by using a large in
dependent test dataset that was not used in the training procedure. k- 
fold cross-validation is often used when data is limited, cross-validation 
is a parameter within the R package randomForest function, we set the 
parameter to k.fold = 5. Random forest uses an extension of cross- 
validation, where each OOB sample is predicted by its corresponding 
bootstrap training tree. The forest mean square error (MSE) can be 
estimated by aggregating the OOB predictions of all trees in the forest 
(Liaw and Wiener, 2002): 

MSEOOB =

∑n
i=1

{
Yi − Ŷ

OOB
i

}2

n
(9) 

Svetnik et al., (2003) showed that the OOB estimate of prediction 
accuracy yields results comparable to k-fold cross-validation. However, 
the OOB estimates of error rate are computationally less expensive than 
standard k-fold cross-validation. 

After the key moderators of soil pH after following forestation were 
identified, we plotted the bivariate relationships between SPC and its 
key moderators. We used Equation (5) to calculate v* as the random 
effect, SPC as the dependent variable, MAP, ipH, MAT as the indepen
dent variable, and used “rma” function from the metafor package 
(Viechtbauer, 2010) made the bivariate relationship fitting graph. We 
used “AICc” function to get the corrected Akaike’s Information Criterion 
(AICc) value, when the corrected Akaike’s Information Criterion (AICc) 
value of a quadratic regression was two units less than that of a linear 
regression, the quadratic regression was selected as the final model, 
otherwise the linear regression was chosen. In all of these analyses, we 
defined it was significant when p value < 0.01. 

3. Results 

3.1. Global patterns of soil pH changes after forestation 

Soil pH declined significantly following forestation, with a mean soil 
pH change of − 0.23 (95% confidence intervals: − 0.26 to − 0.23, N =
1082) (Fig. 2). Soil pH declined consistently after forestation across 

Fig. 1. Global distribution of sites where the soil pH was assessed after forestation. Capital letters “C”, “G”, “PF”, and “SF” indicate cropland, grassland, plantation 
forest, and secondary forest, respectively. 
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climate zones, with a significant less magnitude in the tropics (-0.08) 
than in the temperate (-0.30) and boreal (-0.29) regions (Fig. 2). Soil pH 
declined significantly after forestation in humid (-0.26), dry sub-humid 
(-0.25), and semi-arid (-0.17) regions but not in arid or hyper-arid re
gions (Fig. 2). Moreover, soil pH declined consistently across types of 
forestation, with a significant larger decline after the conversion of 
croplands to secondary forests than other types of forestation (Fig. 2). 

After forestation, pH declined the most in neutral soils (i.e., pH 6–7: 
− 0.45), followed in acidic (i.e., pH 5–6: − 0.21) and alkaline (i.e., pH 
7–8: − 0.28; pH 8–9: − 0.21) soils, with no significant change in very 
acidic soils (i.e., pH 4–5) (Fig. 2). Moreover, the reduction of soil pH 
after forestation increased significantly with time after forestation, and 
tend to be larger in surface soils (i.e., 0–30 cm depth: − 0.24) than in 
deep soils (i.e., > 30 cm depth: − 0.18) (Fig. 2). 

3.2. Factors driving soil pH changes following forestation 

Random forest model with ten moderators explained a total of 74% 
of the variation in soil pH change following forestation (Fig. 3). Among 
the ten moderators, MAP, ipH, years after forestation, and MAT were the 

most important ones. Similar results have been obtained using another 
machine learning method – boosted regression tree analysis (Fig. S2). 
Correlation analysis confirmed that soil pH change after forestation was 
significantly related to MAP, ipH, years after forestation, and MAT 
(Fig. S3). Regression analyses further showed that change in soil pH 
after forestation had a convex relationship with MAP (Fig. 4a, Table S2, 
p < 0.01) but a concave relationship with ipH (Fig. 4b, Table S2, p <
0.01). Negative effect of forestation on soil pH diminished gradually 
with increasing MAT (Fig. 4c, Table S2, p < 0.01). 

Moreover, climate (MAT and/or MAP) significantly affected soil pH, 
organic C concentration, and clay content before forestation (Figs. S4- 
S6), which modulated the change in soil pH following forestation 
(Figs. 3 and S3). These results indicate that climate may modulate soil 
pH change after forestation both directly and indirectly via its impacts 
on soil physiochemical properties. 

