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Enhanced causal effect of ecosystem photosynthesis on
respiration during heatwaves
Jiaye Ping1,2, Erqian Cui1,2, Ying Du1,2, Ning Wei1,2, Jian Zhou1,3, Jing Wang1,2, Shuli Niu4,
Yiqi Luo3, Jianyang Xia1,2*

Because of global warming, Earth’s ecosystems have been experiencing more frequent and severe heatwaves.
Heatwaves are expected to tip terrestrial carbon sequestration by elevating ecosystem respiration and suppress-
ing gross primary productivity (GPP). Here, using the convergent cross-mapping technique, this study detected
positive bidirectional causal effects between GPP and respiration in two unprecedented European heatwaves.
Heatwaves enhanced the causal effect strength of GPP on respiration rather than respiration on GPP across 40
site-years of observations. Further analyses and global simulations revealed spatial heterogeneity in the heat-
wave response of the causal link strength between GPP and respiration, which was jointly driven by the local
climate and vegetation properties. However, the causal effect strength of GPP on respiration showed consider-
able uncertainties in CMIP6 models. This study reveals an enhanced causal link strength between GPP and res-
piration during heatwaves, shedding light on improving projections for terrestrial carbon sink dynamics under
future climate extremes.
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INTRODUCTION
Terrestrial ecosystems can mitigate climate change by absorbing ap-
proximately one-third of anthropogenic carbon (C) emissions (1).
Such a global land net C sink stems from higher gross primary pro-
ductivity (GPP) than ecosystem respiration (Re). However, in recent
decades, the number of abnormal high-temperature events over
global lands, e.g., heatwaves, has been increasing in both frequency
and intensity (2–5). It is still unclear whether heatwaves will quickly
threaten the global land C sink and even trigger a widespread tran-
sition of terrestrial ecosystems from C sinks to sources.

Because temperature regulates the majority of metabolic pro-
cesses in the biosphere, both photosynthetic and respiratory rates
are temperature dependent in terrestrial ecosystems. The different
responses of GPP and Re to temperature, especially at high temper-
atures, can determine the impact of heatwaves on ecosystem C sink.
As the temperature rises, the leaf-level photosynthetic rate increases
until the temperature exceeds its thermal optima, which is estimated
to be 23° ± 6°C (6, 7). High temperature during heatwaves can sig-
nificantly down-regulate GPP by triggering changes in leaf-level
processes, including reducing Rubisco activity and electron trans-
port (8), altering leaf thickness and age (9, 10), and stimulating sto-
matal closure with amplified vapor pressure deficit (VPD) (11). On
the ecosystem scale, heatwaves can inhibit GPP by reshaping canopy
architectures (12), microclimate buffering capacity (13), and phe-
nology (14). As opposed to GPP, Re increases exponentially with
rising temperature (15). However, contrary to GPP, previous
studies have documented either increasing (16–18) or decreasing

(19–21) Re during heatwaves. Hence, it remains unclear how the
balance between GPP and Re (i.e., ecosystem C sink) changes in ex-
tremely high temperatures (e.g., heatwave events).

Three hypotheses can be formulated to characterize the heatwave
impacts on ecosystem C sink due to different causal relationships
between GPP and Re. The first hypothesis assumes that GPP de-
clines as Re rises during heatwaves (16). This divergence of temper-
ature dependence between GPP and Re elicits a quick reversal of the
ecosystem C balance from sink to a source (i.e., hypothesis I in
Fig. 1A). This hypothesis supposes no causal relationship between
GPP and Re during heatwaves. A growing body of evidence has
shown that Re can be decoupled from GPP through nonstructural
carbohydrates (NSCs) fluctuations. NSCs mainly encompass
soluble sugars and starch, serving as an accessible energy reserve
pool that buffers the asynchrony of C supply (photosynthesis)
and metabolism demand (i.e., respiration and growth) (22). For
example, photosynthesis is ceased by high temperatures or
drought, while NSC reserves supply substrate to enable increased
respiration (23–25). However, reduced GPP due to high tempera-
tures may fail to replenish the NSC storage pool that is required
for Re, causing a decline in Re. Thus, as illustrated in Fig. 1, the
second hypothesis assumes a unidirectional causal effect of GPP
on Re during heatwaves, leading to a lagged transition of ecosystem
C sink to the source (i.e., hypothesis II in Fig. 1A). Our third hy-
pothesis assumes a bidirectional causality between GPP and Re
during heatwaves (i.e., hypothesis III in Fig. 1A). Consistent with
this third hypothesis, some experimental studies have shown that
climate warming can stimulate plant respiration and depletion of
NSCs at night, leading to a compensatory increase in photosynthe-
sis during the following day (26, 27). In contrast, low plant respira-
tory rates associated with excessive NSC storage may impair
chloroplast function or restrict CO2 diffusion to down-regulate
photosynthesis (28, 29). Recently, numerous flux tower measure-
ments have shown parallel declines in GPP and Re during heatwaves
(19–21, 30, 31), supporting hypotheses II and III rather than hy-
pothesis I. Some land-surface models have already considered

1Zhejiang Tiantong Forest Ecosystem National Observation and Research Station,
State Key Laboratory of Estuarine and Coastal Research, School of Ecological and
Environmental Sciences, East China Normal University, Shanghai 200241, China.
2Research Center for Global Change and Complex Ecosystems, Institute of Eco-
Chongming, East China Normal University, Shanghai 200241, China. 3School of In-
tegrative Plant Science, College of Agriculture and Life Sciences, Cornell University,
Ithaca, NY, 14850, USA. 4Key Laboratory of Ecosystem Network Observation and
Modeling, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China.
*Corresponding author. Email: jyxia@des.ecnu.edu.cn

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Ping et al., Sci. Adv. 9, eadi6395 (2023) 25 October 2023 1 of 13

D
ow

nloaded from
 https://w

w
w

.science.org at C
ornell U

niversity on A
pril 12, 2024

mailto:jyxia@des.ecnu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.adi6395&domain=pdf&date_stamp=2023-10-25


NSCs to buffer the imbalance between GPP and C depletion activ-
ities (i.e., respiration and growth) (25). Thus, detecting the causal
relationships between GPP and Re and their response to heatwave
is critical for improving our understanding of ecosystem C sink dy-
namics in extreme climatic events.

With the rapid progress in the fields of computer science,
physics, and statistics, several observational causal inference
methods from time series have been developed to infer the causal
link strength in Earth’s system (32–35). Among them, there is a
powerful methodological approach called “convergent cross-
mapping” (CCM). On the basis of Takens’ theorem and nonlinear
state-space reconstruction (33, 36), CCM detects causal link
strength between paired observations by measuring the extent to
which the affected variable can reliably estimate the states of the

causal variable (termed “cross-mapping skill,” ρ; Materials and
Methods). Recently, CCM has been widely applied to study the
causal feedback between temperature variability and greenhouse
gas concentrations (37), the biodiversity-mediated causal networks
in aquatic ecosystems (38), the causal effect of global atmospheric
CO2 on Mediterranean vegetation dynamics (39), and the time-
varying interaction network of natural fish community (40).

In this study, we examined the strength of the GPP-Re causality
and its shifts during heatwaves. We also applied the CCM method
for two record-breaking European heatwave events in 2003 and
2018. The observations of eddy covariance fluxes, including 40
site-years (table S1), were analyzed to quantify the changes in the
GPP-Re causality strength during the heatwaves. All of the available
climatological and hydrological factors, their differences between
heatwave and normal periods, and some static variables such as
plant functional type (PFT) (table S2) were used to identify the
drivers of spatial heterogeneity in the strength of the causal
linkage using redundancy analysis (RDA). CCM is also applied to
reveal the factors that mediate the underlying causal mechanisms
between GPP and Re. Furthermore, a summer heatwave experiment
in the Northern Hemisphere was conducted in the Community
Earth System Model Version 2 (CESM2) to determine the causal
effect strength of simulated GPP on simulated Re by increasing
the forcing temperature from 0° to 4°C, aiming to investigate
CESM2’s ability to capture the heatwave response of this causal re-
lationship. Moreover, we applied CCM to 11 Coupled Model Inter-
comparison Project Phase 6 (CMIP6) models in the causal
relationship between GPP and Re, particularly splitting the Re
into the autotrophic respiration (Ra) and the heterotrophic respira-
tion (Rh).

RESULTS AND DISCUSSION
Causal analysis between GPP and Re
Before the 2003 and 2018 European heatwave events, the flux tower
observations showed that GPP and Re followed saturating functions
in normal years (Fig. 2A). This is in line with the fact that the
current climate is generally below the tipping point of the ecosystem
C sink (16). During the heatwaves, the rates of photosynthetic CO2
uptake and respiratory CO2 release also increased with the temper-
ature and declined after reaching their maximum values (Fig. 2B).
Although the temperature at which GPP and Re began to decline
varied from site to site, there was a net C uptake period in the in-
termediate temperature range. The observations also showed a
downward trend of Re during heatwaves (Fig. 2B and fig. S1),
which supports the pattern of parallel declines in GPP and Re in
hypotheses II and III but not hypothesis I (Fig. 1A). Across 2003
and 2018, the heatwaves caused significant reductions in GPP (i.
e., from 9.26 ± 0.87 to 8.21 ± 1.61 g C m−2 day−1; means ± SD, P
< 0.01) and Re (i.e., from 6.22 ± 0.36 to 5.62 ± 0.52 g Cm−2 day−1, P
< 0.01) in summer. In addition, the net ecosystem productivity
(NEP) over the 40 site-years showed no significant change in
summer (i.e., from 3.05 ± 2.06 to 2.59 ± 1.66 g C m−2 day−1, P =
0.28) (fig. S2), as a result of the decrease of both GPP and Re.

We then applied CCM on the time series of GPP and Re data
using a nonlinear state-space reconstruction method through
lagged coordinate embedding (Fig. 2, C and D). A daily time dis-
tance between adjacent coordinates is used as the time lag to
create a multidimensional representation of the system’s dynamics

Fig. 1. Schematic diagram for the theoretical temperature dependence curve
of CO2 fluxes and net CO2 exchange. (A) Photosynthesis (GPP) and ecosystem
respiration (Re). (B) Net ecosystem exchange (NEE). Hypothesis I represents the
kinetic sensitivity of Re independent with the causal effect of GPP. Hypothesis II
represents a unidirectional causality from GPP to Re. Hypothesis III represents a
bidirectional causal relationship between GPP and Re. Here is a sign convention
where both fluxes are defined to be positive. C, carbon.
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Fig. 2. Observational GPP and Re with air temperature and the application of CCM. (A) Sensitivity of GPP and Re to air temperature in normal years. C, carbon. (B)
Sensitivity of GPP and Re to air temperature during heatwave years. (C) CCM test for summer GPP→Re from shadow manifolds MRe to MGPP of normal years. For clear
visualization, here take the site FI-Var for example, the embedding dimension E = 3. For each site, E is selected on the basis of the optimal cross-mapping skill (figs. S14 and
S15). The solid yellow circles on MGPP and MRe are the contemporaneous lagged coordinate vectors at time t0, i.e., GPP(t0) and Re(t0). The open yellow circle is the
estimated result. The green ellipse on MRe is the nearest neighbors of Re(t0). The green ellipse on MGPP is the point simultaneously corresponding to that of MRe.