4. Discussion 

This study examined the general patterns and controlling factors of 
soil pH changes following forestation at the global scale. Soil pH 

Fig. 2. Soil pH change after forestation grouped by climate zone, aridity, forestation types, years after forestation, soil depth, and initial soil pH (ipH). The points are 
averages, and the bars are 95% confidence intervals. Point sizes are proportional to the number of studies, which are given in brackets. Capital letters “C”, “G”, “PF”, 
and “SF” indicate cropland, grassland, plantation forest, and secondary forest, respectively. 

X. Huang et al.                                                                                                                                                                                                                                  



Forest Ecology and Management 505 (2022) 119951

5

decreased significantly after forestation, with a great variation in the 
change among climate zones and aridity levels. MAP, ipH, years since 
forestation, and MAT were the most important predictors of the varia
tion in soil pH change after forestation. The change in soil pH after 
afforestation decreased linearly with increasing MAT, was smaller at 
intermediate MAPs (1500–2500 mm yr− 1) than at lower (<1500 mm 
yr− 1) and higher (>2500 mm yr− 1) MAPs, and larger at intermediate 
ipH (5–8) than at lower (<5) and higher (>8) ipH (Fig. 4). These find
ings are critical toward elucidating changes in ecosystem processes (e.g., 
C and nutrient cycles) and functions (e.g., C sequestration) following 
forestation. 

4.1. Climate mediated changes in soil pH after forestation 

As hypothesized, climate was the most important predictor of the 
variation in soil pH change after forestation. More decline in soil pH 
following forestation in boreal and temperate zones than in tropical 
zones (Fig. 2) may be attributed to more accumulation of soil organic C 
and more depletion of base cations, which both can lower soil pH, after 
forestation in boreal and temperate climate zones (Berthrong et al., 
2009; Laganiãre et al., 2010). These hypotheses were supported by the 
linear positive relationship between soil pH change after forestation and 
MAT observed in this study (Fig. 4c). 

Soil pH decreased significantly in humid regions but did not change 
significantly in arid or hyper-arid regions. This result may be related to 
difference in tree growth rate in these regions. Humid regions favor tree 
growth that deplete base cations (e.g., Ca2+, Mg2+, and K+) (Chen et al., 
2004) and thus may have lower soil pH values after forestation than 
drier regions. Indeed, a previous global data synthesis showed that the 
response ratios of soil pH or hydrogen ion concentrations to forestation 
were negatively correlated with the response ratios of calcium ions and 

base saturation (Berthrong et al., 2009). 
Climate may modulate soil pH change after forestation via its im

pacts on ecosystem properties such as soil base cation and organic C 
concentrations and tree growth (Deng et al., 2014; Hong et al., 2018; 
Veldkamp et al., 2020). For example, high MAT and MAP can promote 
the release of base cations by soil weathering and thus may alleviate the 
negative impacts of forestation on soil pH. This hypothesis probably 
explains why soil pH change after forestation increased with MAT and as 
well as with MAP when MAP was <2000 mm yr− 1 (Fig. 4a and c). When 
MAP was higher than 2000 mm yr− 1, increase MAP may have caused an 
exponential increase in the leaching and runoff of base cations from soils 
and therefore may lowered soil pH after forestation (Fig. 4a). More 
reduction of soil pH after forestation at low MAT than at higher MAT 

Fig. 3. Relative importance of moderators for predicting soil pH changes 
following forestation quantified using a random forest analysis. R2 value in
dicates the total proportion of variation explained by the random forest model. 
Moderators include mean annual precipitation (MAP), soil pH before foresta
tion (ipH), years after forestation (Years), site slope (Slope), soil organic C 
concentration (SOC), forestation types (Types), soil clay content (Clay), and site 
aspect (Aspect). 