GPP(t), GPP(t − 1), and GPP(t − 2) are the original GPP time series without lag, with a lag of 1 day, and with a lag of 2 days, respectively. The three time-series
formed a three-dimensional lagged coordinate vectors, also termed “reconstructed state space.” (D) CCM test for summer GPP→Re from shadow manifolds MRe to
MGPP of heatwave years. (E) CCM results of GPP→Re for 40 site-years in summer of normal years. Bold lines and shadows indicate the mean and SE. The inserted
panel shows that ρGPP→Re in the summer of normal (N) and heatwave (H) years is statistically significant (P = 0.00054) at the 5% level using a two-sided paired Wilcoxon
signed rank test. Bar indicates the mean and the whisker shows 1 SE. (F) Same with (E) but for Re→GPP. “ns” represents nonsignificant with P = 0.09691.
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(figs. S3 and S4 and Materials and Methods). A bidirectional causal
relationship between GPP and Re under heatwaves was quantified
(Fig. 2, E and F), which supports hypothesis III (Fig. 1). The level to
which predictive power converges (i.e., cross-mapping skill:
ρGPP→Re and ρRe→GPP) was regarded as an estimator of the causal
link strength between GPP and Re in each site-year. The bidirec-
tional causality strength between GPP and Re varied among sites
(fig. S5). Across all sites, heatwaves significantly increased the
causal effect strength of GPP on Re (ρGPP→Re) from 0.54 ± 0.04 to
0.71 ± 0.03 (means ± SE, P < 0.001; Fig. 2E), but not for the opposite
causal link of ρRe→GPP (P > 0.05; Fig. 2F).

Associated with the enhanced causal effect strength of GPP on
Re (∆ρGPP→Re), not only the correlation coefficient (R) but also the
slope (K ) of the linear relationship between GPP and Re increased
during the heatwaves (fig. S6). As a result, heatwaves reduce not
only GPP but also Re in most sites, leading to an unchanged NEP
between the normal and heatwave years across all sites (fig. S2).
These results indicate an increased resistance of ecosystem C sink
to heatwaves due to the enhanced causal effect strength of GPP
on Re (Fig. 1). A recent analysis predicted an occurrence of the tem-
perature tipping point of the terrestrial biosphere within the next
two to three decades if Re exponentially rises with the increase in
temperature (16). However, our findings suggest that the causal
effect of GPP on Re would allow for reduced Re under future
climate extremes. Therefore, the enhanced causal effect strength
of GPP on Re could be a critical mechanism for the rise in the tem-
perature tipping point in some terrestrial ecosystems.

Mechanisms of causality between GPP and Re
We further conducted an RDA to locate the major factors that drove
the∆ρGPP→Re during the heatwaves (table S2). The RDA found that
the enhanced ρGPP→Re in the heatwaves was positively correlated
with VPD, air temperature (Ta), and heatwave-induced changes
in VPD (∆VPD) (Fig. 3A). A relative importance method was per-
formed to quantify the contributions of these factors to the spatial
variations in ∆ρGPP→Re among the sites. This method measured
how much each predictor, relative to the other predictors, contrib-
uted to explaining the variation in∆ρGPP→Re by ranking the predic-
tors in terms of their contributions. The results showed that the

mean air temperature was the most influential factor, with 15.23%
contributions to the spatial heterogeneity in ∆ρGPP→Re. The heat-
wave-induced changes in VPD (∆VPD) and soil water content
(∆SWC) together explained 20.08%. The vegetation properties
also explained a considerable part of the heterogeneity next to cli-
matic drivers. For example, PFT and leaf area index (LAI) together
explained 20.75% of the spatial heterogeneity in ∆ρGPP→Re
(Fig. 3B). These results suggest that the causality between GPP
and Re is a complex nonlinear interaction affected by multiple
factors such as the heatwave-induced changes in climatic factors
(i.e., ∆VPD and ∆SWC), local climate, and vegetation properties.

Across the 40 sites, most sites experienced increasing VPD and
decreasing SWCduring heatwaves (fig. S7, F andG). However, heat-
waves reduced VPD at the sites of IT-SR2, CZ-BK1, CZ-Stn, CZ-
Lnz, and RU-Fyo but increased SWC at the sites of FR-Bil, DE-
RuW, CZ-Stn, IT-SR2, CH-Lae, and NL-Loo. The mean
∆ρGPP→Re was 0.08 and 0.12 across the five sites with reducing
VPD and the six sites with increasing SWC, respectively, both of
which were smaller than the average of ∆ρGPP→Re across all sites
(0.14). These results support the relative importance analysis that
∆SWC and ∆VPD were the two major response variables to
explain the positive heatwave effect on ρGPP→Re (Fig. 3B).

We then applied CCM with a more detailed causal path to un-
derstanding the causality strength changes between GPP and Re
during heatwaves. To exclude the potential spurious effects of
GPP and Re from net ecosystem exchange (NEE)–based constructs,
we used the daytime NEE dominated by GPP and the nighttime
NEE that only consists of nighttime Re in this analysis. We
showed the paths by which the causal link strength significantly in-
creased during heatwaves (Fig. 3C). The results based on NEE mea-
surements detected bidirectional causal effects between daytime
and nighttime NEE (Fig. 3c), which supported Hypothesis III
(Fig. 1). The bidirectional causal link strength between Re and
GPP could be potentially explained by the effects of NSCs on
GPP. Several models have attempted to explain the causal link
between Re (or NSCs) and GPP. For example, studies based on an
optimal stomatal model have suggested that excess NSCs directly
down-regulate GPP via coordinating stomatal closure (41, 42). An
alternative model (43) has indicated that increasing demand for

Fig. 3. Spatial contributions to the enhanced causal effect strength of GPP on Re. (A) RDA. Projection of response and explanatory variables and sites on the plane
defined by RDA axes 1 and 2. RDA triplot ordinates the sites as points, whose PFT was marked with colors, while both the response variables, ∆ρGPP→Re and ∆ρRe→GPP

(blue vectors), and the explanatory variables (black vectors) as vectors. Scores are scaled by the square root of the eigenvalues. Color map defines the kernel density of the
sites’ distribution. (B) Relative importance analysis of the explanatory variables to the spatial variations in ∆ρGPP→Re. (C) Causal paths that SWC and soil temperature (Ts)
mediate the causal relationship between daytime NEE and nighttime Re during heatwaves. The solid arrows indicate causal links among daytime NEE, nighttime NEE,
SWC, and Ts. Arrow thickness indicates the link with a significant increase in the causal strength (i.e., converged cross-mapping skill, ρ) during heatwaves (P < 0.05).
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NSCs to sustain Re can cause stomata to open and thus stimulate
GPP. Besides, heatwaves increased the causal effect strength of
daytime on nighttime NEE from 0.16 ± 0.04 to 0.35 ± 0.06
(means ± SE, P = 0.019), but not the causal effect strength of night-
time on daytime NEE (Fig. 3C). This result is consistent with the
causal relationship between GPP and Re (Fig. 2, E and F). The en-
hanced causal effect strength of daytime on nighttime NEE can be
explained by the increased bidirectional causal link strength
between daytime NEE and SWC, with ρGPP→SWC and ρSWC→GPP in-
creased from 0.28 ± 0.05 to 0.50 ± 0.05 (P = 0.014) and from 0.28 ±
0.06 to 0.45 ± 0.07 (P = 0.012), respectively. This finding indicates
strengthened causal interactions between C and water processes
during heatwaves (44).

Modeling heatwave impacts on causality between GPP
and re
We conducted a simulation experiment with a widely used land-
surface model, the Community Land Model Version 5 (CLM5),
to evaluate the impact of heatwave events on terrestrial C sinks in
the Northern Hemisphere. The model simulations were driven by
the CRUNCEPv7 meteorological forcing since 2000 with appropri-
ate initial conditions (Materials and Methods). We simulated heat-
waves in the model by increasing the mean air temperature of
summer (June–August) by 4°C in 2016, which was the hottest
year from 1880 to 2020. The modeling results showed that heatwave
events reduced the terrestrial NEP in 2016 over the Northern Hemi-
sphere (Fig. 4, A and B). One mechanism could be the higher VPD
and associated lower stomatal conductance during heatwaves (fig.
S8). However, the lands in the Northern Hemisphere showed a C
sink during heatwaves, even in the hottest scenario (i.e., the 4°C
heatwave experiment) (fig. S9). The FLUXNET observations
showed a strong spatial correlation between changes in maximum
daily GPP (∆GPPmax) and maximum daily Re (∆Remax) during
heatwaves (Fig. 4C). Such covarying ∆Remax and ∆GPPmax during
heatwaves was captured by the model simulations (Fig. 4C).
However, the slope of the linear correlation between ∆Remax and
∆GPPmax was significantly lower in CLM5 than in the observation
(t test, P < 0.05; Fig. 4C), suggesting that the temperature sensitivity
of Remax may be underestimated and needs improvement in the
model for capturing the correct response. This lower dependence
of∆Remax on ∆GPPmax in the model than the observation supports
recent recommendations and initiatives to improve the coupling
between C assimilation and vegetation C demand in the models
(25, 45).

We then applied CCM to the output GPP and Re from CLM5
simulations. The model simulations indicated a strong causal link
strength between GPP and Re in the Northern Hemisphere (fig.
S10). The causal link strength of GPP on Re (ρGPP→Re) enhanced
during the heatwave with ρ significantly increased from 0.747 ±
0.005 to 0.772 ± 0.004 (mean ± SE, P < 0.001; fig. S10C). In com-
parison with ρGPP→Re, the causal effect strength of Re on GPP
(ρRe→GPP) showed a slightly less increment from 0.745 ± 0.005 to
0.763 ± 0.005 over the Northern Hemisphere (P < 0.001; fig.
S10G). This finding is consistent with the observations that heat-
wave has a higher positive impact on the ρGPP→Re than ρRe→GPP
(Fig. 2). However, the causal link strength of ρGPP→Re and
ρRe→GPP in the normal year was higher in CLM5 than the observa-
tions (Fig. 2, E and F). Although the pool size of NSCs decreases
along with the warming gradient in heatwaves in the CLM5

simulations (fig. S11), the role of NSCs in decoupling GPP and
Re may need improvement in the model. The RDA analysis on
the CLM5 outputs further showed that the major drivers of the
spatial heterogeneity in the strength of the causal linkage GPP→Re
are also consistent between the model and observations. For
example, the heatwave-induced change in VPD (∆VPD), local tem-
perature, and vegetation properties together explain >50% of the
spatial heterogeneity in ∆ρGPP→Re for both CLM simulations
(Fig. 4I) and FLUXNET measurements (Fig. 3B). PFT plays an im-
portant role in driving spatial heterogeneity in the strength of the
causal link (ρGPP→Re). The results showed that PFT was the largest
contributor to spatial variations in ρGPP→Re in both normal and
heatwave years (Fig. 4, G and H). This finding is consistent with
the observations (fig. S12).