Fig. 4. Observed changes in soil pH following forestation in relation to MAT, 
MAP, and ipH. If one relationship is statistically significant (p < 0.01), a 
regression line (for numeric predictor only), 95% confidence interval (shaded 
area, for numeric predictor only) and R2 are shown. Point sizes are proportional 
to the weights used for statistical analyses. 
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(Fig. 4c) may be additionally explained by the typically more accumu
lation of organic matter in soil in cold than warm environments after 
forestation. Moreover, high MAT and MAP can promote weathering, 
resulting in a high content of soil clay (Stewart and Lal, 2018), which has 
a stronger pH buffering capacity than soil sand (Fabian et al., 2014). 

4.2. Other factors influence soil pH after forestation 

Soil pH before forestation has been identified as a key predictor of 
the change in soil pH following forestation in previous studies (e.g., 
Hong et al., 2018). However, in contrast to the previous study that re
ported a trend of neutralizing soil pH after forestation in northern China 
(Hong et al., 2018), our global meta-analysis showed that soil pH 
decreased the most in neutral soil (Fig. 2). This inconsistency may be due 
to difference in spatial scales between Hong et al. (2018) and our study. 
Hong et al. (2018) studied forestation impacts on soil pH at a regional 
scale, where initial soil pH and forest species could be important factors 
of soil pH after forestation while variation in climate conditions was 
small. In our study, climate covered a larger range and therefore could 
become a more important factor of soil pH change after forestation at the 
global scale. Moreover, climate could modulate soil pH change after 
forestation through its effect on initial soil pH, i.e., soil pH before 
forestation (Figs. S3 and S4). 

The reduction of soil pH following forestation increased with years 
since forestation and was up to 0.5 after half a century of forestation. 
The change in soil pH was negatively correlated with soil depth as 
acidity typically proceeds from the topsoil and slowly works its way 
down the soil profile, where the acidic input derives from precipitation 
and the decomposition of plant litter falling on the soil surface (Xu et al., 
2005). Due to the activities of soil macrofauna, mesofauna, and soil 
microbes, soil resident macroaggregates are primarily formed in the top 
layer of the soil. In forests, higher soil aggregation capacities drive a 
lower soil pH, thus, we found that the topsoil pH decreased the most 
after forestation (Guo et al., 2021). The effects of forest litter and the 
reduced use of alkaline fertilizers may also lead to higher acidity in the 
forest surface soil (Du et al., 2010). 

4.3. Implications and uncertainties for soil pH changes on a global scale 

By compiling a comprehensive dataset of soil pH changes following 
forestation across the prominent terrestrial ecosystem types, our study 
provides a benchmark for an accurate global evaluation. Meta-analysis 
was an effective way to examine the global pattern of soil pH changes 
after forestation. Our results suggested that Earth system models should 
consider soil acidification due to forestation in terms of not only lat
itudinal zones but also aridity indices. The positive impacts of MAT on 
soil pH changes suggested that soil acidity caused by forestation might 
be buffered through future global warming. 

There were some uncertainties in this synthesis. First, some studies 
removed forest residuals such as leaves, branches, and bark from their 
sites, which may influence the soil pH change following forestation 
through accelerated export and loss of cations (Day and Monk, 1977; 
FAO, 2002). Although we did verify that exchangeable cation concen
trations were intimately linked to soil pH, we did not test the specific 
impacts of forestation on soil exchangeable cation concentrations. 
Future studies may examine forestation impacts on soil exchangeable 
cation concentrations to provide a more mechanistical understanding of 
forestation impacts on soil pH (Allen et al., 2016; Carlson et al., 2018). 
Second, while atmospheric nitrogen deposition is an important driver of 
soil pH (Lu et al., 2011), its interaction with forestation on soil pH was 
not addressed in the present study. Finally, the development of root 
networks following forestation, which can alter soil enzyme activities 
and microbial compositions, may be evaluated to understand whether 
root development following forestation caused changes in soil pH 
following forestation (Berthrong et al., 2009). 

5. Conclusion 

Our study revealed global patterns and predictors of soil pH change 
following forestation. We found that forestation significantly decreased 
soil pH by 0.23. Moreover, we identified climate was the most important 
predictor of soil pH change after forestation. Climate may modulate soil 
pH change after forestation both directly and indirectly through altering 
soil physicochemical properties. Our results highlight the critical role of 
climate in modulating soil pH after forestation and have important im
plications for carbon and nutrient dynamics after forestation in the 
context of global climate change. 
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