Because the CLM5 is not a coupled Earth system model (ESM),
the offline modeling experiment in this study ignored the transient
feedback between the ecosystem and climate system during the
heatwave. We further explored whether the causal link strength
between GPP and Re is comparative among the state-of-the-art
ESMs. By applying CCM to the extracted GPP and Re of each site
in the 11 CMIP6 ESMs, we found a large uncertainty in ρGPP→Re
among the models (ranging from 0.57 ± 0.12 to 0.83 ± 0.04;
Fig. 5A). Taking advantage of the CMIP6 data, we split the Re
into the autotrophic respiration (Ra) and the heterotrophic respira-
tion (Rh). Then, we investigated the causal effect of GPP on Ra and
Rh. The results showed that ρGPP→Ra (0.98 ± 0.04) was significantly
stronger than ρGPP→Rh (0.88 ± 0.13), especially at the middle and
lower latitudes in the Northern Hemisphere (Fig. 5, B and C, and
fig. S13B). By explicitly considering different time lags for cross-
mapping, GPP acted with significantly less time delay on Ra (0.70
± 0.35 months) than on Rh (1.21 ± 0.45 months) (Fig. 5, E and F,
and fig. S13D). We further explored how summer temperature
affects GPP and Re in coupled ESMs by analyzing outputs from
nine ESMs in the 1pctCO2-rad simulation in the Coupled
Climate Carbon Cycle Model Intercomparison Project (C4MIP) ex-
periments. We found that the coupled ESMs have large uncertainty
in modeling the responses of GPP and Re to summer warming
(Fig. 6, A and B). This uncertainty calls for more research on the
direct causal effect of GPP on Ra (Fig. 5D) and the lagged causal
effect of GPP on Rh (Fig. 5G) during heatwaves.

In summary, this study revealed an enhanced causal effect
strength of GPP on Re in heatwave events associated with synchro-
nous declines in GPP and Re during the heatwaves. Neither the ob-
servations nor the model simulations detected an abrupt heatwave-
driven shift from C sink to source. These findings indicate that the
enhanced causal link strength between GPP and Re could increase
the resistance of terrestrial ecosystem C sink to extreme heatwaves.
This study also found that local climate and vegetation properties
jointly contributed to the spatial heterogeneity in the heatwave
effect on causality strength. However, there is still considerable un-
certainty in the causal impact of ecosystem photosynthesis on res-
piration among current ESMs. Overall, our findings show the
importance of heatwaves in altering causal link strength between
C processes and call for improvements in heatwave effects on terres-
trial ecosystems in ESMs.
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MATERIALS AND METHODS
Eddy-covariance observation
Two unprecedented European heatwave events in 2003 and 2018
were selected. The former was the hottest in Europe since at the
latest 1500 CE (46), and the latter was the most severe during
2000–2020 (30). The years 2002 and 2017 were selected as reference
years, referring to the “normal” year in the main text. A typical
summer (June–August) of a year was chosen as heatwave-affected
period to do analyses in this study. Eddy covariance flux towers
have provided continuous measurements in ecosystem C and
energy exchange and key meteorological data. Study sites of the
2003 European heatwave event were selected according to the anal-
ysis of Ciais et al. (19). Data are available on the European Fluxes
Database Cluster (EFDC) (47) (www.europe-fluxdata.eu). Sites of
the 2018 European heatwave are available through the Drought
2018 Team as part of the Integrated Carbon Observation System

(ICOS) (48) (www.icos-cp.eu/data-products/YVR0-4898). Detailed
site information can be found in table S1. We used the average daily
GPP, Re, and explanatory data (details in table S2) from the EFDC
and ICOS datasets, which were processed with a standardized set of
quality control and gap-filling (49). The estimates of GPP and Re
partitioned from NEE were filtered with Variable USTAR Thresh-
old method using a nighttime partitioning approach. The nighttime
data were used to parameterize a respiration model that was then
applied to the whole dataset to estimate Re. GPP was then calculated
as the difference between Re and NEE. Because of the construction
of GPP and Re, we also used the direct measurements, i.e., the
daytime NEE and nighttime NEE replacing the GPP and Re, respec-
tively, to avoid the spurious effects of GPP and Re in CCM analysis.
The daytime NEE and nighttime NEE are limited by the data avail-
ability on EFDC, so only the data related to the 2018 heatwave event
were used in the causal analysis of daytimeNEE and nighttimeNEE.

Fig. 4. CLM5 simulations and the spatial differences in the causal relationship between GPP and Re. (A) Total NEP in the Northern Hemisphere from June to August
in 2016 with normal temperature forcing. (B) Difference in NEP between the hottest scenario (i.e., 4°C heatwave experiment) and the ambient scenario. (C) Linear rela-
tionship between the changed GPPmax and the changed Remax by 4°C heatwave experiment simulation. (D) RDA of the causal relationship between GPP and Re in the
default ambient simulation. (E) RDA of the spatial causality between GPP and Re in the heatwave simulation. (F) RDA for the changed causal link strength between GPP
and Re during heatwaves. (G to I) Relative importance analysis of the spatial variations in the causal effect strength of GPP on Re in normal (G) and heatwave simulation
(H), and that for the spatial variations in the changed causal link strength during heatwaves (I), respectively. LAI, leaf area index.
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Temperature dependence curve for GPP and Re
The GPP-Ta and Re-Ta curves in Fig. 2 (A and B) are fitted using
the mean of 40 site-years by a peak function

y ¼ y0 þ Aeð� eð� zÞ � zþ1Þ
z ¼ ðx � xcÞ=ω

�

ð1Þ

In Fig. 2A, the R2 (coefficient of determination) is 0.93 for the
GPP-Ta curve and 0.98 for the Re-Ta curve in normal years. Param-
eters of y0, xc, ω, and A in the GPP-Ta curve are 0.67 ± 0.14, 21.93 ±
0.86, 10.90 ± 0.72, and 9.30 ± 0.36, respectively, and that of the Re-
Ta curve are 1.10 ± 0.06, 23.81 ± 0.61, 12.96 ± 0.51, and 5.86 ± 0.15,

respectively. Both fittings are significant with P < 0.001. In Fig. 2B,
the R2 is 0.87 and 0.95 for the GPP-Ta curve and the Re-Ta curve
during heatwave years, respectively, with parameters of y0, xc, ω, and
A being 1.10 ± 0.11, 18.60 ± 0.34, 7.55 ± 0.38, and 7.12 ± 0.15 for
GPP-Ta and that of Re-Ta being 1.26 ± 0.06, 21.63 ± 0.48, 11.27 ±
0.49, and 4.50 ± 0.09, respectively. All four curves are significantly
fitted with P < 0.001.

Convergent cross-mapping
CCMwas used to distinguish causality from spurious correlation in
multivariate time series from nonlinear dynamical systems (33).

Fig. 5. Causal relationship of GPPon Ra and Rh in 11CMIP6models. (A) Causal link strength of GPPon Re in CMIP6 historical simulation. The gray dots denote the sites.
The star denotes the mean. The whisker denotes the 25th and 75th percentiles. (B to G) Spatial distribution of the ensemble mean of the causal effect strength of GPP on
Ra and Rh in CMIP6 ESMs. (B) Cross-mapping skill (ρ) of the causal link GPP→Ra. (C) Cross-mapping skill of the causal link GPP→Rh. (D) Difference of the cross-mapping
skill in ρGPP→Ra and ρGPP→Rh. (E) Lag step at the optimal cross-mapping skill in the causal link GPP→Ra. (F) Lag step at the optimal cross-mapping skill in the causal link
GPP→Rh. (G) Difference of the lag step in lagGPP→ a and lagGPP→Rh.
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CCM analysis is based on nonlinear state space reconstruction
through lagged coordinate embedding proved by Takens (36).
Takens’ theorem states that in a multidimensional dynamical
system with only a finite number of observable variables, the essen-
tial information of the system is retained in the time series of any
observed single variable of that system. Therefore, the system dy-
namics can be presented in the state space by substituting the
time lags of the observable time series for the unknown variables
with Takens’ theorem and its extensions (50). Effectively, if variable
X causes Y, then causality can be expected if states of the causal var-
iable X can be reliably recovered from the affected time series
history of Y (i.e., cross-mapping). The estimation skill is quantified
by calculating the correlation coefficient (cross-mapping skill, ρ)
between the predicted and observed value of X. The level to
which the predictive power converges can be considered as an esti-
mator of the causal link strength. One of the corollaries of Takens’
theorem is that multiple reconstructions map not only to the orig-
inal dynamic system but also to each other.

We applied CCM to quantify causal interactions between pairs
of time series, e.g., GPP(t) and Re(t). CCM gives a time-delay coor-
dinate embedding of the system trajectories (fig. S3). The main al-
gorithm is based on the nearest-neighbor forecasting (51), involving
tracking the forward trajectory of nearby points in a lagged coordi-
nate embedding. The embedding dimension (E) for a causal link, e.
g., GPP(t)→Re(t) (the causes and effects hereafter all refer to this
causal link), was determined by testing E from 2 to 10 dimensions
based on the optimal cross-mapping skill lagged 1 day (figs. S14 and
S15). In detail, Re(t) is used to predict GPP(t − 1) to prevent the
overfitting of the cross-mapping between GPP(t) and Re(t) (50).
E is the number of consecutive time-lag coordinates used for
state-space reconstruction and can be viewed as the number of in-
teracting variables of the underlying dynamics system for each time
series. Note that E + 1 is the minimum number of points needed for
a bounding simplex in an E-dimensional space.

Quantification of causality strength between GPP and re
via CCM
Taking time series of GPP and Re with length L, {GPP} = {GPP (1),
GPP (2), …, GPP(L)} and {Re} = {Re (1), Re (2), …, Re(L)}, for
example. Cross-mapping from Re to GPP begins with the lagged
coordinate vectors, which is called a reconstructed manifold MRe:
re(t) = {re1(t), re2(t), re3(t), …, reE(t)} = {Re(t), Re(t − τ), Re(t −
2τ), …, Re[t − (E − 1)τ]} for t = 1 + (E − 1) τ to L, where τ is the
time delay, a time distance by which each delay vector rei(t) is
shifted relative to the previous one. In other words, each vector in
the reconstructed manifold corresponds to a value of the time series
at a different time point, separated by the time delay τ. We used
daily time distance both for time series GPP and Re because most
time series were not overly sampled in time. The data used in our
analysis were from June–August, so the longest data length was 92 in
total without considering missing values. GPPðtÞ|MRe denotes the
cross-mapped estimate of GPP(t) and is calculated as follows. First,
locate the contemporaneous lagged coordinate vector onMRe, re(t),
and find its E + 1 nearest neighbors. Second, denote the time indices
of the E + 1 nearest neighbors of re(t) by t1, t2, …, tE+1 from the
closest to farthest. The time indices correspond to the nearest neigh-
bors to re(t) onMRe and are used to locate the neighbors in GPP to
estimate GPP(t) from a locally weighted mean of the E + 1 GPP(ti)
values

GPPðtÞ j MRe ¼ ΣωiGPPðtiÞi ¼ 1; 2; . . .;Eþ 1 ð2Þ

where ωi is a weighting based on the Euclidean distance between re
(t) and its ith nearest neighbor onMRe. GPP(ti) is the contempora-
neous value of GPP

ωi ¼ ui=Σujj ¼ 1; 2; . . .; Eþ 1 ð3Þ

where

ui ¼ expð� kreðtÞ; reðtiÞ jj= jjreðtÞ; reðt1ÞkÞ ð4Þ

||re(m), re(k)|| is the Euclidean distance between two vectors in
an E-dimensional space. That is, ||re(m), re(k)|| = (|re1(m)-re1(k)|2 +

Fig. 6. Uncertainty in the summer temperature responses of GPP and Re in CMIP6 models. (A) Relationships between summer temperature change (∆TSummer) and
GPP changes (∆GPP) in the Northern Hemisphere in coupled Earth System Models (ESMs) by using 1pctCO2-rad simulation in the C4MIP experiments. (B) The relation-
ships between ∆TSummer and ∆Re in the summer of the Northern Hemisphere among ESMs. The lines denote the fitting curves. The details for the equations and the
measure of fit can be found in table S6.
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|re2(m)-re2(k)|2 + … + |reE(m)-reE(k)|2)1/2. The cross-mapping skill

ρ ¼ Cov½GPPðtÞ;GPPðtÞ

jMRe�=½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var GPPðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ðGPPðtÞ jMReÞ

q

� ð5Þ

Causation can happen with a lagged response (37). Several
studies have found a time lag between GPP and Re with few days
in forests (52, 53). Therefore, we applied CCM with the highest
cross-mapping skill, in detail, the causation between GPP(t) and
Re(t + k), where k is a time lag of 0, 1, 2, and 3 days. To precisely
estimate the cross-mapping skill (ρ), we computed the average
linkage strength from 100 random subsamples from the original
time series.

A key property of CCM that distinguishes causation from simple
correlation is convergence. The convergence was determined using
different library sizes (L) subsampled randomly from Re(t). The
minimum to the maximum range of L is E and the entire time
series length. The significance test of CCM convergence is imple-
mented by: (i) Fisher’s Z test, to test whether the improvement in
ρ(L) is significant, i.e., whether ρ(Lmax) is significantly greater than
ρ(Lmin); (ii) Kendall’s τ test, to test whether ρ(L) is significantly
monotonically increasing. We admitted that GPP caused Re signifi-
cantly when both tests were significant (54). The CCM analysis was
conducted using the rEDM package in R (https://CRAN.R-project.
org/package=rEDM). The results of CCM and the significance test
of convergence are in tables S4 and S5. Notably, the use of the term
“causal effect” in this study is determined by the converged cross-
mapping skill ρ.

Redundancy analysis
We used RDA to examine the relationship between the predictors
(table S2) and the enhanced causal effect strength of GPP on Re
(∆ρGPP→Re). RDA is a constrained ordination that extends regres-
sion analysis to multivariate response data. RDA maximizes the
proportion of the interpreted response variables (55, 56). The
data were standardized to account for differences in scale and var-
iance. First, a multivariate linear regression was computed between
∆ρGPP→Re and the explanatory data to produce a matrix of fitted
values. Second, principal components analysis of the fitted values
produced canonical axes, which are linear combinations of the
predictors.

The results show variations in the response and explanatory var-
iables in a reduced dimensional space. In the plot, each point rep-
resents an observation, and the distance between the points
indicates the degree of similarity or dissimilarity between the
samples. The explanatory variables are represented as arrows, and
the length and direction of the arrows indicate the strength and di-
rection of their association with the response variable. We used
“rda” for RDA in the vegan package in R (https://CRAN.R-
project.org/package=vegan) for this analysis.

Relative importance method
We used a relative importance method to quantify the contribution
of each predictor to the enhanced causal effect strength of GPP on
Re, calculating the relative importance of the linear formula-based
model with the factors in RDA analysis. The method estimates the
total contribution of each predictor to the R2 of the model, averag-
ing over all possible orderings among regressors. The resulting

values represent the average increase in R2, so larger values indicate
a larger contribution to the overall fit of the model. The sum of all
the values is equal to the R2 value of the full model. Therefore, the
larger the sum of the values, the more the predictors collectively
explain the variation in the response variable. This method can be
a useful tool for providing insights into the relative importance of
the predictors. We used metrics “lmg” in the “relaimpo” package in
R (https://cran.r-project.org/web/packages/relaimpo/index.html).

CLM5 description
CLM5, the land component of the CESM2, is the latest version of
CLM. CLM5 examines the physical, chemical, and biological pro-
cesses of terrestrial ecosystems, which are closely linked to and in-
fluenced by climate on various spatial and temporal scales (57).
CLM5 represents the achievement of the development and analysis
of modern landmodels by the contributions from a diverse group of
scientists from theWorking Group on Chemistry Climate, Paleocli-
mate, Climate Change, and Land Ice, and so on and by the efforts
from software engineers from diverse institutions like the Terrestrial
Sciences Section and the Climate and Global Dynamics Division at
the National Center for Atmospheric Research (NCAR). In CLM5,
most major components have been updated, especially C and nitro-
gen cycling, river modeling, soil and plant hydrology, crop model-
ing, and snow density. CLM5 includes storage pools of NSCs used
to meet excess demand for respiration during periods with low pho-
tosynthesis. The basis for the land cover description comes from
MODIS land cover (MCD12Q1 v5.1), vegetation continuous
fields (MOD44B v5.1), LAI (MCD15A2 v5), and albedo
(MCD43B3 v5) products for the years 2001–2015 (57). In general,
CLM5 simulates a range of land biogeophysical, biogeochemical,
and landscape processes, including but not limited to processes of
surface energy fluxes, soil and snow hydrology, stomatal physiology
and photosynthesis, plant respiration, vegetation phenology, C and
nitrogen allocation. CLM5 is publicly available through the Com-
munity Terrestrial System Model (CTSM) git repository (https://
github.com/ESCOMP/ctsm). More information to access the docu-
mentation, tutorials, codes, model design and development, model
output and diagnostics, and other previously released CLM model
versions can be found on the CESMweb page (www.cesm.ucar.edu/
models/cesm2/land/). More details on the biogeophysical and bio-
geochemical parameterizations, numerical implementation, scien-
tific descriptions, and operating instructions for CLM5 can refer
to the full technical description of CLM5 (www.cesm.ucar.edu/
models/cesm2/land/CLM50_Tech_Note.pdf).

CLM5 simulation and analysis
We performed model simulations with CLM5 offline of CESM2.1.2
using the meteorological forcing dataset CRUNCEP, the default
forcing data in the Global Carbon Project TRENDY simulations
(58), and the MsTMIP model intercomparison (59). CRUNCEP is
a merged 6-hourly 0.5° global forcing product of the Climatic Re-
search Unit Time-Series (CRU TS) version 3.24 monthly climate
dataset (60) and the high-temporal resolution National Centers
for Environmental Prediction (NCEP) reanalysis (61). The reanal-
ysis data are used to generate diurnal and daily anomalies and add
them to CRU TS monthly means. Temperature, precipitation, rela-
tive humidity, and cloudiness are based on CRU, while pressure,
longwave radiation, and wind speed are directly obtained from
NCEP. The version we used in this study is version 7. The dataset
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CRUNCEPv7 is divided into three data streams: precipitation, solar,
and a third category of variables. The third category includes pres-
sure, temperature, wind, and humidity.

We conducted two simulations in CLM5, and the simulation
period was from 2000 to 2016. One was driven by default meteoro-
logical forcing data, and the other by an increased temperature
based on the default temperature forcing. The specific increased
temperature was decided with the daily output temperature accord-
ing to the former ambient simulation. That is, considering the
weighting of summer daily temperatures, we added a weight-
based temperature to the default temperature forcing for the North-
ern Hemisphere. The summer temperatures were increased by in-
crements of 0.5°C, ranging from 0.5° to 4°C (fig. S16). The year 2016
was chosen as a heatwave year in the model because it was the year
with the highest global average land and ocean surface temperature
since 2020 (www.ncei.noaa.gov/access/monitoring/monthly-
report/global/202013).

I2000Clm50BgcCru was set as the component set in the model
simulations with prognostic vegetation state and active biogeo-
chemistry, containing CLM with a data atmosphere model and
stub ocean and sea-ice models. The initialization type of the
CLM5 run was set as “startup.” In a startup run, all components
are initialized using baseline states, which are set independently
by each component. Simulations were implemented at a resolution
of 1.9° latitude by 2.5° longitude. In addition to the standard
monthly output files, we added auxiliary history files to get the
daily average output by adding hist_nhtfrq and set to −24 in the
clm namelist. The June–August data were selected for further
analysis.

CMIP6 ESMs descriptions and analyses
The most recent (sixth) Coupled Model Intercomparison Project
(CMIP6) establishes standardized experimental protocols, forcing,
and output, thereby promoting enhanced process comprehension
in various domains, such as aerosols, clouds, impacts of volcanic
eruptions on climate, and geoengineering (62).We used 11 compre-
hensive ESMs fromCMIP6 in this study (table S3). Themodels were
selected on the basis of the availability of some key variables in the
climate-C cycle feedback, including variables such as GPP, hetero-
trophic respiration (rh), plant respiration (ra), vegetation C content
(cVeg), air temperature (tas), soil C content (cSoil), and litter C
content (cLitter). We selected one model per ESM institute
because the models within each ESM institute had highly correlated
results (63). Outputs from ESMs that contributed to CMIP6 are
publicly available in a standardized format through the Earth
System Grid Federation (ESGF) data replication centers (https://
esgf-node.llnl.gov/search/cmip6/). Results from the historical ex-
periments were analyzed. The historical simulations are forced by
common datasets such as CO2 and other greenhouse gas mixing
ratios, land use change scenarios, and aerosol emissions that are
largely based on time-dependent observational estimates. The sim-
ulation covers the period from 1850 to the end of 2014. The reported
monthly value of GPP and Re (calculated as the sum of the hetero-
trophic and autotrophic respiration in ESMs) from 1980 to 2014
were used and resampled into 1° × 1° resolution. According to
the latitude and longitude of the sites in 2003 heatwave events
(table S1), we extracted the GPP and Re for each site in 11 ESMs.
The GPP and Re were then used in CCM analysis to explore the un-
certainty of the causal effect of GPP on Re among ESMs. For

identifying the causal delays in GPP→Ra and GPP→Rh, we repeat-
ed CCM analysis by setting different cross-mapping time lags. The
causal lag was determined at the optimal cross-mapping skill within
one to three steps (unit: months). The results for each CMIP6model
were added as figs. S17 to S20. We used model outputs from the
1pctCO2-rad experiment in the C4MIP (62, 64). The 1pctCO2-
rad experiment was originally designed to estimate the carbon-
climate feedback factor γ, which quantified the response of the C
cycle to changes in physical climate (64, 65). The “1pctCO2” repre-
sented 1% per year increasing atmospheric CO2 concentration from
the preindustrial level until quadrupling. The “rad” was the abbre-
viation of radiatively coupled simulations, in which radiative trans-
fer processes in the atmosphere responded to elevated CO2, but
biogeochemical processes over land and ocean did not respond.
The partial coupling scheme isolates responses of C cycle compo-
nents to climate warming and CO2 rising (64, 66). On the basis of
nine ESMs’ simulations in the 1pctCO2-rad experiment (table S3),
we analyzed how GPP and Re respond to summer tempera-
ture change.

Supplementary Materials
This PDF file includes:
Figs. S1 to S20
Tables S1 to S6
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